首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Optimal and sustainable extraction of groundwater in coastal aquifers   总被引:1,自引:0,他引:1  
Four examples are investigated for the optimal and sustainable extraction of groundwater from a coastal aquifer under the threat of seawater intrusion. The objectives and constraints of these management scenarios include maximizing the total volume of water pumped, maximizing the profit of selling water, minimizing the operational and water treatment costs, minimizing the salt concentration of the pumped water, and controlling the drawdown limits. The physical model is based on the density-dependent advective-dispersive solute transport model. Genetic algorithm is used as the optimization tool. The models are tested on a hypothetical confined aquifer with four pumping wells located at various depths. These solutions establish the feasibility of simulating various management scenarios under complex three-dimensional flow and transport processes in coastal aquifers for the optimal and sustainable use of groundwater.  相似文献   

2.
Analytical models have been exhaustively used to study simple seawater intrusion problems and the sustainable management of groundwater resources in coastal aquifers because of its simplicity, easy implementation, and low computational cost. Most of these models are based on the sharp‐interface approximation and the Ghyben–Herzberg relation, and their governing equations are expressed in terms of a single potential theory to calculate critical pumping rates in a coastal pumping scenario. The Ghyben–Herzberg approach neglects mixing of fresh water and seawater and implicitly assumes that salt water remains static. Therefore, the results of the analytical solutions may be inaccurate and unacceptable for some real‐complex case studies. This paper provides insight into the validity of sharp‐interface models to deal with seawater intrusion in coastal aquifers, i.e. when they can be applied to obtain accurate enough results. For that purpose, this work compares sharp‐interface solutions, based on the Ghyben–Herzberg approach, with numerical three‐dimensional variable‐density flow simulations for a set of heterogeneous groundwater flow and mass transport parameters, and different scenarios of spatially distributed recharge values and spatial wells placement. The numerical experiment has been carried out in a 3D unconfined synthetic aquifer using the finite difference numerical code SEAWAT for solving the coupled partial differential equations of flow and density‐dependent transport. This paper finds under which situations the sharp‐interface solution gives good predictions in terms of seawater penetration, transition zone width and critical pumping rates. Additionally, the simulation runs indicate to which parameters and scenarios the results are more sensitive. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Many of the hydrological and ecological functions of alluvial flood plains within watersheds depend on the water flow exchanges between the vadoze soil zone and the shallow groundwater. The water balance of the soil in the flood plain is investigated, in order to evaluate the main hydrological processes that underlie the temporal dynamics of soil moisture and groundwater levels. The soil moisture and the groundwater level in the flood plain were monitored continuously for a three-year period. These data were integrated with the results derived from applying a physically-based numerical model which simulated the variably-saturated vertical water flow in the soil. The analysis indicated that the simultaneous processes of lateral groundwater flow and the vertical recharge from the unsaturated zone caused the observed water table fluctuations. The importance of these flows in determining the rises in the water table varied, depending on soil moisture and groundwater depth before precipitation. The monitoring period included two hydrological years (September 2009–September 2011). About 13% of the precipitation vertically recharged the groundwater in the first year and about 50% in the second. The difference in the two recharge coefficients was in part due to the lower groundwater levels in the recharge season of the first hydrological year, compared to those observed in the second. In the latter year, the shallow groundwater increased the soil moisture in the unsaturated zone due to capillary rise, and so the mean hydraulic conductivity of the unsaturated soil was high. This moisture state of soil favoured a more efficient conversion of infiltrated precipitation into vertical groundwater recharge. The results show that groundwater dynamics in the flood plain are an important source of temporal variability in soil moisture and vertical recharge processes, and this variability must be properly taken into account when the water balance is investigated in shallow groundwater environments.

