首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase relations for the bulk compositions 3CaO·2FeOx·3SiO2+excessH2O and CaO·FeOx·2SiO2+excess H2O were determinedusing conventional hydrothermal techniques with solid phaseoxygen buffers to control fO2. Andradite, Ca3Fe3+2Si3O12, synthesized above 550 °C hasan average unit cell edge, ao, of 12.055±0.001 Å,and an index of refraction, n, of 1.887±0.003. Belowthis temperature, ao increases whereas n decreases, indicatingthe formation of a member of the andradite-hydroandradite solidsolution. At 2000 bars Pfluid andradite is stable above an fO2of 1015 bar at 800 °C and 10-32 bar at 400 °C. At lowerfO2 andradite+fluid gives way at successively lower temperaturesto the condensed assemblages magnetite+wollastonite, kirschsteinite(CaFe2+SiO4)+ wollastonite and kirschsteinite+xonotlite (Ca6Si6O17(OH)2). Synthetic hedenbergite, CaFe2+Si2O6, has average unit cell dimensionsof ao = 9.857± 0.004 Å, bo = 9.033±0.002Å, co = 5.254±0.002 Å and ß = 104.82°±0.03°,and refractive indices of n = 1.731±0.003 and n = 1.755±0.005.At 2000 bars Pfiuid, hedenbergite is stable below an fO2 of10-13 bar at 800 °C and 10-28 bar at 400 °C. Above thesefO2 values, hedenbergite+O2 breaks down to andradite+magnetite+quartz. The mineral pair andradite +hedenbergite thus limit the fO2range possible for their joint formation under equilibrium conditions. The hydration of wollastonite to xonotlite occurs at much lowertemperatures than previous experimental work indicated. A tentativehigh temperature limit for this reaction is set at 185°±15°C and 5000±25 bars and 210°±15 °Cand 2000±20 bars. Inasmuch as the growth of xonotlitefrom wollastonite + H2O was never accomplished, this high temperaturelimit does not represent an equilibrium univariant curve. Nine phases were encountered in the study of andradite and hedenbergite.They are andradite, hedenbergite, magnetite, wollastonite, kirschsteinite,xonotlite, quartz, ilvaite, and vapor (fluid). An invariantpoint analysis using the method of Schreinemakers shows thetopologic relations of the reactions involved. The resultinggrid can be used to interpret natural occurrences.  相似文献   

2.
LIOU  J. G. 《Journal of Petrology》1971,12(2):379-411
Hydrothermal investigation of the bulk composition CaO.Al2O3.4SiO2+excessH2O has been conducted using conventional techniques over thetemperature ranges 200–450 °C and 500–6000 barsPfluid. A number of reactions have been studied by employingmineral mixtures consisting of reactants and products in about9: 1 and 1: 9 ratios. The phase relations were deduced fromrelatively long experiments by observing which seeded assemblagedisappeared or decreased markedly in one of the paired run charges. Laumontite was synthesized in the laboratory, probably for thefirst time. Laumontite was grown from seeded wairakite to over99 per cent using a weak NaCl solution. The refractive indicesof the synthetic material are about = 1.504 and = 1.514. Theaverage unit cell dimensions are a0 = 14.761±0.005 Å;b0 = 13.077±0.005 Å; c0 = 7.561±0.003 Å;and ß = 112.02°±0.04°. Within the errorof measurement, the optical properties and cell parameters arein good agreement with those of natural laumontite. The equilibriumdehydration of laumontite involves two reactions: (1) laumontite= wairakite+2H2O, passing through about 230 °C at 0.5 kb,255±5 °C at 1 kb, 282±5 °C at 2 kb, 297±5°C at 3 kb and 325±5 °C at 6 kb; and (2) laumontite= lawsonite+2 quartz+2H2O, taking place at about 210 °Cat 3 kb and 275 °C at 3.2 kb. Above 300 °C, the equilibriumcurve for the solid-solid reaction (3) lawsonite+2 quartz =wairakite passes through 305 °C, 3.4 kb and 390 °C,4.4 kb. Equilibrium has been demonstrated unambiguously forthe above three reactions. The hydrothermal decomposition ofnatural laumontite above its own stability limit appears tobe a very slow process. Combined with previously published equilibria determined hydrothermallyfor wairakite, the phase relations are further investigatedby chemographic analysis interrelating the phases, laumontite,wairakite, lawsonite, anorthite, prehnite+kaolinite, and 2 pumpellyite+kaolinitein the system CaAl2Si2O8-SiO2-H2O. This synthesis allowed theconstruction of a semiquantitative petrogenetic grid applicableto natural parageneses and the delineation of the physical conditionsfor the various low-grade metamorphic facies in low µCO2environments. The similar stratigraphic zonations, consistentlyfound in a variety of environments, are recognized to be a functionof burial depth, geothermal gradient, and mineralogical andchemical composition of the parental rocks. Departures fromthe normal sequences are believed to be due to the combinationsof mineralogical variations, availability of H2O, differencesin the ratio µCO2/µH2O, and the rate of reaction.The possible P-T boundaries for diagenesis, the zeolite facies,the lawsonite-albite facies, the prehnite-pumpellyite facies,and the adjacent metamorphic facies are illustrated diagrammatically.  相似文献   

