首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine–gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4–10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89–5.18‰), plagioclase (5.84–6.28‰), clinopyroxene (5.17–5.47‰) and hornblende (5.48–5.61‰) and hydrogen isotope composition of hornblende (δD = −35.5 to −49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth within the crust, lowering MgO and Cr2O3 and raising Al2O3 and CaO of residual melt due to suppression of plagioclase. Low density, hydrous basaltic and basaltic andesite melts then ascend rapidly through the crust, stalling at shallow depth upon water saturation where crystallisation of the chemically distinct cumulus phases observed in this study can occur. Deposited crystals armour the shallow magma chamber where oxygen isotope equilibration between minerals is slowly approached, before remobilisation and entrainment by later injections of magma.  相似文献   

2.
 The structure of coesite has been determined at ten pressures up to a maximum of 8.68 GPa by single-crystal X-ray diffraction. The dominant mechanism of compression is the reduction of four of the five independent Si–O–Si angles within the structure. There is no evidence of the fifth linkage, Si1–O1–Si1, deviating from 180°. Some Si–O bond distances also decrease by up to 1.6% over the pressure range studied. The pattern of Si–O–Si angle reduction amounts to a rotation of the Si2 tetrahedron around the [001] direction. This rotation induces significant internal deformation of the Si1 tetrahedron. Comparison of the experimental data with rigid-unit distance least-squares simulations of coesite suggests that this pattern of compression, the anomalous positive values of both s23 and K′′ in the equation of state of coesite, its high elastic anisotropy and the unusual straight Si1–O1–Si1 linkage within the structure are all consequences of the connectivity of the tetrahedral framework. Received: 11 July 2002 / Accepted: 14 January 2003 Acknowledgements The help of Christian Baerlocher of ETH Zurich in providing both the DLS-76 software and advice in its use is gratefully acknowledged, as are discussions with Paul Ribbe of Virginia Tech and the comments of two anonymous reviewers. The data analysis was supported by the National Science Foundation under grant EAR-0105864 to N.L. Ross and R.J. Angel.  相似文献   

3.
A thermodynamic dataset for arsenic species in As–O–H–S–Fe–Ba system was compiled from the literature. Using this dataset, Eh–pH diagrams for the systems As–O–H, As–O–H–S, As–O–H–S–Fe, As–O–H–Ba, and As–O–H–S–Fe–Ba were constructed at 25°C and 1 bar. The inclusion of thioarsenite species in the systems As–O–H–S and As–O–H–S–Fe results in substantial differences from previously published Eh–pH diagrams. There are considerable differences in the thermodynamic properties for orpiment, realgar, scorodite, arsenopyrite, barium arsenate, and barium hydrogen arsenate, which result in vastly different stability fields when different values are adopted.  相似文献   

4.
The configurational heat capacity, shear modulus and shear viscosity of a series of Na2O–Fe2O3–Al2O3–SiO2 melts have been determined as a function of composition. A change in composition dependence of each of the physical properties is observed as Na2O/(Na2O + Al2O3) is decreased, and the peralkaline melts become peraluminous and a new charge-balanced Al-structure appears in the melts. Of special interest are the frequency dependent (1 mHz–1 Hz) measurements of the shear modulus. These forced oscillation measurements determine the lifetimes of Si–O bonds and Na–O bonds in the melt. The lifetime of the Al–O bonds could not, however, be resolved from the mechanical spectrum. Therefore, it appears that the lifetime of Al–O bonds in these melts is similar to that of Si–O bonds with the Al–O relaxation peak being subsumed by the Si–O relaxation peak. The appearance of a new Al-structure in the peraluminous melts also cannot be resolved from the mechanical spectra, although a change in elastic shear modulus is determined as a function of composition. The structural shear-relaxation time of some of these melts is not that which is predicted by the Maxwell equation, but up to 1.5 orders of magnitude faster. Although the configurational heat capacity, density and shear modulus of the melts show a change in trend as a function of composition at the boundary between peralkaline and peraluminous, the deviation in relaxation time from the Maxwell equation occurs in the peralkaline regime. The measured relaxation times for both the very peralkaline melts and the peraluminous melts are identical with the calculated Maxwell relaxation time. As the Maxwell equation was created to describe the timescale of flow of a mono-structure material, a deviation from the prediction would indicate that the structure of the melt is too complex to be described by this simple flow equation. One possibility is that Al-rich channels form and then disappear with decreasing Si/Al, and that the flow is dominated by the lifetime of Si–O bonds in the Al-poor peralkaline melts, and by the lifetime of Al–O bonds in the relatively Si-poor peralkaline and peraluminous melts with a complex flow mechanism occurring in the mid-compositions. This anomalous deviation from the calculated relaxation time appears to be independent of the change in structure expected to occur at the peralkaline/peraluminous boundary due to the lack of charge-balancing cations for the Al-tetrahedra.  相似文献   

