首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
本文利用Argo表层盐度、OSCAR海流等数据,基于盐度收支方程的平流输送项来阐述海洋平流输送对热带印度洋表层盐度的调整作用;利用淡水输运量计算公式揭示6条关键断面海洋平流输送对表层盐度空间结构的调整机制。结果表明,海洋平流将赤道西印度洋和阿拉伯海的高盐水输送到低盐海域的赤道东印度洋和孟加拉湾、安达曼海;将赤道东印度洋和孟加拉湾、安达曼海的低盐水输送到高盐海域的赤道西印度洋、阿拉伯海以及赤道南印度洋海域,起到了调整印度洋盐度基本平衡的作用。断面淡水输运量的分析结果表明,导致苏门答腊岛西部海域的强降水中心与低盐中心不重合,澳大利亚西部海域的强蒸发中心与高盐中心不重合的主要原因是水平环流所致;夏季,来自赤道西印度洋和阿拉伯海的高盐水在西南季风环流的驱动下,入侵孟加拉湾,是导致孟加拉湾夏季表层盐度较高的主要原因。  相似文献   

2.
本文利用Argo盐度、SODA海流量、OAFlux蒸发量和TRMM降水量等数据,采用盐度收支方程定量给出了印度洋混合层盐度的收支,揭示了整个印度洋净淡水通量项、平流项、垂向卷夹项的分布、季节变化特征及其对混合层盐度变化的主要贡献。结果表明,就多年平均而言,平流项负贡献(15.14%)大于正贡献(9.89%),说明平流输送把低盐水输送到高盐海域,导致印度洋高盐海域混合层的盐度降低。净淡水通量项的分布和季节变化与降水量基本一致,且正贡献(13.70%)大于负贡献(7.81%),说明净淡水通量项使印度洋的混合层盐度升高(因为多年平均蒸发量大于降水量)。盐度季节变化显著海域的进一步分析表明,6?11月,西南季风漂流把赤道西印度洋的低盐水(相对阿拉伯海高盐水而言)输送到阿拉伯海西部海域,导致该海域的盐度降低。平流输送把孟加拉湾湾口和中部的高盐水带到北部海域,是导致北部海域盐度升高的主要原因。  相似文献   

3.
海水盐度是海洋物理环境的重要组成部分,其变化可改变水动力环境,进而改变海洋生态环境,因此研究海水盐度的变化特征具有十分重要的意义。文章对2011-2015年日照海洋环境监测站海域表层海水盐度的实测数据进行统计分析,研究结果表明:该海域表层海水盐度基本围绕多年平均值呈周期性波动;受季风影响,表层海水盐度呈显著的季节变化特征,即冬、春季高,而夏季最低;降水量对表层海水盐度的影响有明显的滞后性;冬季表层海水盐度有升高趋势。  相似文献   

4.
基于POM(Princeton Ocean Model)海洋模式,对南海不同深度环流的季节性变化进行了数值模拟研究。模拟结果表明:南海表层和上层环流受季风影响,在夏季西南季风驱动下,南海表层环流在南部呈现强反气旋式结构,在南海北部则是一个弱的气旋环流;在冬季东北季风驱动下,南海表层环流结构呈气旋式,并且明显加强了沿越南沿岸向南流动的西边界流;春季和秋季为南海季风的转换期,其对应的环流特征也处于冬季环流与夏季环流的过渡流型,流速与冬季和夏季相比较弱。南海200m层环流的季节变化与表层相似。在500与1 000m层,则出现许多处中尺度漩涡,流场也变得较为紊乱。  相似文献   

5.
南海北部航次观测资料显示南海北部表层盐度在2004—2012年期间缓慢降低,2012年盐度达到最低。客观分析数据EN4(the UK Met Office EN.4.0.2 objective analyses)以及OFES(ocean general circulation model for the Earth Simulator)模式结果都显示南海表层海水盐度在1993—2014年有淡化趋势,最显著区域位于吕宋岛以西和南海南部。盐度收支分析表明淡水强迫在吕宋岛以西海域起主要贡献,而水平平流输运主导南海西部的表层盐度变化。吕宋岛以西表层盐度的降低与近年来沃克环流加强引起的夏季强降雨增加有关。  相似文献   