3.
Hydrothermal synthesis and investigations of stability relationsof Mg—Al pumpellyite were conducted using high-pressurecold-seal apparatus over the temperature range 250–600°C and 2–8 kb Pfluid. Mg—Al pumpellyite Ca4Al5MgSi6O21(OH)7was synthesized from partially crystalline gel mixtures of stoichiometriccomposition at 275–410 °C, 6–9 kb Pfluid, andruns of 7–90 days. Pure monomineralic synthetic Mg—Alpumpellyite has refractive index nß = 1.624 (2) andcell dimensions = 8.825 (8) Á, b = 5.875 (5) Á,c = 19.10 (1) Á, and ß = 97.39 (7)°. The high temperature assemblage of the equivalent bulk compositionconsists of clinozoisite, hydrogrossular/grossular, aluminousseptechlorite/chlorite, quartz, and H2O. Hydrogrossular wassynthesized in the presence of quartz at 8 kb from 400–500°C, and hydrogrossular + quartz are unstable with respectto grossular + H2O at 400 °C and 8 kb Pfluid. At 8 kb Pfluid,aluminous septechlorite forms at temperatures below 500 °Cwhereas aluminous 14 Á chlorite crystallizes at 500–600°C. The equilibrium relations of Mg—Al pumpellyite were determinedusing subequal mixtures of synthetic Mg—Al pumpellyiteand its high temperature assemblage. The reaction 9 Mg—Alpumpellyite = 9 clinozoisite + 6 grossular + 2 chlorite + 4quartz + 19 H2O occurs at temperatures of 390 °C at 8 kb,368 °C at 5 kb, and near 325 °C at 2 kb Pfluid. Thereversal data yield an approximate value of –3141 joules/mole°K for the standard entropy of formation for the syntheticMg—Al pumpellyite. The Schreinemakers' relations for pumpellyite, prehnite, clinozoisite,tremolite, grossular, and amesite in the presence of excessquartz and fluid were constructed in the pseudo-ternary systemCaO–Al2O3–MgO(SiO2–H2O). The results, togetherwith reconnaissance experiments on the reaction 4 Mg—Alpumpellyite + 2 quartz = 8 prehnite + aluminous septechlorite+ 2 H2O, locate the invariant point [TR] at approximately 5.7kb Pfluid and 375 °C. The results of the present study arenot compatible with previous experimental data on the invariantpoint [GR]. The P–T oriented phase relations are used to interpretsome natural parageneses developed in low-grade metabasalticrocks recrystallized under conditions of low co2. The high-temperaturestability relations of Mg—Al pumpellyite are useful todenote the onset of greenschist facies metamorphism in rocksof basaltic composition.  相似文献   

4.
The terrane in the Panamint Mountains, California, was regionallymetamorphosed under low-pressure conditions and subsequentlyunderwent retrograde metamorphism. Prograde metamorphic isogradsthat mark the stability of tremolite + calcite, diopside, andsillimanite indicate a westward increase in grade. The studywas undertaken to determine the effects of the addition of Caon the types of assemblages that may occur in pelitic schists,to contribute to the understanding of the stability limits inP – T – aH2O – XFe of the pelitic assemblagechlorite + muscovite + quartz, and to estimate the change inenvironment from prograde to retrograde metamorphism. Peliticassemblages are characterized by andalusite + biotite + stauroliteand andalusite + biotite + cordierite. Within a small changein grade, chlorite breaks down over nearly the entire rangein Mg/(Mg + Fe) to biotite + aluminous mineral. Chlorite withMg/(Mg + Fe) = 0.55 is stable to the highest grade, and thegeneralized terminal reaction is chlorite + muscovite + quartz= andalusite + biotite + cordierite + H2O. Calcic schists arecharacterized by the assemblage epidote + muscovite + quartz+ chlorite + actinolite + biotite + calcite + plagioclase atlow grades and by epidote + muscovite + quartz + garnet + hornblende+ biotite + calcite + plagioclase at high grades. Epidote doesnot coexist with any AFM phase that is more aluminous than garnetor chlorite. Lithostatic pressure ranged from 2.3 kb to 3.0kb. During prograde-metamorphism temperatures ranged from lessthan 400° to nearly 700°C, and XH2O (assuming PH2O +PCO3 = Ptotal) is estimated to be 0.25 in siliceous dolomite,0.8 in pelitic schist, and 1.0 in calcic schist. Temperatureduring retrograde metamorphism was 450° ± 50°C,and all fluid were H2O-rich. A flux of H2O-rich fluid duringfolding is believed to have caused retrograde metamorphism.The petrogenetic grid of Albee (1965b) is modified to positionthe (A, Cd) invariant point relative to the aluminosilicatetriple point, which allows the comparison of facies series thatinvolve different chloritoid-reactions.  相似文献   