5.
 The densification and structural changes in SiO2 glass compressed up to 43.4 GPa by shock experiments are investigated quantitatively by the X-ray diffraction technique. Direct structural data (average Si–O and Si–Si distances and Si–O–Si angles, coordination number of the Si atom) of these shock-densified SiO2 glasses have been obtained by analyzing the radial distribution function curves, RDF(r), calculated with X-ray diffraction data. The coordination number of all densified glasses is about 4 and shows almost no pressure variation. The SiO2 glass has shown density increase of 11% at a shock compression of 26.3 GPa. This density evolution could not be explained by the coordination change. The reduction of the average Si–O–Si angle (144° at 0 GPa to 136° at 26.3 GPa) obtained from RDF(r) data may account for this density increase. This Si–O–Si angle change may be caused by shrinkage of the network structure and the increase of small rings of SiO4 tetrahedra. For higher shock pressure, a decrease in the Si–O–Si angle to 140° was observed. This is consistent with the decrease in density at 32.0 and 43.2 GPa. This decrease in the Si–O–Si angle and density could be attributed to an annealing effect due to high after-shock residual temperature. This pressure dependence of average Si–O–Si angles in shock-densified SiO2 glass agrees with the results of our previous Raman spectroscopic study. On the other hand, the pressure variation for the first sharp diffraction peak (FSDP) was analyzed to estimate the evolution of intermediate range structures. It is suggested that the mean d value (d m ) obtained from the position of FSDP strongly depends on the shock and residual temperature, as well as shock pressure. Received: 29 June 2001 / Accepted: 14 November 2001  相似文献   

6.
Density functional theory calculations have been used to study the pressure-induced changes of the hydrogen bond of Fe-free orthozoisite and clinozoisite and the concomitant shifts of the OH-stretching frequencies. Two independent parameter-free lattice dynamical calculations have been employed. One was based on a plane-wave basis set in conjunction with norm-conserving pseudopotentials and a density functional perturbation theory approach, while the other used a localised basis set and a finite displacement algorithm for the lattice dynamical calculations. Both models confirm the unusually large pressure-induced red-shift found experimentally (−33.89 cm−1/GPa) in orthozoisite, while the pressure-induced shifts in clinozoisite are much smaller (−5 to −9 cm−1/GPa). The atomistic model calculations show that in orthozoisite the nearly linear O–H⋯O arrangement is compressed by about 8% on a pressure increase to 10 GPa, while concomitantly the O–H distance is significantly elongated (by 2.5% at 10 GPa). In clinozoisite, the O–H⋯O arrangement is kinked at ambient conditions and remains kinked at high pressures, while the O-H distance is elongated by only 0.5% at 10 GPa. The current calculations confirm that correlations between the distances and dynamics of hydrogen bonds, which have been established at ambient conditions, cannot be used to infer hydrogen positions at high pressures.  相似文献   