Citation Pirastru, M. and Niedda, M., 2013. Evaluation of the soil water balance in an alluvial flood plain with a shallow groundwater table. Hydrological Sciences Journal, 58 (4), 898–911.  相似文献   

4.
Simulating groundwater flow in basin‐fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin‐fill aquifers by direct infiltration and transport through faults and fractures in the high‐elevation areas, by flowing overland through high‐elevation areas to infiltrate at basin‐fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin‐fill aquifers by calibrating a groundwater‐flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady‐state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance.  相似文献   

5.
The unconditional stochastic studies on groundwater flow and solute transport in a nonstationary conductivity field show that the standard deviations of the hydraulic head and solute flux are very large in comparison with their mean values (Zhang et al. in Water Resour Res 36:2107–2120, 2000; Wu et al. in J Hydrol 275:208–228, 2003; Hu et al. in Adv Water Resour 26:513–531, 2003). In this study, we develop a numerical method of moments conditioning on measurements of hydraulic conductivity and head to reduce the variances of the head and the solute flux. A Lagrangian perturbation method is applied to develop the framework for solute transport in a nonstationary flow field. Since analytically derived moments equations are too complicated to solve analytically, a numerical finite difference method is implemented to obtain the solutions. Instead of using an unconditional conductivity field as an input to calculate groundwater velocity, we combine a geostatistical method and a method of moment for flow to conditionally simulate the distributions of head and velocity based on the measurements of hydraulic conductivity and head at some points. The developed theory is applied in several case studies to investigate the influences of the measurements of hydraulic conductivity and/or the hydraulic head on the variances of the predictive head and the solute flux in nonstationary flow fields. The study results show that the conditional calculation will significantly reduce the head variance. Since the hydraulic head measurement points are treated as the interior boundary (Dirichlet boundary) conditions, conditioning on both the hydraulic conductivity and the head measurements is much better than conditioning only on conductivity measurements for reduction of head variance. However, for solute flux, variance reduction by the conditional study is not so significant.  相似文献   

6.
This article studies the effect of drought and pumping discharge on groundwater supplies and marine intrusion in the Korba aquifer (Cap‐Bon peninsula, Tunisia). The Groundwater Modelling System has been used to model the groundwater flow and to simulate the seawater intrusion. The calibration is based on the groundwater levels in the steady state from 1963, and in the transient state from the groundwater levels from 1963 to 2005. The main objective is to quantify the components of the groundwater mass balance and to estimate the hydraulic conductivity distribution. The impact of pumping discharge on the groundwater level evolution has been examined by two pumping scenarios P1 (no. 8420) and P2 (no. 8862) wells. The hydrodynamic modelling shows the increasing drawdowns after 14 years of pumping: 4 m in P1 well and about 5 m in P2 well below sea level. The drawdowns are accompanied by the inverse hydraulic gradient. The numerical model was used to discuss the management of the groundwater resources of Cap‐Bon. As the population continues to grow and the demand for groundwater pumping intensifies beyond the 1963 level, it can be expected that the actual extent of seawater intrusion in the future would be more severe than the model prediction. Better strategies for groundwater development and management will be necessary to protect the freshwater aquifers to the marine intrusion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Glaciers on the Tibetan Plateau play an important role in the local hydrological cycle. However, there are only few studies on groundwater in the alpine basins in the Tibetan Plateau which considered the effects of glaciers. Glaciers are extensively distributed in the Dongkemadi River Basin, which is a representative alpine basin in the Yangtze River source region. This study focuses on building a numerical groundwater flow model with glaciations using HydroGeoSphere (HGS) to simulate subglacial meltwater recharge to groundwater in the Dongkemadi River Basin in response to future climate changes. Effects of hydraulic conductivity, precipitation, and temperature on subglacial meltwater recharge to groundwater were discussed. Glacier changes in the future 50 years were predicted under different climate change scenarios. Results show that: (1) the average thickness of the glacier will change significantly; (2) the simulated rate of annual mean subglacial meltwater recharge to groundwater is 4.58 mm, which accounts for 6.33% of total groundwater recharge; and (3) hydraulic conductivity has the largest influence on subglacial meltwater recharge to groundwater, followed by temperature and precipitation. Results of this study are also important to sustainable water resource usage in the Yangtze River source region.  相似文献   