5.
Spinel granulites, with or without sapphirine, occur as lensesin garnetiferous quartzofeldspathic gneisses (leptynites) nearGokavaram in the Eastern Ghats Belt, India. Spinel granulitesare mineralogically heterogeneous and six mineral associationsoccur in closely spaced domains. These are (I) spinel–quartz–cordierite,(II) spinel–quartz–cordierite–garnet–orthopyroxene–sillimanite,(III) spinel–cordierite–orthopyroxene–sillimanite,(IV) spinel–quartz–sapphirine–sillimanite–garnet,(V) spinel–quartz-sapphirine–garnet and (IV) rhombohedral(Fe–Ti) oxide–cordierite–orthopyroxene–sillimanite.Common to all the associations are a porphyroblastic garnet(containing an internal schistosify defined by biotite, sillimaniteand quartz), perthite and plagioclase. Spinel contains variableamounts of exsolved magnetite and is distinctly Zn rich in thesapphirine-absent associations. XMg in the coexisting phasesdecreases in the order cordierite–biotite–sapphirine–orthopyroxene–spinel–garnet–(Fe–Ti)oxides. Textural criteria and compositional characteristicsof the phases document several retrograde mineral reactionswhich occurred subsequent to prograde dehydration melting reactionsinvolving biotite, sillimanite, quartz, plagioclase and spinel.The following retrograde mineral reactions are deduced: (1)spinel + quartz cordierite, (2) spinel + quartz garnet + sillimanite,(3) garnet + quartz cordierite + orthopyroxene, (4) garnet+ quartz + sillimanite cordierite, (5) spinel + cordierite orthopyroxene + sillimanite, (6) spinel + sillimanite + quartz sapphirine, (7) spinel + sapphirine + quartz garnet + sillimanite,and (8) spinel + quartz sapphirine + garnet. A partial petrogeneticgrid for the system FeO–MgO–Al2O3–SiO2–K2O–H2Oat high fo2, has been constructed and the effects of ZnO andFe2O3 on this grid have been explored Combining available experimentaland natural occurrence data, the high fo2 invariant points inthe partial grid have been located in P–T space. Geothermobarometricdata and consideration of the deduced mineral reactions in thepetrogenetic grid show that the spinel granulites evolved throughan anticlockwise P–T trajectory reaching peak metamorphicconditions >9 kbar and 950C, followed by near-isobaric cooling(dT/dP = 150C/kbar). This was superimposed by an event of near-isothermaldecompression (dT/dP = 15C/kbar). The studied spinel granulites,therefore, preserve relic prograde mineral associations andreaction textures despite being metamorphosed at very high temperatures,and bear evidence of polymetamorphism. KEY WORDS: spinel granulite; Eastern Ghats; India; polymetamorphism; geothermometry; geobarometry Corresponding author  相似文献   

6.
The pressure-temperature-compositional (P-T-X) dependence ofthe solubility of Al2O3 in orthopyroxene coexisting with garnethas been experimentally determined in the P-T range 5–30kilobars and 800–1200 ?C in the system FeO—MgO—Al2O3—SiO2(FMAS). These results have been extended into the CaO—FeO—MgO—Al2O3—SiO2(CFMAS) system in a further set of experiments designed to determinethe effect of the calcium content of garnet on the Al2O3 contentsof coexisting orthopyroxene at near-constant Mg/(Mg + Fe). Startingmaterials were mainly glasses of differing Mg/(Mg + Fe) or Ca/(Ca+ Mg + Fe) values, seeded with garnet and orthopyroxene of knowncomposition, but mineral mixes were also used to demonstratereversible equilibrium. Experiments were performed in a piston-cylinderapparatus using a talc/pyrex medium. Measured orthopyroxene and corrected garnet compositions werefitted by multiple and stepwise regression techniques to anequilibrium relation in the FMAS system, yielding best-fit,model-dependent parameters Goy= –5436 + 2.45T cal mol–1,and WM1FeA1= –920 cal mol–1. The volume change ofreaction, Vo, the entropy change, So970 and the enthalpy changeHo1,970, were calculated from the MAS system data of Perkinset al. (1981) and available heat capacity data for the phases.Data from CFMAS experiments were fitted to an expanded equilibriumrelation to give an estimate of the term WgaCaMg = 1900 ? 400cal/mole cation, using the other parametric values already obtainedin FMAS. The experimental data allow the development of a arnet-orthopyroxenegeobarometer applicable in FMAS and CFMAS: where This geobarometer is applicable to both pelitic and metabasicgranulites containing garnet orthopyroxene, and to garnet peridoditeand garnet pyroxenite assemblages found as xenoliths in diatremesor in peridotite massifs. It is limited, however, by the necessityof an independent temperature estimate, by errors associatedwith analysis of low Al2O3 contents in orthopyroxenes in high-pressureor low-temperature parageneses, and by uncertainties in thecomposition of garnet in equilibrium with orthopyroxene. Ananalysis of errors associated with this formulation of the geobarometersuggests that it is subject to great uncertainty at low pressuresand for Fe-rich compositions. The results of application ofthis geobarometer to natural assemblages are presented in acompanion paper.  相似文献   