7.
This study demonstrates that a hydrous, halide bearing silicate melt is a viable medium for diamond growth. Experiments were conducted in the MgO–SiO2–H2O–C ± KCl ± NaCl system, which was used as a model for harzburgitic mantle. In no case did we observe crystals that could be interpreted as spontaneously nucleated, but growth of diamond on seed crystals at 1,400–1,600°C and 7 GPa in experiments of 4 h duration was observed. The addition of KCl to the system produced crystallization of diamond at temperatures as low as 1,400°C. At higher temperatures, larger growth features were produced than those that seen in the KCl-free system at the same conditions. The NaCl-bearing system is different; in these experiments, the diamond seed crystals show evidence of possible dissolution and layer growth, albeit more subdued growth than in the KCl system. Therefore, NaCl may be an inhibitor of diamond growth in a hydrous silicate melt. Based on these results, hydrous silicate melts could play a role in formation of diamond in either deep subduction zones, or above slabs imbricated against a lithospheric ‘root’ in the sub-continental lithospheric mantle. The water and halide necessary for their formation could be transported into the mantle in hydrous phases such as serpentine in subducting lithospheric slabs. Dehydration of serpentine at >200 km depth would release hydrous, halide-bearing fluids into the overlying mantle wedge or lithospheric root, triggering melting at conditions similar to those of the formation of natural diamond.  相似文献   

8.
 An ab initio Hartree–Fock calculation on beryl structure has been performed and the wave function has been used for an analysis of the electron density. The equilibrium geometry, determined by minimizing the energy with respect to cell parameters and fractional coordinates, is in good agreement with structural experimental measurements; small differences in length between the various Si–O bonds of the structure are well reproduced by the calculation. The two non-equivalent oxygen atoms (O1 and O2) of beryl show different electron distributions. In particular, the valence shell charge concentration (VSCC) of O1 (the bridge between two Si ions) has a torus-like shape, showing a bulge on the external side of the Si–O–Si angle and a thinning on the internal side of it; by contrast O2 has two lone pairs which are approximately located on the line for O2, normal to the plane passing, on average, through the atoms O2, Si, Be and Al. The electron density of each oxygen is strongly polarized toward the Si ions and much less polarized towards the other cations. Such features of the VSCC of the oxygens can be recast in terms of the valence bond theory, to explain the observed differences in bond lengths. By calculating the potential inside the channels of the beryl structure, predictions could be made about the positions occupied by alkali cations, which are often found in natural minerals belonging to the beryl group: results agree in general with experimental findings, but foresee a shift of such cations off the central positions located on the six fold symmetry axis. Additionally, calculations of position and orientation of H2O inside the channel, in the alkali-free beryl, locate the molecule close to the basal plane, with the H⋯H axis parallel to [001] or oriented at 40 from it. Received: 12 December 2001 / Accepted: 6 April 2002  相似文献   

9.
 Raman spectra of a single-crystal fragment of hydrous γ-Mg2SiO4, synthesized in a multianvil press, have been measured in a diamond-anvil cell with helium as pressure-transmitting medium to 56.5 GPa at room temperature. All five characteristic spinel Raman modes shift continuously up to the highest pressure, showing no evidence for a major change in the crystal structure despite compression well beyond the stability field of ringwoodite in terms of pressure. At pressures above ∼30 GPa a new mode on the low-frequency site of the two silicate-stretching modes is clearly identifiable, indicating a modification in the spinel structure which is reversible on pressure release. The frequency of the new mode (802 cm−1 extrapolated to 1 bar) suggests the presence of Si–O–Si linkages and/or a partial increase in the coordination of Si. Direct determination of the subtle structural change causing the new Raman mode would require high-pressure, single-crystal synchrotron X-ray diffraction experiments. The Raman modes of hydrous and anhydrous Mg-end-member ringwoodite are nearly identical up to 20 GPa, suggesting that protonation has only minor effect on the lattice dynamics over the entire pressure stability range for ringwoodite in the mantle. Received: 7 December 2001 / Accepted: 16 April 2002  相似文献   