8.
Nitrate transport in the unsaturated zone of a riverbank filtration (RBF) system in Karany, Czech Republic, was studied. Previous study of the system estimated RBF recharge as 60% riverbank filtrate and 40% local groundwater contaminated by nitrates. Nitrate concentrations observed in RBF recently cannot be explained by simple groundwater contamination and a new conception of groundwater recharge is suggested. A two‐component model based on water 18O data modelled recharge of local groundwater. One component of groundwater recharge is rainfall and irrigation water moving through the unsaturated zone of the Quaternary sediments in piston flow. The second component is groundwater from the Cretaceous deposits with a free water table. Both the components of groundwater recharge have different nitrate concentrations, and resulting contamination of groundwater depends on the participation of water from Quaternary and Cretaceous deposits. Nitrates' origins and their mixing in the subsurface were traced by 15N data. Nitrate transport from the unsaturated zone is important and time variable source of groundwater contamination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A number of optimization approaches regarding the design location of groundwater pumping facilities in heterogeneous porous media have elicited little discussion. However, the location of groundwater pumping facilities is an important factor because it affects water resource usage. This study applies two optimization approaches to estimate the best recharge zone and suitable locations of the pumping facilities in southwestern Taiwan for different hydrogeological scales. First, for the regional scale, this study employs numerical modelling, MODFLOW‐96, to simulate groundwater direction and the optimal recharge zone in the study area. Based on the model's calibration and verification results, this study preliminarily utilizes the simulated spatial direction of groundwater and compares the safe yield for each well group in order to determine the best recharge zone. Additionally, for the local scale, the micro‐hydrogeological characteristics are considered before determining the design locations of the pumping facilities. According to drawdown record data from six observation wells derived from pumping tests at the best recharge area, this study further utilizes the modified artificial neural network approach to improve the accuracy of the estimation parameters as well as to analyse the direction and anisotropy of the hydraulic conductivities of an equivalent homogeneous aquifer. The results suggested that the best locations for the pumping facilities are along the more permeable major direction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A large-scale fluid flow and solute transport model was developed for the crystalline bedrock at Olkiluoto Island, Finland, which is considered as potential deep geological repository for spent nuclear fuel. Site characterization showed that the main flow pathways in the low-permeability crystalline bedrock on the island are 13 subhorizontal fracture zones. Compared to other sites investigated in the context of deep disposal of spent nuclear fuel, most deep boreholes drilled at Olkiluoto are not packed-off but are instead left open. These open boreholes intersect the main fracture zones and create hydraulic connections between them, thus modifying groundwater flow. The combined impact of fracture zones and open boreholes on groundwater flow is simulated at the scale of the island. The modeling approach couples a geomodel that represents the fracture zones and boreholes with a numerical model that simulates fluid flow and solute transport. The geometry of the fracture zones that are intersected by boreholes is complex, and the 3D geomodel was therefore constructed with a tetrahedral mesh. The geomodel was imported into the numerical model to simulate a pumping test conducted on Olkiluoto Island. The pumping test simulation demonstrates that fracture-borehole intersections must be accurately discretized, because they strongly control groundwater flow. The tetrahedral mesh provides an accurate representation of these intersections. The calibrated flow model was then used for illustrative scenarios of radionuclide migration to show the impact of fracture zones on solute transport once the boreholes were backfilled. These mass transport simulations constitute base cases for future predictive analyses and sensitivity studies, since they represent key processes to take into consideration for repository performance assessment.  相似文献   