6.
南海表面浮力通量、水型变性及南海"暖水"的消长分析   总被引:1,自引:0,他引:1  
利用英国南安普敦海洋中心(SOC)海-气界面的热量和淡水通量资料以及世界大洋图集(WOA01)的海面温度和盐度资料计算了南海表面各月的有效浮力通量及水型变性矢量场,分析了南海表层暖水形成和发展的季节性特征。研究结果表明,南海表层暖水的发展、维持以及消亡在很大程度上受到海洋表层浮力通量的影响;此外,南海上层水体密度的垂直结构和变化也深受表面浮力通量和表层水型变性的影响。在中、北部,南海的垂向结构季节性变化较为明显,其中冬季表层水体的下沉强度最大,深度最深,而夏季表层水体却无下沉趋势。  相似文献   

7.
自然环境特征对海洋开发建设有着重要影响,为了更好地为21世纪海上丝绸之路建设提供科学依据,文章重点对南海、孟加拉湾、阿拉伯海三大海域的地理概况、气候特征进行系统性统计分析。结果表明,该海域的风场、风浪、表层海流受季风影响明显,其中阿拉伯海和孟加拉湾受西南季风的影响更为明显,冬季风的影响次之,南海则相反。阿拉伯海的热带气旋主要活动于其东侧,孟加拉湾则在其中东部区域,南海主要是北部海域受热带气旋影响明显。南海—北印度洋的能见度整体乐观。夏季降水明显多于冬季,夏季大值区分布于印度半岛西部近海、孟加拉湾东北部、马尼拉西部区域。  相似文献   

8.
南海盐度对南海夏季风响应的初步分析   总被引:5,自引:0,他引:5  
为分析南海盐度对南海夏季风的响应情况,采用1967-2001年共35年的月平均海洋同化数据(SODA)等资料,利用合成等分析方法,探讨了南海上层盐度与净淡水通量、风应力、Ekman抽吸速度的关系以及不同海域盐度对南海夏季风爆发以及季风强度的响应.结果表明,随着南海夏季风建立,南海北部、东部的盐度降低,南部盐度增加.在强季风年,南海北部沿岸、东部盐度偏低,南海南部马来西亚以北海域盐度偏高;弱季风年南海盐度异常分布则为北部、东部盐度偏高,南部盐度偏低.南海上层盐度对南海夏季风爆发和季风强度的响应均与南海的净淡水通量、风应力、Ekman抽吸速度存在密切关系.  相似文献   

9.
通过统计方法利用一套海洋同化数据分析了热带太平洋次表层的盐度变化特征.结果表明次表层盐度的年际变化与ENSO相关,且次表层盐度信号区域呈东西方向“跷跷板”的分布.对影响这些次表层的盐度信号区域平均的纬向平流、经向平流、垂直运动和淡水通量异常等因素进行了分析,并且与影响表层盐度年际变化模态的影响因素差异进行了比较,结果表明,纬向平流的异常对表层盐度的异常变化影响较大,而对次表层盐度异常有较大影响的是海水的垂直运动异常.  相似文献   

10.
阿拉伯海淡水输运量的季节变化特征研究   总被引:1,自引:1,他引:0  
本文利用简单海洋模式同化再分析产品等资料,阐述了阿拉伯海与赤道西印度洋,阿拉伯海与阿曼湾之间淡水输运量的季节变化特征,揭示了阿拉伯海淡水输运量的基本平衡和季节变化特征。结果表明,阿拉伯海得到的淡水输运量(包括来自赤道西印度洋、河流)和失去的淡水输运量(包括降水量减蒸发量、向阿曼湾输运)基本相当。阿拉伯海通过海气交换失去的淡水(降水量减蒸发量)主要由来自赤道西印度洋(包括孟加拉湾)的淡水输运来补偿,赤道西印度洋向阿拉伯海的淡水输运对维持阿拉伯海的盐度基本平衡起到至关重要的作用。阿拉伯海的淡水输运量在1?6月和12月为负值,失去淡水;7?11月为正值,9月最大,得到淡水。阿拉伯海的净淡水输运量的季节变化特征表现为单峰现象。阿拉伯海与赤道西印度洋(9°N断面)的淡水输运量主要出现在表层至约200 m层,多年平均约为0.1×106 m3/s,向阿拉伯海输运。从10月至翌年3月,来自孟加拉湾的低盐水向阿拉伯海输运,该输运主要出现在印度半岛西南端近海约60 m层以浅区域。夏季和秋季,出现在索马里半岛东部海域的涡旋(大回旋)引起的输运(涡旋的西部低盐水向北输运,东部高盐水向南输运),不仅输运量是一年当中最大的,而且影响的深度可达约300 m。该输运从6月开始形成,8?9月最强,11月迅速减弱。阿拉伯海与阿曼湾的淡水输运量较小,其垂直分布呈现3层结构,表层至10 m层,高盐水向阿拉伯海输运;15~170 m层,低盐水向阿曼湾输运;175~400 m层,高盐水向阿拉伯海输运。阿曼湾湾口断面多年平均淡水输运量约为0.39×104 m3/s,向阿曼湾输运。  相似文献   

