首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Receiver function study in northern Sumatra and the Malaysian peninsula   总被引:1,自引:0,他引:1  
In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V S) near the surface in the range of 3.4–3.6 km s − 1 attributed to crystalline rocks and 3.6–4.0 km s − 1 in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30–34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V S of 2.6–2.9 km s − 1 indicate sediment layers. High V S of 4.2 km s − 1 are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V S between 10 and 20 km depth. Within the subducting slab V S ≈ 4.7 km s − 1. At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20° ± 8° in approximately N 60° E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found.  相似文献   

2.
The seismic quality factor (Q c) and the attenuation coefficient (δ) in the earth’s crust in southwest (SW) Anatolia are estimated by using the coda wave method based on the decrease of coda wave amplitude by time on the seismogram. The quality factor Q o, the value of Q c at 1 Hz, and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves. δ is determined from the observations of amplitude variations of seismic waves. In applying the coda wave method, firstly, a type curve representing the average pattern of the individual coda decay curves for 0.75, 1.5, 3.0, 6.0, 12.0, and 24.0 Hz values was estimated. Secondly, lateral variation of coda Q and the attenuation coefficients for three main tectonic patterns are estimated. The shape of the type curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The Q o and η values vary from 30 to 180 and from 0.55 to 1.25, respectively for SW Anatolia. In SW Anatolia, coda Qf relation is described by and δ = 0.008 km−1. These results are expected to help in understanding the degree of tectonic complexity of the crust in SW Anatolia.  相似文献   

3.
QC-estimates of Kachchh Basin in western India have been obtained in a high frequency range from 1.5 to 24.0 Hz using the aftershock data of Bhuj earthquake of January 26, 2001 recorded within an epicentral distance of 80 km. The decay of coda waves of 30 sec window from 186 seismograms has been analysed in four lapse time windows, adopting the single backscattering model. The study shows that Qc is a function of frequency and increases as frequency increases. The frequency dependent Qc relations obtained for four lapse-time windows are: Qc=82 f1.17 (20–50 sec), Qc=106 f1.11 (30–60 sec), Qc=126f1.03 (40–70 sec) and Qc=122f1.02 (50–80 sec). These empirical relations represent the average attenuation properties of a zone covering the surface area of about 11,000, 20,000, 28,000 and 38,000 square km and a depth extent of about 60, 80, 95, 110 km, respectively. With increasing window length, the degree of frequency dependence, n, decreases marginally from 1.17 to 1.02, whereas Q0 increases significantly from 82 to 122. At lower frequencies up to 6 Hz, Qc−1 of Kachchh Basin is in agreement with other regions of the world, whereas at higher frequencies from 12 to 24 Hz it is found to be low.  相似文献   

4.
The seismic attenuation in the Vrancea region (Romania) is investigated from teleseismic recordings of P and pP waves during the four major, intermediate-depth Romanian events that occurred since the onset of digital instrumentation. Most stations are located in Canada and in the United States, being equipped with a variety of sensors, especially short-period ones. The amplitude spectral ratio method is used, assuming no frequency dependence of the Q P factor in the range 0.2–2 Hz. No apparent correlation between the derived attenuation value and the type of recording sensor is observed. Lateral variations of the attenuation are obtained, with a very low Q P area (values down to 33) located in the northwestern part of the Vrancea seismogenic volume. For the stations with different azimuth angles in relation to the epicentral area, Q P values routinely exceed 200. Most likely, the low attenuation values are related to an upwelling mantle material located immediately beneath the crust, but limited in depth to at least 100 km.  相似文献   