11.
The present rice‐dominated cropping system in the Hirakud canal command (eastern India) is under severe threat due to imbalance between irrigation water supply and demand. The canal water supply, which is the only source of irrigation, only meets 54% of the demand at 90% probability of exceedance (PE). In order to mitigate the irrigation water deficit from canal water, groundwater is considered as a supplemental source. Quasi‐three‐dimensional groundwater flow simulation modelling was, therefore, carried out by using Visual MODFLOW to detect the change in hydraulic head due to transient pumping stresses. The simulation model was calibrated and validated satisfactorily. Sensitivity analysis of the model parameters shows that groundwater recharge is most sensitive followed by aquifer hydraulic conductivity at almost all the sites of the command area, whereas the model is comparatively less sensitive to specific storage and specific yield. Enhanced pumping scenarios showed that groundwater extraction can be increased up to 50 times of the existing pumping without causing any adverse effect to the aquifer but the aquifer does not permit to exploit water in order to fulfill the irrigation water demand even at 10% PE. Hence, it is imperative to develop an optimal land and water resources management plan of the command area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, we attempted to analyse a drawdown pattern around a pumping well in an unconfined sandy gravelly aquifer constructed in a laboratory tank by means of both experimental and numerical modelling of groundwater flow. The physical model consisted of recharge, aquifer and discharge zones. Permeability and specific yield of the aquifer material were determined by Dupuit approximation under steady‐state flow and stepwise gravitational drainage of groundwater, respectively. The drawdown of water table in pumping and neighbouring observation wells was monitored to investigate the effect of no‐flow boundary on the drawdown pattern during pumping for three different boundary conditions: (i) no recharge and no discharge with four no‐flow boundaries (Case 1); (ii) no recharge and reservoir with three no‐flow boundaries (Case 2); (iii) recharge and discharge with two no‐flow boundaries (Case 3). Based on the aquifer parameters, numerical modelling was also performed to compare the simulated drawdown with that observed. Results showed that a large difference existed between the simulated drawdown and that observed in wells for all cases. The reason for the difference could be explained by the formation of a curvilinear type water table between wells rather than a linear one due to a delayed response of water table in the capillary fringe. This phenomenon was also investigated from a mass balance study on the pumping volume. The curvilinear type of water table was further evidenced by measurement of water contents at several positions in the aquifer between wells using time domain reflectometry (TDR). This indicates that the existing groundwater flow model applicable to an unconfined aquifer lacks the capacity to describe a slow response of water table in the aquifer and care should be taken in the interpretation of water table formation in the aquifer during pumping. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Saltwater intrusion problems have been usually tackled through analytical models because of its simplicity, easy implementation and low computational cost. Most of these models are based on the sharp‐interface approximation and the Ghyben–Herzberg relation, which neglects mixing of fresh water and seawater and implicitly assumes that salt water remains static. This paper provides insight into the validity of a sharp‐interface approximation defined from a steady state solution when applied to transient seawater intrusion problems. The validation tests have been performed on a 3D unconfined synthetic aquifer, which include spatial and temporal distribution of recharge and pumping wells. Using a change of variable, the governing equation of the steady state sharp‐interface problem can be written with the same structure of the steady confined groundwater flow equation as a function of a single potential variable (?). We propose to approach also the transient problem solving a single potential equation (using also the ? variable) with the same structure of the confined groundwater flow equation. It will allow solving the problem by using the classical MODFLOW code. We have used the parameter estimation model PEST to calibrate the parameters of the transient sharp‐interface equation. We show how after the calibration process, the sharp‐interface approach may provide accurate enough results when applied to transient problems and improve the steady state results, thus avoiding the need of implementing a density‐dependent model and reducing the computational cost. This has been proved by comparing results with those obtained using the finite difference numerical code SEAWAT for solving the coupled partial differential equations of flow and density‐dependent transport. The comparison was performed in terms of piezometric heads, seawater penetration, transition zone width and critical pumping rates. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A numerical model for groundwater flow and solute transport was employed to examine the influence of the screen and sandpack on the collection of a representative geochemical sample from a piezometer monitoring well installation in a discretely fractured bedrock aquifer. The optimization of screen and sandpack combinations was explored for the potential to reduce purging times and volumes in practice. Simulations accounted for the location of the fractures along the well screen, fracture aperture, screen length, and the pumping rate. The variability in the required purging times (t(99)-the time required to achieve 99% fractional contribution from the formation to pump discharge) can be explained by: (1) the relative hydraulic conductivities of the components of the system (fracture, sandpack, and screen), (2) the truncation of the flow field from the fracture to the screen by the upper and/or lower boundary of the sandpack of the flow field from another fracture, and (3) time-dependent drawdown. During pumping, only a portion of the sandpack may actually become hydraulically active. The optimal configuration (shortest purging time) is achieved when the ratios of the screen, sandpack, and fracture hydraulic conductivities are close to 1:1:1. More importantly, the role of the fracture hydraulic conductivity in the ratios is not as crucial to reducing t(99) as having the hydraulic conductivities of the screen and sandpack as similar as possible. This study provides a better understanding of well dynamics during pumping for the purpose of obtaining representative groundwater samples.  相似文献   