7.
On the pseudobinary join CaO:3MgO:Al2O3:2SiO2:xH2O–CaO:1.25MgO:2.75 Al2O3: 0.25SiO2:xH2O clintonite mixed crystals Ca(Mg1+ xAl2 – x) (Al4 – xSixO10)(OH)2 with x rangingfrom 0.6 to 1.4 occur in the temperature range 600–830?C, 2 kb fluid pressure. On the MgSirich side clintonites coexistwith chlorite, forsterite, diopside, and calcite (due to smallamounts of CO2 in the gas phase) and, at lower temperatures,also with idocrase, hydrogrossularite, and aluminous serpentine.Decomposition of clintonite over a divariant temperature rangeoccurs above 830 ?C, 2 kb; clintonite-free subsolidus assemblagescomprising three or four solid phases are formed in the temperatureranges 890 ?–1120 ?C. The subsolidus assemblages can berepresented in a polyhedron defined by the corners forsterite,diopside, melilite, spinel, anorthite, corundum, and calciumdialuminate. Above 1120 ?C partial melting occurs. The upper thermal stability limits of three selected compositionshave been reversed in the P-T range 0.5–20 kb and 730–1050 ?C, respectively. Below some 4 kb breakdown is dueto the divariant reactions: (1)Ca(Mg2.25Al0.75)(Al2.75)(Si1.25O10)(OH)2 spinel+diopsidess+forsterite+clintonitess+vapor, (2)Ca(Mg2Al)(Al3SiO10)(OH)2 spinelx002B;melilitess+anorthite+clintonitess+vapor, (3)Ca(Mg1.75Al1.25)(Al3.25)(Si0.75O10)(OH)2 spinel+melilitess+corundum+clintonitess+vapor, At the terminations of the divariant temperature ranges (1)melilitess, (2) diopsidess, and (3) anorthite enter those assemblagesand clintonitess disappears completely. The reactions can berepresented by the following equations (1)log,H2O = 10.2879–8113/T+0.0856(P–1)/T, (2)log = 9.5852–7325/T+0.0794(P–1)/T, (3)log = 7.8358–5250/T+0.077(P–1)/T, with P expressed in bars and Tin ?K. Above 4 kb the upper thermalstability limit of clintonite is defined by incongruent melting,with grossularite participating at pressures above 9 kb. Thesecurves exhibit a very steep, probably even negative slope inthe P-T diagram. There is a close correspondence between natural clintonite-bearingassemblages and thosefound experimentally. The rarity of clintonitein nature is not due to special conditions of pressure and temperaturebut rather due to special bulk compositions of the rocks.  相似文献   

8.
Experimental studies were carried out to evaluate phase relationsinvolving titanite–F–Al-titanite solid solutionin the system CaSiO3–Al2SiO5–TiO2–CaF2. Theexperiments were conducted at 900–1000°C and 1·1–4·0GPa. The average F/Al ratio in titanite solid solution in theexperimental run products is 1·01 ± 0·06,and XAl ranges from 0·33 ± 0·02 to 0·91± 0·05, consistent with the substitution [TiO2+]–1[AlF2+]1.Analysis of the phase relations indicates that titanite solidsolutions coexisting with rutile are always low in XAl, whereasthe maximum XAl of titanite solid solution occurs with fluoriteand either anorthite or Al2SiO5. Reaction displacement experimentswere performed by adding fluorite to the assemblage anorthite+ rutile = titanite + kyanite. The reaction shifts from 1·60GPa to 1·15 ± 0·05 GPa at 900°C, from1·79 GPa to 1·375 ± 0·025 GPa at1000°C, and from 1·98 GPa to 1·575 ±0·025 GPa at 1100°C. The data show that the activityof CaTiSiO4O is very close to the ideal molecular activity model(XTi) at 1100°C, but shows a negative deviation at 1000°Cand 900°C. The results constrain  相似文献   