5.
The local earthquake waveforms recorded on broadband seismograph network of Institute of Seismological Research in Gujarat, India have been analyzed to understand the attenuation of high frequency (2–25 Hz) P and S waves in the region. The frequency dependent relationships for quality factors for P (Q P) and S (Q S) waves have been obtained using the spectral ratio method for three regions namely, Kachchh, Saurashtra and Mainland Gujarat. The earthquakes recorded at nine stations of Kachchh, five stations of Saurashtra and one station in mainland Gujarat have been used for this analysis. The estimated relations for average Q P and Q S are: Q P = (105 ± 2) f 0.82 ± 0.01, Q S = (74 ± 2) f 1.06 ± 0.01 for Kachchh region; Q P = (148 ± 2) f 0.92 ± 0.01, Q S = (149 ± 14) f 1.43 ± 0.05 for Saurashtra region and Q P = (163 ± 7) f 0.77 ± 0.03, Q S = (118 ± 34) f 0.65 ± 0.14 for mainland Gujarat region. The low Q (<200) and high exponent of f (>0.5) as obtained from present analysis indicate the predominant seismic activities in the region. The lowest Q values obtained for the Kachchh region implies that the area is relatively more attenuative and heterogeneous than other two regions. A comparison between Q S estimated in this study and coda Q (Qc) previously reported by others for Kachchh region shows that Q C > Q S for the frequency range of interest showing the enrichment of coda waves and the importance of scattering attenuation to the attenuation of S waves in the Kachchh region infested with faults and fractures. The Q S/Q P ratio is found to be less than 1 for Kachchh and Mainland Gujarat regions and close to unity for Saurashtra region. This reflects the difference in the geological composition of rocks in the regions. The frequency dependent relations developed in this study could be used for the estimation of earthquake source parameters as well as for simulating the strong earthquake ground motions in the region.  相似文献   

6.
The attenuation of coda waves is analysed for nine seismic stations in the area of convergent motion of the Adriatic microplate and the Dinarides. The frequency dependent coda quality factor of the form Qc = Q0 fn is estimated for up to seven central frequencies (1.5, 3, 6, 9, 12, 18 and 24 Hz) and for 21 successive 30 s long time windows. Q0 was found to increase from 68–353 for short lapse times of 20–50 s, to 158–373 for lapse times of 90–100 s. Parameter n is observed to vary between 0.46 and 0.89, with a pronounced tendency to decrease with increasing Q0, and vice versa. Both Q0 and n seem to stabilize for lapse times larger than 50–80 s, indicating that a change in rock properties controlling coda attenuation occurs at depths of about 100–160 km. The spatial distribution of observed Q0 is well correlated with observed seismicity and inferred tectonic activity. In particular, we observe significant negative correlation of Q0 with the peak ground acceleration (PGA) estimate for the return period of 475 years. The degree of frequency dependence n, is the smallest for stations on the islands, where the crust is the thinnest. The largest n is observed over the thickest crust in the region, where the Moho lies at depths of over 55 km.  相似文献   

7.
    
Based on the long period surface wave data recorded by the China Digital Seismograph Network (CDSN), theQ R of fundamental mode Rayleigh wave with periods from 10 s to 146 s is determined for the eastern Sino-Korean paraplatform in this paper. TheQ β models of the crust and upper mantle are respectively obtained for the 4 paths, with the aid of stochastic inverse method. It shows that in the eastern Sino-Korean paraplatform, the average crustalQ β is about 200, and that there exists a weak attenuation layer in the middle crust (about 10–20 km deep) which is possibly related to earthquake-prone layer. A strong attenuation layer (lowQ) of 70 km thick extensively exists in the uppermost mantle, with the buried depth about 80 km. The averageQ R of fundamental mode Rayleigh wave is between the value of stable tectonic region and that of active tectonic region, and much close to the latter. Contribution No. 96A0001, Institute of Geophysics, SSB, China. Funded by the Chinese Joint Seismological Science Foundation.  相似文献   

8.
—Borehole seismograms from local earthquakes in the aftershock region of the 1984 western Nagano Prefecture, Japan earthquake were analyzed to measure the frequency-dependent characteristics of P- and S-wave attenuation in the upper crust. The records from a three-component velocity seismometer at the depth of 145m exhibit high S/N-ratio in a wide frequency range up to 100 Hz. Extended coda normalization methods were applied to bandpass-filtered seismograms of frequencies from 25 to 102 Hz. For the attenuation of high-frequency P and S waves, our measurements show Q P -1? 0.052?-0.66 and Q S -1? 0.0034?-0.12 respectively. The frequency dependence of the quality factor of S waves is very weak as compared with that of P waves. The ratio of Q P -1/Q S -1 is larger than unity in the entire analyzed frequency range.  相似文献   