11.
The seasonal variability of sonic layer depth (SLD) in the central Arabian Sea (CAS) (0 to 25°N and 62-66°E) was studied using the temperature and salinity (T/S) profiles from Argo floats for the years 2002–2006. The atmospheric forcing responsible for the observed changes was explored using the meteorological data from NCEP/NCAR and Quickscat winds. SLD was obtained from sound velocity profiles computed from T/S data. Net heat flux and wind forcing regulated SLD in the CAS. Up-welling and down-welling (Ekman dynamics) associated with the Findlater Jet controlled SLD during the summer monsoon. While in winter monsoon, cooling and convective mixing regulated SLD in the study region. Weak winds, high insolation and positive net heat flux lead to the formation of thin, warm and stratified sonic layer during pre and post summer monsoon periods, respectively.  相似文献   

12.
对1985-1998年期间的海洋调查温盐深(CTD)资料进行综合分析,发现南海南部春夏季季风转换期存在盐度逆转的异常表层水。实测资料表明,该异常表层水覆盖在南海南部的中部、东部大部分地区。冬季风停止引起苏禄海高温高超国水西向侵入,成为该海区东部近表面异常高盐水的来源之一。海面强的蒸发和表层水弱的垂向混合导致近表面水具有高盐特性,近表面高盐水与其下部保持着冬季遗存的局地低盐水叠置,形成了盐度逆转现象。  相似文献   

13.
In the southern Arabian Sea (between the Equator and 10°N), the shoaling of isotherms at subsurface levels (20 °C isotherm depth is located at ∼90 m) leads to cooling at 100 m by 2–3 °C relative to surrounding waters during the winter monsoon. The annual and interannual variations of this upwelling zone, which we call the Arabian Sea dome (ASD), are studied using results from an eddy-permitting ocean general circulation model in conjunction with hydrography and TOPEX/ERS altimeter data. The ASD first appears in the southeastern Arabian Sea during September–October, maturing during November–December to extend across the entire southern Arabian Sea (along ∼5°N). It begins to weaken in January and dissipates by March in the southwestern Arabian Sea. From the analysis of heat-budget balance terms and a pair of model control experiments, it is shown that the local Ekman upwelling induced by the positive wind-stress curl of the winter monsoon generates the ASD in the southeastern Arabian Sea. The ASD decays due to the weakening of the cyclonic curl of the wind and the westward penetration of warm water from the east (Southern Arabian Sea High). The interannual variation of the ASD is governed by variations in the Ekman upwelling induced by the cyclonic wind-stress curl. Associated with the unusual winds during 1994–1995 and 1997–1998 Indian Ocean dipole (IOD) periods, the ASD failed to develop. In the absence of the ASD during the IOD events, the 20 °C isotherm depth was 20–30 m deeper than normal in the southern Arabian Sea resulting in a temperature increase at 97 m of 4–5 °C. An implication is that the SST evolution in the southern Arabian Sea during the winter monsoon is primarily controlled by advective cooling: the shoaling of isotherms associated with the ASD leads to SST cooling.  相似文献   