9.
A method to estimate the oxygen fugacity (fO2) during the crystallizationof kimberlites is developed using the Fe content of CaTiO3 perovskite(Pv), a common groundmass phase in these rocks. With increasingfO2, more Fe exists in the kimberlitic liquid as Fe3+, and thuspartitions into Pv. Experiments to study the partitioning ofFe between Pv and kimberlite liquid were conducted at 100 kPaon simple and complex anhydrous kimberlite bulk compositionsfrom 1130 to 1300°C over a range of fO2 from NNO –5 to NNO + 4 (where NNO is the nickel–nickel oxide buffer),and at Nb and rare earth element (REE) contents in the startingmaterials of 0–5 wt % and 1500 ppm, respectively. Thepartitioning of Fe between Pv and kimberlite liquid is influencedmostly by fO2, although the presence of Nb increases the partitionof Fe3+ into perovskite at a given T and fO2. Multiple linearregression (MLR) of all the experimental data produces a relationshipthat describes the variation of Fe and Nb in Pv with fO2 relativeto the NNO buffer:

(uncertaintiesat 2, and Nb and Fe as cations per three oxygens). Over therange of conditions of our experiments, this relationship showsno temperature (T) dependence, is not affected by the bulk Fecontent of the kimberlite starting material and reproduces experimentaldata to within 1 log fO2 unit. KEY WORDS: kimberlites; oxygen fugacity; perovskite; ferric iron; magma  相似文献   

10.
Systematic changes in the assemblages and compositions of mineralssuggest that the transition from lower to upper sillimanitezone in the Oquossoc area, Maine, is marked by the reaction Staurolite+Sodic Muscovite+QuartzSillimanite+Biotite+K-richerMuscovite+Albite+Garnet+H2O. Moreover, the mineralogic data for the silicates suggest thatH2 O is buffered by some of the assemblages present but PH2O<Ptotal. A consideration of the equilibria among the opaqueminerals enables a calculation of the composition of the fluidphase assuming specific PT conditions and that Pfluid = Ptotal.At several reasonable PT conditions the calculated fluid phaseis reasonable in terms of the model for PH2O based upon thesilicate equilibria. Probable PT conditions for the metamorphism considered in thisstudy range from 575 to 630°C and 3 to 5 kb.  相似文献   

11.
We present results of dehydration melting experiments [3–15kbar, 810–950C f(O2) QFM (quartz-fayalite-magetite)and Ni-NiO] on two Fe-rich mixtures of biotite (37%), plagioclaseAn38 (27%), quartz (34%) and ilmenite (2%), which differ onlyin their biotite compositions (mg-number 23 and 0.4). Dehydrationmelting of metagreywackes of constant modal composition generatesa wide range of melt fractions, melt compositions and residualassemblages, through the combined effects of pressure, Fe/Mgratio and f(O2). Crystallization of garnet is the chief controlon melting behavior, and is limited by two reactions: (1) thebreakdown of garnet + quartz to orthopyroxene + plagioclaseat low P, and (2) the oxidation of garnet to magnetite + anorthite+ quartz (enstatite), which is sensitive to both f(O2) andP. Because of these reactions, melting of Mg-rich metagreywackesis rather insensitive to f(O2) but strongly sensitive to P;the converse is true for Fe-rich metagreywackes. Garnet crystallizationrequires that plagioclase break down incongruently, liberatingalbite. This increases the Na2O content of the melts and enhancesmelt production. Thus, melting of metagreywacke in a reducingdeep-crustal environment (with garnet stable) would producemore, and more sodic, melt than would garnet-absent meltingof the same source material in a relatively oxidizing, shallow-crustalenvironment. KEY WORDS: anatexis; metasediments; gneisses; granites; garnet *Corresponding author. Telephone: 706-542-2394; fax: 706-542-2425; e-mail: alpatino{at}uga.cc.uga.edu  相似文献   