10.
 The melting reaction: albite(solid)+ H2O(fluid) =albite-H2O(melt) has been determined in the presence of H2O–NaCl fluids at 5 and 9.2 kbar, and results compared with those obtained in presence of H2O–CO2 fluids. To a good approximation, albite melts congruently at 9 kbar, indicating that the melting temperature at constant pressure is principally determined by water activity. At 5 kbar, the temperature (T)- mole fraction (X (H2O) ) melting relations in the two systems are almost coincident. By contrast, H2O–NaCl mixing at 9 kbar is quite non-ideal; albite melts ∼70 °C higher in H2O–NaCl brines than in H2O–CO2 fluids for X (H2O) =0.8 and ∼100 °C higher for X (H2O) =0.5. The melting temperature of albite in H2O–NaCl fluids of X (H2O)=0.8 is ∼100 °C higher than in pure water. The PT curves for albite melting at constant H2O–NaCl show a temperature minimum at about 5 kbar. Water activities in H2O–NaCl fluids calculated from these results, from new experimental data on the dehydration of brucite in presence of H2O–NaCl fluid at 9 kbar, and from previously published experimental data, indicate a large decrease with increasing fluid pressure at pressures up to 10 kbar. Aqueous brines with dissolved chloride salt contents comparable to those of real crustal fluids provide a mechanism for reducing water activities, buffering and limiting crustal melting, and generating anhydrous mineral assemblages during deep crustal metamorphism in the granulite facies and in subduction-related metamorphism. Low water activity in high pressure-temperature metamorphic mineral assemblages is not necessarily a criterion of fluid absence or melting, but may be due to the presence of low a (H2O) brines. Received: 17 March 1995/Accepted: 9 April 1996  相似文献   

11.
Raman spectra of monoclinic Fo90 hydrous wadsleyite with 2.4 wt% H2O have been measured in a diamond-anvil cell with helium as a pressure-transmitting medium to 58.4 GPa at room temperature. The most intense, characteristic wadsleyite modes, the Si–O–Si symmetric stretch at 721 cm−1 and the symmetric stretch of the SiO3 unit at 918 cm−1, shift continuously to 58.4 GPa showing no evidence of a first order change in the crystal structure despite compression well beyond the stability field of wadsleyite in terms of pressure. The pressure dependence of these two modes is nearly identical for Fo90 hydrous and Fo100 anhydrous wadsleyite. A striking feature in the high-pressure Raman spectra of Fo90 hydrous wadsleyite is the appearance of new Raman modes above 9 GPa in the mid-frequency range (300–650 cm−1 at 1-bar and shifted to 500–850 cm−1 at 58.4 GPa) accompanied by a significant growth in their intensities under further compression. In the OH stretching frequency range Fo90 hydrous wadsleyite exhibits a larger number of modes than the Mg end-member phase. The higher number of modes may be due to either additional protonation sites or simply that we observe a different subset of all possible OH modes for each sample. The high-pressure behaviour of the OH stretching modes of Fo90 and Fo100 hydrous wadsleyite is consistent: OH stretching modes with frequencies <3,530 cm−1 decrease with increasing pressure whereas the higher-frequency OH modes show a close to constant pressure dependence to at least 13.2 GPa. The approximately constant pressure dependence of the OH modes above 3,530 cm−1 is consistent with protons being located at the O1···O edges around M3.  相似文献   