9.
In order to investigate crustal structure beneath the eastern Marmara region, a seismic refraction survey was conducted across the North Anatolian Fault (NAF) zone in north west Turkey. Two reversed profiles across two strands of the NAF zone were recorded in the Armutlu Highland where a tectonically active region was formed by different continents. We used land explosions in boreholes and quarry blasts as seismic sources. A reliable crustal velocity and depth model is obtained from the inversion of first arrival travel times. The velocity-depth model will improve the positioning of the earthquake activities in this active portion of the NAF. A high velocity anomaly (5.6–5.8 km s−1) in the central highland of Armutlu block and the low velocity (4.90 km s−1) pattern north of Iznik Lake are the two dominant features. The crustal thickness is about 26 ± 2 km in the north and increases to about 32 ± 2 km beneath the central Armutlu block in the south. P-wave velocities are about 3.95 km s−1 to 4.70 km s−1 for the depth range between about 1 km and 5 km in the upper crust. The eastern Marmara region has different units of upper crust with velocities varying with depth to almost 8 km. The high upper crust velocities are associated with Armutlu metamorphic rocks, while the low velocity anomalies are due to unconsolidated sedimentary sequences. The western side of Armutlu block has complex tectonics and is well known for geothermal sources. If these sources are continuous throughout the portions of the crust, it may be associated with a granitic intrusion and deformation along the NAF zone. That is, the geothermal sources associated with the low velocity may be due to the occurrence of widespread shear heating, even shear melting. The presence of shear melting may indicate the presence of crustal fluid imposed by two blocks of the NAF system.  相似文献   

10.
The preliminary interpretation of deep seismic sounding in western Yunnan   总被引:2,自引:0,他引:2  
The preliminary interpretation of Project western Yunnan 86–87 is presented here. It shows that there obviously exists lateral velocity heterogeneity from south to north in western Yunnan. The depth of Moho increases from 38 km in the southern end of the profile to 58 km in its northern end. The mean crustal velocity is low in the south, and high in the north, about 6.17–6.45 km/s. The consolidated crust is a 3-layer structure respectively, the upper, middle and lower layer. P 1 0 is a weak interface the upper crust, P 2 0 and P 3 0 are the interfaces of middle-upper crust and middle-lower crust respectively. Another weak interface P 3 0′ can be locally traced in the interior of the lower crust. Interface Pg is 0–6 km deep, interface P 1 0 9.2–16.5 km deep, and interfaces P 2 0 and P 3 0 respectively 17.0–26.5 km, 25.0–38.0 km deep. The velocity of the upper crust gradually increases from the south to the north, and reaches its maxmium between Nangaozhai and Zhiti, where the velocity of basement plane reaches 6.25–6.35 km/s, then it becomes small northward. The velocity of the middle crust varies little, the middle crust is a low velocity layer with the velocity of 6.30 km/s from Jinhe-Erhai fault to the north. The lower crust is a strong gradient layer. There exists respectively a low velocity layer in the upper mantle between Jinggu and Jingyunqiao, and between Wuliangshan and Lancangjiang fault, the velocity of Pn is only 7.70–7.80 km/s, it is also low to the north of Honghe fault, about 7.80 km/s. Interface P6/0 can be traced on the top of the upper mantle, its depth is 65 km in the southern end of the profile, and 85 km in the northern end. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 427–440, 1993.  相似文献   

11.
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6?≤?M?≤?4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P?=?(115.80?±?1.36) f (0.495?±?0.129) and Q S?=?(161.34?±?1.73) f (0.613?±?0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/Q P?>?1, for 4?≤?f?≤?24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.  相似文献   