12.
Amphibolites of the Post Pond Volcanics, south-west corner ofthe Mt. Cube Quadrangle, Vermont, are characterized by a greatdiversity of bulk rock types that give rise to a wide varietyof low-variance mineral assemblges. Original rock types arebelieved to have been intrusive and extrusive volcanics, hydrothermallyaltered volcanics and volcanogenic sediments with or withoutadmixtures of sedimentary detritus. Metamorphism was of staurolite-kyanitegrade. Geothermometry yields a temperature of 535 ± 20°C at pressures of 5–6 kb. Partitioning of Fe and Mg between coexisting phases is systematic,indicating a close approach to chemical equilibrium was attained.Relative enrichment of Fe/Mg is garnet > staurolite >gedrite > anthophyllite cummingtonite hornblende > biotite> chlorite > wonesite > cordierite dolomite > talc;relative enrichment in Mn/Mg is garnet > dolomite > gedrite> staurolite cummingtonite > hornblende > anthophyllite> cordierite > biotite > wonesite > chlorite >talc. between coexisting amphiboles varies as a function ofbulk Fe/Mg, which is inconsistent with an ideal molecular solutionmodel for amphiboles. Mineral assemblages are conveniently divided into carbonate+ hornblende-bearing, hornblende-bearing (carbonate-absent)and hornblende-absent. The carbonate-bearing assemblages allcontain hornblende + dolomite+ calcite + plagioclase (andesineand/or anorthite) + quartz with the additional phases garnetand epidote (in Fe-rich rocks) and chlorite ± cummingtonite(in magnesian rocks). Carbonate-bearing assemblages are restrictedto the most calcic bulk compositions. Hornblende-bearing (carbonate absent) assemblages occur in rocksof lower CaO content than the carbonate-bearing assemblages.All of these assemblages contain hornblende + andesine ±quartz + Fe-Ti oxide (rutile in magnesian rocks and ilmenitein Fe-rich rocks). In rocks of low Al content, cummingtoniteand two orthoamphiboles (gedrite and anthophyllite) are common.In addition, garnet is found in Fe-rich rocks and chlorite isfound in Mg-rich rocks. Several samples were found that containhornblende + cummingtonite + gedrite + anthophyllite ±garnet +chlorite + andesine + quartz + Fe-Ti oxide ±biotite. Aluminous assemblages contain hornblende + staurolite+ garnet ± anorthite/bytownite (coexisting with andesine)± gedrite ± biotite ± chlorite ±andesine ± quartz ± ilmenite. Hornblende-absentassemblages are restricted to Mg-rich, Ca-poor bulk compositions.These rocks contain chlorite ± cordierite ± staurolite± talc ± gedrite ± anthophyllite ±cummingtonite ± garnet ± biotite ± rutile± quartz ± andesine. The actual assemblage observeddepends strongly on Fe/Mg, Ca/Na and Al/Al + Fe + Mg. The chemistry of these rocks can be represented, to a firstapproximation, by the model system SiO2–Al2O3–MgO–FeO–CaO–Na2O–H2O–CO2;graphical representation is thus achieved by projection fromquartz, andesine, H2O and CO2 into the tetrahedron Fe–Ca–Mg–Al.The volumes defined by compositions of coexisting phases filla large portion of this tetrahedron. In general, the distributionof these phase volumes is quite regular, although in detailthere are a large number of phase volumes that overlap otherphase volumes, especially with respect to Fe/Mg ratios. Algebraicand graphical analysis of numerous different assemblages indicatethat every one of the phase volumes should shift to more magnesiancompositions with decreasing µH2O. It is therefore suggestedthat the overlapping phase volumes are the result of differentassemblages having crystallized in equilibrium with differentvalues of µH2O or µCO2 and that the different valuesmay have been inherited from the original H2O and CO2 contentof the volcanic prototype. If true, this implies that eithera fluid phase was not present during metamorphism, or that fluidflow between rocks was very restricted.  相似文献   

13.
Within the western Sierra Nevada metamorphic belt, linear bodiesof alpine-type ultramafic rock, now composed largely of serpentineminerals, parallel the regional strike and commonly coincidewith major fault zones. Within this metamorphic belt, east ofSacramento, California, ultramafic rocks near a large maficintrusion, the Pine Hill Intrusive Complex, have been emplacedduring at least two separate episodes. Those ultramafic rocks,evidently unaffected by the Pine Hill Intrusive Complex andcomposed largely of serpentine minerals, were emplaced alonga major fault zone after emplacement of the Pine Hill IntrusiveComplex. Those ultramafic rocks, contact metamorphosed by thePine Hill Intrusive Complex, show a zonation of mineral assemblagesas the igneous contact is approached: olivine+antigorite+chlorite+tremolite+Fe-Cr spinel olivine+talc+chlorite+tremolite+Fe-Crspinel olivine+anthophyllite+chlorite+tremolite+Fe-Cr spinel olivine+orthopyroxene+aluminous spinel+hornblende+Fe-Cr spinel.Superimposed on these mineral assemblages are abundant secondaryminerals (serpentine minerals, talc, chlorite, magnetite) whichformed after contact metamorphism. Correlation of observed mineralassemblages with the experimental systems, MgO-SiO2-H2O andMgO-Al2O3-SiO2-H2O suggests an initial contact temperature of775±25 °C for the Pine Hill Intrusive Complex assumingPtotal Pfluid PH2O. The pressure acting on the metamorphic rockduring emplacement of the intrusion is estimated to be a minimumof 1.5 kb.  相似文献   