12.
The experimental multipole electron density, ρ(r), of diopside was derived from high-resolution single-crystal diffraction at room temperature. Its topological analysis revealed predominantly ionic Si–O bonding, as found in electron density studies of other silicates. In particular, the non-bridging Si–O bonds are slightly less ionic in character than the bridging Si–O bonds. The Ca–O and Mg–O bonds are classified as pure closed-shell ionic interactions. An analysis of –∇2ρ(r) showed the presence of maxima around the oxygen atoms, associated to lone pairs domains that are involved in bonds with the surrounding ions. Calculation of atomic basins gave net charges of –1.56(12), 3.11(17), 1.79(13) and 1.88(18) e for O (averaged), Si, Ca and Mg atoms, respectively. O···O interactions between the O atoms at the vertices of the SiO4 tetrahedron were also detected from the topological analysis of ρ(r), and indicate a cooperative interaction among the lone pairs of neighbouring oxygen atoms. All these results were also confirmed by periodic restricted Hartree–Fock (RHF) calculations. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
A neutron powder diffraction study of hydrogenated and deuterated brucite was conducted at ambient temperature and at pressures up to 9 GPa, using a Paris–Edinburgh high-pressure cell at the WAND instrument of the ORNL High Flux Isotope Reactor. The two materials were synthesized by the same method and companion measurements of neutron diffraction were conducted under the same conditions. Our refinement results show that the lattice-parameters of the a axis, parallel to the sheets of Mg–O octahedra, decrease only slightly with pressure with no effect of H–D substitution. However, the c axis of Mg(OD)2 is shorter and may exhibit greater compressibility with pressure than that of Mg(OH)2. Consequently, the unit-cell volume of deuterated brucite is slightly, but systematically smaller than that of hydrogenated brucite. When fitted to a third-order Birch–Murnaghan equation in terms of the normalized unit-cell volume, values of the bulk modulus for hydrogenated and deuterated brucite (K 0 = 39.0 ± 2.8 and 40.4 ± 1.3 GPa, respectively) are, however, indistinguishable from each other within the experimental errors. The measured effect of H–D substitution on the unit-cell volume also demonstrates that brucite (and other hydrous minerals) preferentially incorporate deuterium over hydrogen under pressure, suggesting that the distribution of hydrogen isotopes in deep-earth conditions may differ significantly from that in near-surface environments.  相似文献   

14.
The onset of hydrous partial melting in the mantle above the transition zone is dictated by the H2O storage capacity of peridotite, which is defined as the maximum concentration that the solid assemblage can store at P and T without stabilizing a hydrous fluid or melt. H2O storage capacities of minerals in simple systems do not adequately constrain the peridotite water storage capacity because simpler systems do not account for enhanced hydrous melt stability and reduced H2O activity facilitated by the additional components of multiply saturated peridotite. In this study, we determine peridotite-saturated olivine and pyroxene water storage capacities at 10–13 GPa and 1,350–1,450°C by employing layered experiments, in which the bottom ~2/3 of the capsule consists of hydrated KLB-1 oxide analog peridotite and the top ~1/3 of the capsule is a nearly monomineralic layer of hydrated Mg# 89.6 olivine. This method facilitates the growth of ~200-μm olivine crystals, as well as accessory low-Ca pyroxenes up to ~50 μm in diameter. The presence of small amounts of hydrous melt ensures that crystalline phases have maximal H2O contents possible, while in equilibrium with the full peridotite assemblage (melt + ol + pyx + gt). At 12 GPa, olivine and pyroxene water storage capacities decrease from ~1,000 to 650 ppm, and ~1,400 to 1,100 ppm, respectively, as temperature increases from 1,350 to 1,450°C. Combining our results with those from a companion study at 5–8 GPa (Ardia et al., in prep.) at 1,450°C, the olivine water storage capacity increases linearly with increasing pressure and is defined by the relation C\textH2 \textO\textolivine ( \textppm ) = 57.6( ±16 ) ×P( \textGPa ) - 169( ±18 ). C_{{{\text{H}}_{2} {\text{O}}}}^{\text{olivine}} \left( {\text{ppm}} \right) = 57.6\left( { \pm 16} \right) \times P\left( {\text{GPa}} \right) - 169\left( { \pm 18} \right). Adjustment of this trend for small increases in temperature along the mantle geotherm, combined with experimental determinations of D\textH2 \textO\textpyx/olivine D_{{{\text{H}}_{2} {\text{O}}}}^{\text{pyx/olivine}} from this study and estimates of D\textH2 \textO\textgt/\textolivine D_{{{\text{H}}_{2} {\text{O}}}}^{{{\text{gt}}/{\text{olivine}}}} , allows for estimation of peridotite H2O storage capacity, which is 440 ± 200 ppm at 400 km. This suggests that MORB source upper mantle, which contains 50–200 ppm bulk H2O, is not wet enough to incite a global melt layer above the 410-km discontinuity. However, OIB source mantle and residues of subducted slabs, which contain 300–1,000 ppm bulk H2O, can exceed the peridotite H2O storage capacity and incite localized hydrous partial melting in the deep upper mantle. Experimentally determined values of D\textH2 \textO\textpyx/\textolivine D_{{{\text{H}}_{2} {\text{O}}}}^{{{\text{pyx}}/{\text{olivine}}}} at 10–13 GPa have a narrow range of 1.35 ± 0.13, meaning that olivine is probably the most important host of H2O in the deep upper mantle. The increase in hydration of olivine with depth in the upper mantle may have significant influence on viscosity and other transport properties.  相似文献   