12.
Crustal structure and the Moho depth are exceptionally well known beneath Europe. The first digital, high-resolution map of the Moho depth for the whole European Plate was compiled in 2007 and recently published in Geophysical Journal International. In the past few years, considerable developments have taken place in the receiver function techniques. Different receiver function techniques provide new, independent information, in particular on the S-wave velocity distribution in the crust and on the Moho depth. This gives an opportunity to compare the Moho depth from the Moho depth map of the European Plate (H MM) and the Moho depth from receiver function studies (H RF). Herein, we also compile and analyze the uncertainty of the crustal thickness determinations data obtained with receiver function analysis. The uncertainty is found to be ±2 km for 20-km-thick crust and about ±4 km for 60-km-thick crust. Comparison of the Moho depths shows an approximately linear trend between H RF and H MM. For the Moho depth of 30–40 km, the values are approximately equal, while for thin crust, H RF is about 5 km shallower than H MM, and for thick crust, it is about 5 km deeper than H MM. Possible reasons for this, the observed discrepancy between the Moho depths HMM and HRF, are discussed.  相似文献   

13.
We exploit S-wave spectral amplitudes from 112 aftershocks (3.0 ≤ ML ≤ 5.3) of the L’Aquila 2009 seismic sequence recorded at 23 temporary stations in the epicentral area to estimate the source parameters of these events, the seismic attenuation characteristics and the site amplification effects at the recording sites. The spectral attenuation curves exhibit a very fast decay in the first few kilometers that could be attributed to the large attenuation of waves traveling trough the highly heterogeneous and fractured crust in the fault zone of the L’Aquila mainshock. The S-waves total attenuation in the first 30 km can be parameterized by a quality factor QS(f) = 23f 0.58 obtained by fixing the geometrical spreading to 1/R. The source spectra can be satisfactorily modeled using the omega-square model that provides stress drops between 0.3 and 60 MPa with a mean value of 3.3±2.8 MPa. The site responses show a large variability over the study area and significant amplification peaks are visible in the frequency range from 1 to more than 10 Hz. Finally, the vertical component of the motion is amplified at a number of sites where, as a consequence, the horizontal-to-vertical spectral ratios (HVSR) method fails in detecting the amplitude levels and in few cases the resonance frequencies.  相似文献   

14.
The characteristic of seismic coda wave attenuation in Yunnan area in 7 frequency-bands range from 1 Hz to 20 Hz was estimated by using the local earthquake's waveform data recorded from 22 Yunnan digital seismic stations.Coda attenuation Q-c1 of each station was firstly calculated by single scattering method. Then, mean free path Le and seismic albedo Bo of each station were calculated, and scattering attenuation Q-1s and intrinsic attenuation Q-1i were separated from total attenuation Q-1t by multiple lapse time window analysis based on the multiple scattering model in uniform random isotropic scattering medium. The attenuating characteristics in Yunnan show that most value of Le are in 10~30 km, with maximal within 2~6 Hz;Bo are about 0.5 at 1~2 Hz, but less than 0.5at other frequency-bands, which means Q-1i is comparable with Q-1s at 1~2 Hz, and after 1~2 Hz, Q-1i is greater than Q-1s and dominates the attenuation process. Q-1c is close to Q-1i at other frequency bands except 1~2 Hz.Results show that Q-1 especially Qs-1 varies spatially, Q-1 in eastern Yunnan zone is a bit higher than in northwestern Yunnan zone;northwestern Yunnan zone higher than southwestern Yunnan zone. Comparing with other results in global, Qs-1 in Yunnan is lower than the global average value among these results, Q-1i is higher than the global average value, and Q-1t lies the middle among these results.  相似文献   

