首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results obtained for rigid structures suggest that rocking can be used as seismic response modification strategy. However, actual structures are not rigid: structural elements where rocking is expected to occur are often slender and flexible. Modeling of the rocking motion and impact of flexible bodies is a challenging task. A non‐linear elastic viscously damped zero‐length spring rocking model, directly usable in conventional finite element software, is presented in this paper. The flexible rocking body is modeled using a conventional beam‐column element with distributed masses. This model is verified by comparing its pulse excitation response to the corresponding analytical solution and validated by overturning analysis of rocking blocks subjected to a recorded ground motion excitation. The rigid rocking block model provides a good approximation of the seismic response of solitary flexible columns designed to uplift when excited by pulse‐like ground motions. Guidance for development of rocking column models in ordinary finite element software is provided. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Allowing flexible structures to uplift and rock during earthquakes can significantly reduce the force demands and residual displacements. However, such structures are still susceptible to large deformations and accelerations that can compromise their functionality. In this paper, we examine the dynamic response of elastic rocking oscillators and suggest that their lateral drifts and accelerations can be limited effectively by using inerter devices. To this end, we offer a detailed examination of the effects of structural flexibility on the efficiency of the proposed system. The analytical expressions governing the motion of deformable structures with base uplift are revisited to incorporate the effects of the supplemental rotational inertia. The proposed model is then used to study the structural demands of flexible rocking structures under coherent pulses as well as noncoherent real pulse-like ground motions. Our results show that combining rocking with inerters can be an efficient strategy to control the deformation and acceleration demands in uplifting flexible systems.  相似文献   

3.
Allowing structures to uplift modifies their seismic response; uplifting works as a mechanical fuse and limits the forces transmitted to the superstructure. However, engineers are generally reluctant to construct an unanchored structure because the system could overturn due to lacking redundancy. Using a safety factor for the design of a flat rocking foundation, ie, designing it wider, goes against the main idea of this seismic modification method as the force demand for the structure increases. We propose to extend the flat base of a rocking block with curved extensions to better protect the block from overturning, yet not prevent its uplifting. After investigating the seismic response of such rocking blocks, we extend the study to investigate the seismic response of rolling and rocking frames comprising columns with curved base extensions. The equations of motion are derived, time history analyses are performed, and rocking spectra are constructed. We draw two important conclusions: (a) the response of a class of rocking oscillators with curved base extensions is equivalent to the response of a flat-base rocking oscillators of the same slenderness, yet larger size; (b) the rotation demand on two negative stiffness rocking and rolling oscillators with the same uplifting acceleration and the same size is roughly the same as long as the rocking oscillators are not close to overturning. The above findings can serve as a basis for the rational seismic design of structures supported on rocking columns with curved bases, a system that has been used since the 1960s.  相似文献   

4.
A new finite element model to analyze the seismic response of deformable rocking bodies and rocking structures is presented. The model comprises a set of beam elements to represent the rocking body and zero‐length fiber cross‐section elements at the ends of the rocking body to represent the rocking surfaces. The energy dissipation during rocking motion is modeled using a Hilber–Hughes–Taylor numerically dissipative time step integration scheme. The model is verified through correct prediction of the horizontal and vertical displacements of a rigid rocking block and validated against the analytical Housner model solution for the rocking response of rigid bodies subjected to ground motion excitation. The proposed model is augmented by a dissipative model of the ground under the rocking surface to facilitate modeling of the rocking response of deformable bodies and structures. The augmented model is used to compute the overturning and uplift rocking response spectra for a deformable rocking frame structure to symmetric and anti‐symmetric Ricker pulse ground motion excitation. It is found that the deformability of the columns of a rocking frame does not jeopardize its stability under Ricker pulse ground motion excitation. In fact, there are cases where a deformable rocking frame is more stable than its rigid counterpart. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A novel modeling approach for the seismic response assessment of rocking frames is presented. Rocking frames are systems with columns that are allowed to fully, or partially, uplift. Despite the apparent lack of a mechanism to resist lateral forces, they have a remarkable capacity against earthquake loading. Rocking frames are found in old structures, for example, ancient monuments, but it is also a promising design concept for modern structures such as bridges or buildings. The proposed modeling can be implemented in a general-purpose structural analysis software, avoiding the difficulties that come with the need of formulating and solving specifically tailored differential equations, or the use of detailed computational models. Different configurations of a rocking portal frame problem are examined. The model is based on rigid, or flexible, beam elements that describe the members of the frame. Negative-stiffness rotational springs are smartly positioned at the rocking interfaces in order to simulate the rocking restoring moment, while the mass and the rotational moment of inertia are considered either lumped or distributed. Both the cases of rigid and flexible piers/columns are discussed, while it is shown that frames with restrained columns can be considered in a straightforward manner. A simple alternative based on an equivalent oscillator that follows the generalized rocking equation of motion is also investigated. The efficiency and the accuracy of the proposed modeling is demonstrated with the aid of carefully chosen case studies.  相似文献   