15.
Groundwater is of utmost significance to socio-economic development and ecological recovery for the Loess Plateau. However, studies regarding the mechanism governing groundwater recharge over this area appear to be inadequate. This study is to examine the spatio-temporal variations of δ2H and δ18O in precipitation and shallow groundwater. On the basis of this, the mechanisms governing shallow groundwater recharge were explored. Precipitation and groundwater were sampled monthly from May to October during the period 2004–2006 at 13 sites in the Chabagou Catchment (187 km2). In the Caopingxigou Experimental Watershed (0.1 km2), meteorological variables were observed and rainfall larger than 5 mm was sampled immediately after each rain event. Across the area, 90% of the precipitation occurred from May to September primarily in the form of heavy rains or rainstorms with great spatial variability. There were about 30 localized rains in each year. It was indicated that there existed notable seasonality and pronounced spatial variability in precipitation isotopic compositions. Contributing factors and indications of isotopic compositions, as well as their climatic indications such as monsoon intensities and mixing processes of water vapor, were investigated. The δ2H–δ18O relation of groundwater was found to be δ2H = 3.22 × δ18O − 38.1, deviating from the local meteoric water line δ2H = 7.57 × δ18O + 3.9. The range of δ values in groundwater is shrunken to be 15–21% of that in individual precipitations, and groundwater in the middle reaches shows a wider range of δ values. Isotopic results showed that groundwater originates from precipitation with hydrogen and oxygen isotopic compositions being −69 and −9.7‰, respectively, and most groundwater experiences serious evaporation and adequate mixing with old water during infiltration or percolation in the aerated zone. It was also founded that obvious fluctuations of isotopic compositions in groundwater mainly appear in the middle reaches especially at sites that are close to valleys, suggesting varying sources of groundwater from precipitation, precipitation runoff, isotopically enriched surface water and/or lateral recharge of adjacent groundwater.  相似文献   

16.
We report the first study of electrical conductivities of silicate melts at very high pressures (up to 10 GPa) and temperatures (up to 2,173 K). Impedance spectroscopy was applied to dry and hydrous albite (NaAlSi3O8) glasses and liquids (with 0.02–5.7 wt% H2O) at 473–1,773 K and 0.9–1.8 GPa in a piston-cylinder apparatus, using a coaxial cylindrical setup. Measurements were also taken at 473–2,173 K and 6–10 GPa in two multianvil presses, using simple plate geometry. The electrical conductivity of albite melts is found to increase with temperature and water content but to decrease with pressure. However, at 6 GPa, conductivity increases rapidly with temperature above 1,773 K, so that at temperatures beyond 2,200 K, conductivity may actually increase with pressure. Moreover, the effect of water in enhancing conductivity appears to be more pronounced at 6 GPa than at 1.8 GPa. These observations suggest that smaller fractions of partial melt than previously assumed may be sufficient to explain anomalously high conductivities, such as in the asthenosphere. For dry melt at 1.8 GPa, the activation energy at T > 1,073 K is higher than that at T < 1,073 K, and the inflection point coincides with the rheological glass transition. Upon heating at 6–10 GPa, dry albite glass often shows a conductivity depression starting from ~1,173 K (due to crystallization), followed by rapid conductivity enhancement when temperature approaches the albite liquidus. For hydrous melts at 0.9–1.8 GPa, the activation energies for conductivity at ≥1,373 K are lower than those at <973 K, with a complex transition pattern in between. Electrical conductivity and previously reported Na diffusivity in albite melt are consistent with the Nernst–Einstein relation, suggesting the dominance of Na transport for electrical conduction in albite melts.  相似文献   