15.
Small local earthquakes from two aftershock sequences in Porto dos Gaúchos, Amazon craton—Brazil, were used to estimate the coda wave attenuation in the frequency band of 1 to 24 Hz. The time-domain coda-decay method of a single backscattering model is employed to estimate frequency dependence of the quality factor (Q c) of coda waves modeled using Qc = Q0 fhQ_{\rm c} =Q_{\rm 0} f^\eta , where Q 0 is the coda quality factor at frequency of 1 Hz and η is the frequency parameter. We also used the independent frequency model approach (Morozov, Geophys J Int, 175:239–252, 2008), based in the temporal attenuation coefficient, χ(f) instead of Q(f), given by the equation c(f)=g+\fracpfQe \chi (f)\!=\!\gamma \!+\!\frac{\pi f}{Q_{\rm e} }, for the calculation of the geometrical attenuation (γ) and effective attenuation (Qe-1 )(Q_{\rm e}^{-1} ). Q c values have been computed at central frequencies (and band) of 1.5 (1–2), 3.0 (2–4), 6.0 (4–8), 9.0 (6–12), 12 (8–16), and 18 (12–24) Hz for five different datasets selected according to the geotectonic environment as well as the ability to sample shallow or deeper structures, particularly the sediments of the Parecis basin and the crystalline basement of the Amazon craton. For the Parecis basin Qc = (98±12)f(1.14±0.08)Q_{\rm c} =(98\pm 12)f^{(1.14\pm 0.08)}, for the surrounding shield Qc = (167±46)f(1.03±0.04)Q_{\rm c} =(167\pm 46)f^{(1.03\pm 0.04)}, and for the whole region of Porto dos Gaúchos Qc = (99±19)f(1.17±0.02)Q_{\rm c} =(99\pm 19)f^{(1.17\pm 0.02)}. Using the independent frequency model, we found: for the cratonic zone, γ = 0.014 s − 1, Qe-1 = 0.0001Q_{\rm e}^{-1} =0.0001, ν ≈ 1.12; for the basin zone with sediments of ~500 m, γ = 0.031 s − 1, Qe-1 = 0.0003Q_{\rm e}^{-1} =0.0003, ν ≈ 1.27; and for the Parecis basin with sediments of ~1,000 m, γ = 0.047 s − 1, Qe-1 = 0.0005Q_{\rm e}^{-1} =0.0005, ν ≈ 1.42. Analysis of the attenuation factor (Q c) for different values of the geometrical spreading parameter (ν) indicated that an increase of ν generally causes an increase in Q c, both in the basin as well as in the craton. But the differences in the attenuation between different geological environments are maintained for different models of geometrical spreading. It was shown that the energy of coda waves is attenuated more strongly in the sediments, Qc = (78±23)f(1.17±0.14)Q_{\rm c} =(78\pm 23)f^{(1.17\pm 0.14)} (in the deepest part of the basin), than in the basement, Qc = (167±46)f(1.03±0.04)Q_{\rm c} =(167\pm 46)f^{(1.03\pm 0.04)} (in the craton). Thus, the coda wave analysis can contribute to studies of geological structures in the upper crust, as the average coda quality factor is dependent on the thickness of sedimentary layer.  相似文献   

16.
The average value of the intrinsic shear wave quality factor, Q β , for the 15 km of the upper crust in the NW Himalaya is estimated. Thirty-two teleseismic broadband SH and sSH waveforms of 8 October 2005 South Asian earthquake (Mw = 7.6), from sixteen Global Seismographic Network stations of the National Earthquake Information Center network have been used. The selected windows of the direct and depth phases have been Fourier transformed and smoothed using the Hamming and Tuckey technique. Ratio of the smoothed spectra of depth and direct phases are obtained in the frequency range 0.2–1.5 Hz. A straight line is fitted in the least-square sense to the spectral ratio versus frequency. The value of Q β is estimated from the slope of the line. The frequency independent average value of Q β is estimated to be 218±56.  相似文献   

17.
The mechanisms contributing to the attenuation of earthquake ground motion in the distance range of 10 to 200 km are studied with the aid of laboratory data, coda wavesRg attenuation, strong motion attenuation measurements in the northeast United States and Canada, and theoretical models. The frequency range 1–10 Hz has been studied. The relative contributions to attenuation of anelasticity of crustal rocks (constantQ), fluid flow and scattering are evaluated. Scattering is found to be strong with an albedoB 0=0.8–0.9 and a scattering extinction length of 17–32 km. The albedo is defined as the ratio of the total extinction length to the scattering extinction length. TheRg results indicate thatQ increases with depth in the upper kilometer or two of the crust, at least in New England. CodaQ appears to be equivalent to intrinsic (anelastic)Q and indicates that thisQ increases with frequency asQ=Q o f n , wheren is in the range of 0.2–0.9. The intrinsic attenuation in the crust can be explained by a high constantQ (500Q o2000) and a frequency dependent mechanism most likely due to fluid effects in rocks and cracks. A fluid-flow attenuation model gives a frequency dependence (QQ o f 0.5) similar to those determined from the analysis of coda waves of regional seismograms.Q is low near the surface and high in the body of the crust.  相似文献   