14.
During the late summer monsoon living planktonic foraminifera were collected in the southeastern Arabian Sea between 3°N and 15°N by using six vertical plankton tows. Sixteen species of planktonic foraminifera were identified. Among them, Globigerinoides ruber and Globigerinoides sacculifer are the most abundant species, while the ecologically most important species Globigerina bulloides is very rare. The low abundance of G. bulloides can be explained by the warming of the surface water in combination with deepening of the mixed layer, since this species preferentially dwells in nutrient-rich upwelling waters. The population density of planktonic foraminifera ranges between 31 and 185 specimens per 10−3 m3. The low absolute numbers of planktonic foraminifera are similar to the numbers which were reported before from the non-upwelling areas in the Arabian Sea. The low absolute numbers and the collected foraminiferal assemblages are therefore highly indicative of the Arabian Sea non-upwelling areas. Particularly significant are the low absolute and relative numbers of the non-spinose species Globorotalia menardii and Neogloboquadrina dutertrei. The absence of these species indicate the relatively low nutrient levels in this area at the tail end of the summer monsoon period.  相似文献   

15.
分析讨论了季风风应力、大陆坡地形及底摩擦在产生季风逆风流的必要条件和间接逆风流诊断判据中的作用;应用季风逆风流必要条件和间接逆风流诊断判据,解释冬季风和夏季风逆风流是如何产生的。结果表明:季风风应力是产生季风逆风流的主导因素;冬季风风应力、大陆坡地形及底摩擦三者联合作用导致表层海水在大陆坡上产生辐合生成高水位带和高动力高度带,在大陆被北侧产生NE向的冬季逆风流,南侧产生SW向顺风流;夏季风风应力、大陆坡地形及底摩擦三者联合作用导致表层海水在大陆坡上产生辐散生成低水位带和低动力高度带,在大陆被北侧产生SW向的夏季逆风流,南侧产生NE向的顺风流;冬季风盛行期间,风致经巴士海峡流入南海的黑潮水,将加速冬季逆风流的形成,加大冬季逆风流的强度;夏季风盛行期间,风应力的作用使巴上海峡以东的黑潮水不能进入南海,即使别的原因令巴上海峡以东的黑潮水流入南海,但高温、高盐的黑潮水对夏季逆风流具有阻扼作用。  相似文献   

16.
The seasonal circulation in the southeastern Huanghai Sea has been studied with hydrographic data,which were observed in February and June 1994 and bimonthly during 1970-1990,and numerical model results.Horiwntal distributions of temperature and salinity in 1994 are quite different due to strong tidal mixing so that we need a analysis to see the real distributions of water masses.The mixing ratio analysis with the data of 1970-1990 shows the connection of the waters in the west coasts of Kotea Peninsula with warm and saline waters from the south in summer,which means northward inflows along the west coasts of Korea Peninsula in summer.With this flow,the seasonal circulations,which are deduced from the seasonal change of water mass distributions in the lower layer,are warm inflows in winter and mld outflows in summer in the central Huanghai Sea,and cold outflows in winter and warm inflows in summer along the west coasts of Korea Peninsula.The seasonally changed inflows might be the Huanghai Sea Warm Current.The monsoon winds can drive such circulations.However,summer monsoon winds are weak and irregular.As one of other possible dynamics,the variation of Kuroshio transport is numerically studied with allowing sea level fluctuations.Although it should be studied more,it possibly drives the summer circulations.The real circulations seem to be driven by both of them.  相似文献   

17.
The Circulation in the Upper and Intermediate Layers of the South China Sea   总被引:4,自引:0,他引:4  
The circulation in the basin of the South China Sea is reproduced using a four-layer numerical model. Current fields in the second (upper) and third (intermediate) layers are emphasized. Three eddies coexist in the upper layer in summer. The circulation pattern in this layer is similar to that in the first (surface) layer. In winter, a cyclonic circulation occupies the entire basin of the South China Sea in the upper layer as in the surface layer. On the other hand, the circulation pattern in the intermediate layer is fairly different from that in upper two layers especially in winter. A double-gyre pattern appears in the intermediate layer during winter. The pattern is caused by the propagation of the baroclinic Rossby wave of the second mode. This wave is excited at onset of the winter monsoon wind. Such circulation pattern well explains the observed salinity distribution in the intermediate layer. Although the double-gyre pattern in the intermediate layer is revealed even in summer in this model, it is restricted in the western part of the basin. Besides, its current speed is small compared to that in winter.  相似文献   