14.
SEIFERT  F. 《Journal of Petrology》1970,11(1):73-100
The equilibrium temperatures of the reaction muscovite+chlorite+quartz= cordierite+phlogopite+H2O (1) in the pure system K2O—MgO—Al2O2—SiO2—H2Owere found to be 495±10°C at 1 kb PH2O; 525±10°Cat 2 kb; 610±15°C at 5 kb; 635±10°C at6 kb. From intersection of this curve with the lower temperaturestability limit of cordierite close to 645°C, 6.5 kb PH2O,a reaction cordieritc+muscovite = phlogopite+aluminum silicate+quartz+H2O(2) is generated which has a negative slope and passes throughthe points 645°C, 6.5 kb PH2O and 700°C, 5 kb PH2O.On the high-pressure side of this reaction curve cordieriteis restricted to K2O—poor bulk compositions. Application of the experimentally determined phase relationsto more complex natural pelitic rocks suggests that reaction(1) represents maximum temperatures for the disappearance ofchlorite from pelitic assemblages containing muscovite and quartz,whereas reaction (2) gives maximum water pressures for the disappearanceof cordierite from these rocks.  相似文献   

15.
The bronzite—chromite-anorthite assemblage of the F—unit(Cameron & Emerson, 1959) from the Critical Zone of theBushveld Igneous Complex, was examined with the aid of an electrolyticcell designed after Sato (1971). The resultant fO2-T data reveala last equilibration at an fO2 value of 1011·82 ±·40 atm and at a temperature of 1091 ± 35 °C.These fO2-T data when compared with: (1) a one atmosphere quenching—technique solidus determinationof 1110 ± 5 °C, (2) the Bushveld plagioclase compositional trends (Cameron,1970), (3) Bushveld petrofabric examinations (Cameron, 1969) (4) phase equilibria in the system CaO–MgO–FeO–CaAl2Si2O8–SiO2(Roeder & Osborn, 1966), (5) phase equilibria in the system CaAl2Si2O8–NaAlSi3O8–SiO2–MgO–Fe–O2–H2O–CO2(Eggler, 1974), all support the idea that the Eastern Bushveld magma was notappreciably differentiating in the middle Critical Zone betweenF and the L Horizons, an accumulation of nearly 220 meters.  相似文献   

16.
The reaction 2 zoisite + CO2 = 3 anorthite + calcite + H2O hasbeen reversed experimentally in cold-seal pressure vessels usingnatural phases and H2O–C02 fluids generated by water-silveroxalate mixtures. Equilibrium has been determined at 5000 50bars, 599 9 °C and 0–075 ± 0–010 XCO2.Extrapolation using the MRK equation of Kerrick & Jacobs(1981) gives an equilibrium curve of negative T–X slopeconsistent with bracketing runs at 500, 550 and 650 °C.The curve agrees only with a new bracket of Nitsch (in Hoschek,1980), and is at higher XCo2 than all other experimental determinationsand at lower XCO2 than those calculated from the thermodynamicdata of Helgeson et al. (1978). Discrepancies are attributedto differences in starting materials and small errors in thethermodynamic properties of the phases. Reaction direction and equilibrium have been determined by observingsurface textures of run products by SEM. Growth and solutiontextures are non-equivalent, permitting unequivocal determinationof reaction direction even where the extent of reaction is small,an advantage over conventional and insensitive XRD methods whichmeasure bulk changes in the charge. Dissolution features ofanorthite and zoisite are defect-related indicating controlby surface reaction, whereas calcite dissolves by both surfacereaction and diffusion controlled processes. Margarite forms in most runs below 585 °C. Textural features,its restriction to the margarite stability field and comparisonwith feldspar solubility data demonstrate it is an equilibriumphase formed by incongruent solubility of anorthite and zoisitein H2O-CO2 fluids. Quench phases formed from the solute areconsequently silica-rich, with implications for metasomaticprocesses in feldspar–epidote–bearing rock and fluidsystems. Absence of margarite from runs with anorthite, zoisiteand calcite in the zoisite stability field is apparently dueto the fast growth rate of zoisite. The full equilibrium assemblageis zoisite–anorthite–calcite–margarite atthese temperatures, and the degeneracy of the model system isunobtainable in experiments, and presumably, in nature.  相似文献   