17.
Kerimasi calciocarbonatite consists principally of calcite together with lesser apatite, magnetite, and monticellite. Calcite hosts fluid and S-bearing Na–K–Ca-carbonate inclusions. Carbonatite melt and fluid inclusions occur in apatite and magnetite, and silicate melt inclusions in magnetite. This study presents statistically significant compositional data for quenched S- and P-bearing, Ca-alkali-rich carbonatite melt inclusions in magnetite and apatite. Magnetite-hosted silicate melts are peralkaline with normative sodium-metasilicate. On the basis of our microthermometric results on apatite-hosted melt inclusions and forsterite–monticellite phase relationships, temperatures of the early stage of magma evolution are estimated to be 900–1,000°C. At this time three immiscible liquid phases coexisted: (1) a Ca-rich, P-, S- and alkali-bearing carbonatite melt, (2) a Mg- and Fe-rich, peralkaline silicate melt, and (3) a C–O–H–S-alkali fluid. During the development of coexisting carbonatite and silicate melts, the Si/Al and Mg/Fe ratio of the silicate melt decreased with contemporaneous increase in alkalis due to olivine fractionation, whereas the alkali content of the carbonatite melt increased with concomitant decrease in CaO resulting from calcite fractionation. Overall the peralkalinity of the bulk composition of the immiscible melts increased, resulting in a decrease in the size of the miscibility gap in the pseudoquaternary system studied. Inclusion data indicate the formation of a carbonatite magma that is extremely enriched in alkalis with a composition similar to that of Oldoinyo Lengai natrocarbonatite. In contrast to the bulk compositions of calciocarbonatite rocks, the melt inclusions investigated contain significant amount of alkalis (Na2O + K2O) that is at least 5–10 wt%. The compositions of carbonatite melt inclusions are considered as being better representatives of parental magma composition than those of any bulk rock.  相似文献   

18.
The structural compression mechanism and compressibility of diaspore, AlO(OH), were investigated by in situ single-crystal synchrotron X-ray diffraction at pressures up to 7 GPa using the diamond-anvil cell technique. Complementary density functional theory based model calculations at pressures up to 40 GPa revealed additional information on the pressure-dependence of the hydrogen-bond geometry and the vibrational properties of diaspore. A fit of a second-order Birch–Murnaghan equation of state to the p–V data resulted in the bulk modulus B 0 = 150(3) GPa and B 0 = 150.9(4) GPa for the experimental and theoretical data, respectively, while a fit of a third-order Birch–Murnaghan equation of state resulted in B 0 = 143.7(9) GPa with its pressure derivative B′ = 4.4(6) for the theoretical data. The compression is anisotropic, with the a-axis being most compressible. The compression of the crystal structure proceeds mainly by bond shortening, and particularly by compression of the hydrogen bond, which crosses the channels of the crystal structure in the (001) plane, in a direction nearly parallel to the a-axis, and hence is responsible for the pronounced compression of this axis. While the hydrogen bond strength increases with pressure, a symmetrisation is not reached in the investigated pressure range up to 40 GPa and does not seem likely to occur in diaspore even at higher pressures. The stretching frequencies of the O–H bond decrease approximately linearly with increasing pressure, and therefore also with increasing O–H bond length and decreasing hydrogen bond length. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