15.
Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater‐fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level–driven movement of the fresh water‐sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two‐dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater–dependent ecosystems.  相似文献   

16.
Changes in Entrapped Gas Content and Hydraulic Conductivity with Pressure   总被引:1,自引:0,他引:1  
Water table fluctuations continuously introduce entrapped air bubbles into the otherwise saturated capillary fringe and groundwater zone, which reduces the effective (quasi‐saturated) hydraulic conductivity, Kquasi, thus impacting groundwater flow, aquifer recharge and solute and contaminant transport. These entrapped gases will be susceptible to compression or expansion with changes in water pressure, as would be expected with water table (and barometric pressure) fluctuations. Here we undertake laboratory experiments using sand‐packed columns to quantify the effect of water table changes of up to 250 cm on the entrapped gas content and the quasi‐saturated hydraulic conductivity, and discuss our ability to account for these mechanisms in ground water models. Initial entrapped air contents ranged between 0.080 and 0.158, with a corresponding Kquasi ranging between 2 and 6 times lower compared to the Ks value. The application of 250 cm of water pressure caused an 18% to 26% reduction in the entrapped air content, resulting in an increase in Kquasi by 1.16 to 1.57 times compared to its initial (0 cm water pressure) value. The change in entrapped air content measured at pressure step intervals of 50 cm, was essentially linear, and could be modeled according to the ideal gas law. Meanwhile, the changes in Kquasi with compression–expansion of the bubbles because of pressure changes could be adequately captured with several current hydraulic conductivity models.  相似文献   