17.
The early augite syenite unit in the 1·13-Ga-old Ilímaussaqintrusive complex, South Greenland, consists of a magmatic assemblageof ternary alkali feldspar + fayalitic olivine + augite + titanomagnetite+ apatite + baddeleyite ± nepheline ± quartz ±ilmenite ± zircon. Feldspar, nepheline and QUILF thermometryyield T = 1000–700°C, at P = 1 kbar, which is derivedfrom fluid inclusion data from other parts of the complex. Ternaryfeldspar was the first major liquidus phase. It crystallizedat temperatures between 950 and 1000°C from a homogeneousmagma with aSiO2 = 0·8 and fO2 about 1·5–2log units below the fayalite–magnetite–quartz (FMQ)buffer. Later, closed system fractionation produced nepheline-bearingassemblages with aSiO2 = 0·4 and log fO2 = FMQ –3 to FMQ – 5. Assimilation of wall rocks produced localvariations of melt composition. Four traverses through the unitwere sampled parallel to the assumed direction of crystallization.They exhibit significant differences in their mineral assemblagesand compositions. The chemical zoning and calculated intensiveparameters of four sample suites reflect both closed systemfractional crystallization and local assimilation of wall rocks. KEY WORDS: alkaline magmatism; assimilation; fractionation; redox equilibria; QUILF  相似文献   

18.
The upper Triassic Karmutsen metabasites from northeast VancouverIsland, B.C., are thermally metamorphosed by the intrusion ofthe Coast Range Batholith. The amygdaloidal metabasites developedin the outer portion of the contact aureole show a progressivemetamorphism from zeolite to prehnite-pumpellyite facies. Thesize of an equilibrium domain is extremely small for these metabasites,and the individual amygdule assemblages are assumed to be inequilibrium. Two major calcite-free assemblages (+chlorite+quartz)are characteristic: (i) laumontite+pumpellyite+epidote in thezeolite facies and (ii) prehnite+pumpellyite+epidote in theprehnite-pumpellyite facies. The assemblages and compositionsof Ca-Al silicates are chemographically and theoretically interpretedon the basis of the predicted P-T grid for the model basalticsystem, CaO-MgO-A12O3-Fe2O3-SiO2-H2O. The results indicate:(1) local equilibrium has been approached in mineral assemblagesand compositions; (2) the XFe3+ values in the coexisting Ca-Alsilicates decrease from epidote, through pumpellyite to prehnite;(3) with increasing metamorphic grade, the Fe3+ contents ofepidotes in reaction assemblages decrease in the zeolite facies,then increase in the prehnite-pumpellyite facies rocks. Suchvariations in the assemblages and mineral compositions are controlledby a sequence of continuous and discontinuous reactions, andallow delineation of T-XFe3+ relations at constant pressure.The transition from the zeolite to prehnite-pumpellyite faciesof the Karmutsen metabasites is defined by a discontinuous reaction:0·18 laumontite+pumpellyite+0·15 quartz = 1·31prehnite+ 0·78 epidote+0·2 chlorite+ 1·72H2O, where the XFe3+ values of prehnite, pumpellyite and epidoteare 0·03, 0·10 and 0·18, respectively.These values together with available thermodynamic data andour preliminary experimental data are used to calculate theP-T condition for the discontinuous reaction as P = 1·1±0·5 kb and T = 190±30°C. The effectsof pressure on the upper stability of the zeolite facies assemblagesare discussed utilizing T-XFe3+ diagrams. The stability of thelaumontite-bearing assemblages for the zeolite facies metamorphismof basaltic rocks may be defined by either continuous or discontinuousreactions depending on the imposed metamorphic field gradient.Hence, the zeolite and prehnite-pumpellyite facies transitionboundary is multivariant.  相似文献   

19.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

20.
Fluid-saturated subsolidus experiments from 2·0 to 6·5GPa, and from 680 to 800°C have been performed on threemodel peridotites in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O(NCFMASH). Amphibole and chlorite coexist up to 2·4 GPa,700°C. Chlorite persists to 4·2 GPa at 680°C.Starting from 4·8 GPa, 680°C a 10 Å phase structurereplaces chlorite in all compositions. The 10 Å phasestructure contains significant Al2O3 (up to 10·53 wt%) deviating from the MgO–SiO2–H2O 10 Å phase(MSH 10 Å phase). A mixed layered structure (chlorite–MSH10 Å phase) is proposed to account for aluminium observed.In the Tinaquillo lherzolite amphibole breakdown occurs viathe reaction Thermal stabilityof chlorite (chlorite + orthopyroxene = forsterite + garnet+ H2O) is shifted towards lower temperatures, compared withthe system MASH. Furthermore, the chlorite thermal breakdownis also related to the degenerate reaction Chlorite and the Al-10 Å phase structurecontribute significantly to the water budget in subduction zonesin the depth range relevant for arc magmatism, whereas amphibole-relatedfluid release is restricted to the forearc region. Chloriteand Al-10 Å phase breakdowns might explain the occurrenceof a double seismic zone by dehydration embrittlement. KEY WORDS: amphibole; chlorite; high pressure; peridotites; subduction zones  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号