19.
Chalcedony is a spatial arrangement of hydroxylated nanometre-sized α-quartz (SiO2) crystallites that are often found in association with the silica mineral moganite (SiO2). A supplementary Raman band at 501 cm−1 in the chalcedony spectrum, attributed to moganite, has been used for the evaluation of the quartz/moganite ratio in silica rocks. Its frequency lies at 503 cm−1 in sedimentary chalcedony, representing a 2 cm−1 difference with its position in pure moganite. We present a study of the 503 cm−1 band’s behaviour upon heat treatment, showing its gradual disappearance upon heating to temperatures above 300 °C. Infrared spectroscopic measurements of the silanole (SiOH) content in the samples as a function of annealing temperature show a good correlation between the disappearance of the 503 cm−1 Raman band and the decrease of structural hydroxyl. Thermogravimetric analyses reveal a significant weight loss that can be correlated with the decreasing of this Raman band. X-ray powder diffraction data suggest the moganite content in the samples to remain stable. We propose therefore the existence of a hitherto unknown Raman band at 503 cm−1 in chalcedony, assigned to ‘free’ Si–O vibrations of non-bridging Si–OH that oscillate with a higher natural frequency than bridging Si–O–Si (at 464 cm−1). A similar phenomenon was recently observed in the infrared spectra of chalcedony. The position of this Si–OH-related band is nearly the same as the Raman moganite band and the two bands may interfere. The actually observed Raman band in silica rocks might therefore be a convolution of a silanole and a moganite vibration. These findings have broad implications for future Raman spectroscopic studies of moganite, for the assessment of the quartz/moganite ratio, using this band, must take into account the contribution from silanole that are present in chalcedony and moganite.  相似文献   

20.
The paper presents data on naturally quenched melt inclusions in olivine (Fo 69–84) from Late Pleistocene pyroclastic rocks of Zhupanovsky volcano in the frontal zone of the Eastern Volcanic Belt of Kamchatka. The composition of the melt inclusions provides insight into the latest crystallization stages (∼70% crystallization) of the parental melt (∼46.4 wt % SiO2, ∼2.5 wt % H2O, ∼0.3 wt % S), which proceeded at decompression and started at a depth of approximately 10 km from the surface. The crystallization temperature was estimated at 1100 ± 20°C at an oxygen fugacity of ΔFMQ = 0.9–1.7. The melts evolved due to the simultaneous crystallization of olivine, plagioclase, pyroxene, chromite, and magnetite (Ol: Pl: Cpx: (Crt-Mt) ∼ 13: 54: 24: 4) along the tholeiite evolutionary trend and became progressively enriched in FeO, SiO2, Na2O, and K2O and depleted in MgO, CaO, and Al2O3. Melt crystallization was associated with the segregation of fluid rich in S-bearing compounds and, to a lesser extent, in H2O and Cl. The primary melt of Zhupanovsky volcano (whose composition was estimated from data on the most primitive melt inclusions) had a composition of low-Si (∼45 wt % SiO2) picrobasalt (∼14 wt % MgO), as is typical of parental melts in Kamchatka and other island arcs, and was different from MORB. This primary melt could be derived by ∼8% melting of mantle peridotite of composition close to the MORB source, under pressures of 1.5 ± 0.2 GPa and temperatures 20–30°C lower than the solidus temperature of “dry” peridotite (1230–1240°C). Melting was induced by the interaction of the hot peridotite with a hydrous component that was brought to the mantle from the subducted slab and was also responsible for the enrichment of the Zhupanovsky magmas in LREE, LILE, B, Cl, Th, U, and Pb. The hydrous component in the magma source of Zhupanovsky volcano was produced by the partial slab melting under water-saturated conditions at temperatures of 760–810°C and pressures of ∼3.5 GPa. As the depth of the subducted slab beneath Kamchatkan volcanoes varies from 100 to 125 km, the composition of the hydrous component drastically changes from relatively low-temperature H2O-rich fluid to higher temperature H2O-bearing melt. The geothermal gradient at the surface of the slab within the depth range of 100–125 km beneath Kamchatka was estimated at 4°C/km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号