17.
Kai‐Yuan Ke 《水文研究》2014,28(3):1409-1421
This research proposes a combination of SWAT and MODFLOW, MD‐SWAT‐MODFLOW, to address the multi‐aquifers condition in Choushui River alluvial fan, Taiwan. The natural recharge and unidentified pumping/recharge are separately estimated. The model identifies the monthly pumping/recharge rates in multi‐aquifers so that the daily streamflow can be simulated correctly. A multi‐aquifers condition means a subsurface formation composed of at least the unconfined aquifer, the confined aquifer, and an in‐between aquitard. In such a case, the variation of groundwater level is related to pumping/recharge activities in vertically adjacent aquifer and the river‐aquifer interaction. Both factors in turn affect the streamflow performance. Results show that MD‐SWAT‐MODFLOW performs better than SWAT alone in terms of simulated streamflow, especially during low flow period, when pumping/recharge rates are properly estimated. A sensitivity analysis of individual parameter suggests that the vertical leakance may be the most sensitive among all investigated MODFLOW parameters in terms of the estimated pumping/recharge among aquifers, and the Latin‐Hypercube‐One‐factor‐At‐a‐Time sensitivity analysis indicates that the hydraulic conductivity of channel is the most sensitive to the model performance. It also points out the necessity to simultaneously estimate pumping/recharge rates in multi‐aquifers. The estimated net pumping rate can be treated as a lower bound of the actual local pumping rate. As a whole, the model provides the spatio‐temporal groundwater use, which gives the authorities insights to manage groundwater resources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Shallow groundwater is an important source of water for the maintenance and restoration of ecosystems in arid environments, which necessitates a deeper understanding of its complex spatial and temporal dynamics driven by hydrological processes. This study explores the dominant hydrological processes that control the shallow groundwater dynamics in the Gobi Desert‐riparian‐oasis system of the lower Heihe River, a typical arid inland river basin located in northwestern China. The groundwater level and temperature were monitored in 14 shallow wells at 30‐min intervals during the 2010–2012 period. After combining this information with meteorological and hydrological data, a comprehensive analysis was conducted to understand the dynamic behaviour of the shallow groundwater system and to determine the dominant factors that control the groundwater flow processes. The results of the study indicate notably large temporal and spatial variations in both the groundwater level and temperature. Noticeable fluctuations in the groundwater level (0.5–1 m) and temperature (4–8 °C) were observed in the riparian zone, evidencing a clear river influence. In comparison, the groundwater fluctuations in the Gobi Desert were more stable (the annual variations of the water table were less than 0.5 m, and the water temperature varied by no more than 2 °C). Strong variations in the groundwater table (1.5–5.0 m/year) and temperature (1.5–6.5 °C), mainly caused by surface flood irrigation and groundwater pumping, were observed in the oasis area. The investigated sites were categorized into three types that reflect the dominant hydrological processes: (1) the riparian zone, dominated by riverbank filtration and groundwater evapotranspiration; (2) the Gobi Desert area, controlled by groundwater evaporation and lateral recharge; and (3) the oasis area, dominated by groundwater evapotranspiration as well as surface–groundwater interactions caused by human activities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Lu C  Chen Y  Luo J 《Ground water》2012,50(3):386-393
Prevention of sea water intrusion in coastal aquifers subject to groundwater withdrawal requires optimization of well pumping rates to maximize the water supply while avoiding sea water intrusion. Boundary conditions and the aquifer domain size have significant influences on simulating flow and concentration fields and estimating maximum pumping rates. In this study, an analytical solution is derived based on the potential-flow theory for evaluating maximum groundwater pumping rates in a domain with a constant hydraulic head landward boundary. An empirical correction factor, which was introduced by Pool and Carrera (2011) to account for mixing in the case with a constant recharge rate boundary condition, is found also applicable for the case with a constant hydraulic head boundary condition, and therefore greatly improves the usefulness of the sharp-interface analytical solution. Comparing with the solution for a constant recharge rate boundary, we find that a constant hydraulic head boundary often yields larger estimations of the maximum pumping rate and when the domain size is five times greater than the distance between the well and the coastline, the effect of setting different landward boundary conditions becomes insignificant with a relative difference between two solutions less than 2.5%. These findings can serve as a preliminary guidance for conducting numerical simulations and designing tank-scale laboratory experiments for studying groundwater withdrawal problems in coastal aquifers with minimized boundary condition effects.  相似文献   

20.
The identification of groundwater parameters in heterogeneous systems is a major challenge in groundwater modeling. Flexible parameterization methods are needed to assess the complexity of the spatial distributions of these parameters in real aquifers. In this article, we introduce an adaptative parameterization to identify the distribution of hydraulic conductivity within the large‐scale (4400 km2) Upper Rhine aquifer. The method is based on adaptative multiscale triangulation (AMT) coupled with an inverse problem procedure that identifies the parameters' distributions by reducing the error between measured and simulated heads. The AMT method has the advantage of combining both zonation and interpolation approaches. The AMT method uses area‐based interpolation rather than an interpolation based on stochastic features. The method is applied to a standard 2D groundwater model that takes into account the interactions between the aquifer and surface water bodies, groundwater recharge, and pumping wells. The simulation period covers 204 months, from January 1986 to December 2002. Recordings at 109 piezometers are used for model calibration. The simulated heads are globally quite accurate and reproduce the main dynamics of the system. The local hydraulic conductivities resulting from the AMT method agree qualitatively with existing local experimental observations across the Rhine aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号