18.
P. Divakar Naidu 《Marine Geology》1993,110(3-4):403-418
Study of Recent planktonic foraminifera from the surface sediment samples of western continental margin of India reveals the ecological preferences of the different planktonic foraminifer species in the area. Higher absolute abundance of planktonic foraminifera in the offshore associated with the lower frequencies of the productivity indicator Globigerinoides bulloides and lower absolute abundance in the nearshore with higher frequencies of G. bulloides appears to suggest that productivity does not control the absolute abundance of planktonic foraminifera in this area. In general, the difference in absolute abundance between offshore and nearshore indicates that the dilution by terrigenous and other biogenic (benthic foraminifera and diatoms) material governs the absolute abundance of planktonic foraminifera.

Globigerinoides sacculifer shows a significant positive correlation with salinity and a negative correlation with temperature, which reflects its preference for higher salinity and lower temperature of the surface water. Globigerinoides ruber abundances are related to a distinct highly saline Persian Gulf water mass in the eastern Arabian Sea. Neogloboquadrina butertrei shows a strong inverse relationship with surface water salinity in the eastern Arabian Sea. Therefore, the relative abundance variations of N. dutertrei in sediment cores of the southeastern Arabian Sea can be used to reconstruct the past surface water salinity, which varies according to the strength of the northeastern monsoon.

The high diversity of planktonic foraminifera in the offshore is attributable to equitable environmental conditions. The high-salinity surface waters ( > 36‰) and terrigenous dilution in the northeastern Arabian Sea limit the diversification of species in this region.  相似文献   


19.
The Yellow Sea Cold Water Mass(YSCWM) is one of the important water mass in the Yellow Sea(YS).It is distributed in the lower layer in the Yellow Sea central trough with the temperature less than 10 C and the salinity lower than 33.0.To understand the variability of the YSCWM,the hydrographic data obtained in April and August during 2009–2011 are analyzed in the southeastern Yellow Sea.In August 2011,relatively warm and saline water compared with that in 2009 and 2010 was detected in the lower layer in the Yellow Sea central area.Although the typhoon passed before the cruise,the salinity in the Yellow Sea central trough is much higher than the previous season.It means that the saline event cannot be explained by the typhoon but only by the intrusion of saline water during the previous winter.In April 2011,actually,warm and saline water(T >10 C,S >34) was observed in the deepest water depth of the southeastern area of the Yellow Sea.The wind data show that the northerly wind in 2011 winter is stronger than in 2009 and 2010 winter season.The strong northerly wind can trigger the intrusion of warm and saline Yellow Sea Warm Current.Therefore,it is proposed that the strong northerly wind in winter season leads to the intrusion of the Yellow Sea Warm Current into the Yellow Sea central trough and influenced a variability of the YSCWM in summer.  相似文献   

20.
Seasonal evolution of surface mixed layer in the Northern Arabian Sea (NAS) between 17° N–20.5° N and 59° E-69° E was observed by using Argo float daily data for about 9 months, from April 2002 through December 2002. Results showed that during April - May mixed layer shoaled due to light winds, clear sky and intense solar insolation. Sea surface temperature (SST) rose by 2.3 °C and ocean gained an average of 99.8 Wm−2. Mixed layer reached maximum depth of about 71 m during June - September owing to strong winds and cloudy skies. Ocean gained abnormally low ∼18 Wm−2 and SST dropped by 3.4 °C. During the inter monsoon period, October, mixed layer shoaled and maintained a depth of 20 to 30 m. November - December was accompanied by moderate winds, dropping of SST by 1.5 °C and ocean lost an average of 52.5 Wm−2. Mixed layer deepened gradually reaching a maximum of 62 m in December. Analysis of surface fluxes and winds suggested that winds and fluxes are the dominating factors causing deepening of mixed layer during summer and winter monsoon periods respectively. Relatively high correlation between MLD, net heat flux and wind speed revealed that short term variability of MLD coincided well with short term variability of surface forcing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号