18.
Coda of local earthquakes that occurred during 2006–2007 are used to study the attenuation characteristics of the Garhwal–Kumaun Himalayas. The coda attenuation characteristics are represented in terms of coda Q or Q c . It is observed that Q c increases with frequency. Q c also varies with increase in lapse time of coda waves. Q c increases up to an 85-s average lapse time. This is similar to observations around the world reported by many workers who have interpreted this as a manifestation of the fact that heterogeneity decreases with depth. However, around a 90-s average lapse time Q c is lower than its values for lower and higher average lapse times. This is interpreted as an indication of possible presence of a fluid-filled medium or a medium having partial melts at around a 160-km depth. Q 0, i.e., Q c at 1 Hz, increases, and frequency parameter n decreases with increasing lapse time, barring around a 90-s lapse time. This again shows that in general, heterogeneity decreases with increasing depth. The Q 0 and n values for smaller lapse times are similar to those for tectonically active areas. By comparing Q c values obtained in this study with those obtained by us using the 1999 Chamoli earthquake aftershocks, it is concluded that the crust is turbid and the mantle is more transparent. However, whether the variation in Q c values between 1999 and 2006–2007 is temporal or not cannot be definitely established from the available data set.  相似文献   

19.
We analyzed the local earthquakes waveform recorded on a broadband seismic network in the northwestern Himalayan Region to compute lapse time and frequency dependence of coda Q (Q c). The observed Q c values increase with increasing lapse time at all frequency bands. The increase in Q c values with lapse time is attributed to an increase in Q c with depth. This implies that attenuation decreases with increasing depth. The approximate radius of medium contributing to coda generation varies from 55 to 130 km. By comparing the Q c values with those from other regions of the world, we find that they are similar to those obtained from tectonically active regions. The estimated Q c values show a frequency-dependent relationship, Q c = Q 0 f n , where Q 0 is Q c at 1 Hz and n represents degree of frequency dependence. They represent the level of heterogeneity and tectonic activity in an area. Our results show that northwest Himalayas are highly heterogeneous and tectonically very active. Q 0 increases from 113 ± 7 to 243 ± 10 and n decreases from 1.01 ± 0.05 to 0.85 ± 0.03 when lapse time increases from 30 to 70 s. As larger time window sees the effect of deeper part of the Earth, it is concluded that Q 0 increases and n decreases with increasing depth; i.e., heterogeneity decreases with depth in the study area.  相似文献   

20.
21 earthquakes recorded by a temporary seismic network in the Changbaishan Tianchi volcanic area in Northeast China operated during the summer of 2002 and 2003 were analyzed to estimate the S coda attenuation. The attenuation quality factor Qc was estimated using the single scattering attenuation model of Sato (1977) in the frequency band from 4 to 24 Hz. All the events studied in this paper occurred at depths from 2 to 6 km with ML of 1.4–2.8. The epicentral distances are less than 25 km. For all events which occurred near the Tianchi Lake (caldera), the Qc patterns obtained at the stations near the lake are similar, and the Qc values are relatively small. At the stations located about 15 km east of the Tianchi Lake, however, the average Qc is significantly higher. For an event which occurred 25km from the lake to the west, Qc patterns derived at the stations near the lake are quite similar to the above mentioned Qc for stations located in the east. Further study shows that Qc value in the north and central areas of the volcano is relatively lower than that in the surrounding area. Compared to other volcanic areas in the world, the average Qc of the Changbaishan Tianchi volcanic area is obviously lower. The deep seismic sounding and teleseismic receiver function studies indicated more than one lower velocity layer in the crust. The MT studies suggested the presence of high conductive bodies beneath the area. We interpret the strong attenuation of coda waves near the Changbaishan Tianchi volcano as being possibly related to high temperature medium caused by shallow magma chambers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号