6.
Predicting the rocking response of structures to ground motion is important for assessment of existing structures, which may be vulnerable to uplift and overturning, as well as for designs which employ rocking as a means of seismic isolation. However, the majority of studies utilize a single rocking block to characterize rocking motion. In this paper, a methodology is proposed to derive equivalence between the single rocking block and various rocking mechanisms, yielding a set of fundamental rocking parameters. Specific structures that have exact dynamic equivalence with a single rocking block, are first reviewed. Subsequently, approximate equivalence between single and multiple block mechanisms is achieved through local linearization of the relevant equations of motion. The approximation error associated with linearization is quantified for three essential mechanisms, providing a measure of the confidence with which the proposed methodology can be applied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A new modeling for the seismic response assessment of free-standing, rigid or flexible, pure rocking systems is presented. The proposed modeling is based on equivalent single degree-of-freedom (SDOF) oscillators that can be implemented with common engineering software or user-made structural analysis codes. The SDOF models adopted use beam elements that are connected to a nonlinear rotational spring with negative stiffness that describes the self-centering capacity of the rocking member. The loss of energy at impact is treated with an “event-based” approach consistent with Housner's theory. Different variations pertinent to rigid blocks are first presented, and then the concept is extended to the flexible case. The implementation of the method requires some minor programming skills, while thanks to the versatility of the finite element method, it is capable to handle a variety of rocking problems. This is demonstrated with two applications: (a) a vertically restrained block equipped with an elastic tendon and (b) a rigid block coupled with an elastic SDOF oscillator. The accuracy and the efficiency of the proposed modeling is demonstrated using simple wavelets and historical ground motion records.  相似文献   

8.
Strong shaking of structures during large earthquakes may result in some cases in partial separation of the base of the structure from the foundation. A simplified problem of this type, the dynamic response of a rocking rigid block allowed to uplift, is examined here. Two foundation models are considered: the Winkler foundation and the much simpler ‘two-spring’ foundation. It is shown that an equivalence between these two models can be established, so that one can work with the much simpler two-spring foundation. Simple solutions of the equations of motion are developed and simplified methods of analysis are proposed. In general, uplift leads to a softer vibrating system which behaves non-linearly, although the response is composed of a sequence of linear responses. As a result the apparent rocking period increases with the amount of lift-off. The corresponding apparent ratio of critical damping decreases, in general, with the amplitude of the response. Compared to the case without lift-off, the response of the system may increase or decrease because of the uplift, depending on the excitation and the parameters of the system.  相似文献   

9.
This paper is concerned with the superficial similarities and fundamental differences between the oscillatory response of a single‐degree‐of‐freedom (SDOF) oscillator (regular pendulum) and the rocking response of a slender rigid block (inverted pendulum). The study examines the distinct characteristics of the rocking spectrum and compares the observed trends with those of the response spectrum. It is shown that the rocking spectrum reflects kinematic characteristics of the ground motions that are not identifiable by the response spectrum. The paper investigates systematically the fundamental differences in the dynamical structure of the two systems of interest and concludes that rocking structures cannot be replaced by ‘equivalent’ SDOF oscillators. The study proceeds by examining the validity of a simple, approximate design methodology, initially proposed in the late 1970s and now recommended in design guidelines to compute rotations of slender structures by performing iteration either on the true displacement response spectrum or design spectrum. This paper shows that the simple design approach is inherently flawed and should be abandoned, in particular for smaller, less‐slender blocks. The study concludes that the exact rocking spectrum emerges as a distinct intensity measure of ground motions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
The classical problem of rocking of a rigid, free-standing block to earthquake ground shaking containing distinct pulses, as is the case of near-fault earthquake motions, is revisited. A rectangular block resting on a rigid base is considered, subjected to a range of idealized single-lobe ground acceleration pulses expressed by a generalized function controlled by a single shape parameter. The problem is treated analytically in the realm of the linearized equations of motion under the assumption of slender block geometry and rocking without slipping. Peak rocking response and overturning criteria for different waveforms are presented in terms of dimensionless closed-form expressions and graphs. Two parameters are employed to this end: dimensionless pulse duration f (i.e., actual pulse duration times characteristic block frequency) and dimensionless uplift strength η (i.e., ratio of minimum required acceleration for initiation of uplift over peak pulse acceleration). The linearized response is compared analytically with the fully non-linear one using an ad hoc energy formulation leading to an approximate closed-form solution. It is shown that the non-linear equations of motion yield more stable response than their linearized counterparts. A brief discussion on scaling laws is provided.  相似文献   

11.
In order to use rocking as a seismic response modification strategy along both directions of seismic excitation, a three‐dimensional (3D) rocking model should be developed. Since stepping or rolling rocking structural members out of their initial position is not a desirable performance, a rocking design should not involve these modes of motion. To this end, a model that takes the aforementioned constraint into account needs to be developed. This paper examines the 3D motion of a bounded rigid cylinder that is allowed to uplift and sustain rocking and wobbling (unsteady rolling) motion without sliding or rolling out of its initial position (i.e., a 3D inverted pendulum). Thus, the cylinder is constrained to zero residual displacement at the end of its 3D motion. This 3D dynamic model of the rocking rigid cylinder has two DOFs (three when damping is included), making it the simplest 3D extension of Housner's classical two‐dimensional (2D) rocking model. The development of models with and without damping is presented first. They are simple enough to perform extensive parametric analyses. Modes of motion of the cylinder are identified and presented. Then, 3D rocking and wobbling earthquake response spectra are constructed and compared with the classical 2D rocking earthquake response spectra. The 3D bounded rocking earthquake response spectra for the ground motions considered seem to have a very simple linear form. Finally, it is shown that the use of a 2D rocking model may lead to unacceptably unconservative estimates of the 3D rocking and wobbling seismic response. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
The rocking response of large flexible structures to earthquakes   总被引:1,自引:0,他引:1  
The rocking response of structures subjected to strong ground motions is a problem of ‘several scales’. While small structures are sensitive to acceleration pulses acting successively, large structures are more significantly affected by coherent low frequency components of ground motion. As a result, the rocking response of large structures is more stable and orderly, allowing effective isolation from the ground without imminent danger of overturning. This paper aims to characterize and predict the maximum rocking response of large and flexible structures to earthquakes using an idealized structural model. To achieve this, the maximum rocking demand caused by different earthquake records was evaluated using several ground motion intensity measures. Pulse-type records which typically have high peak ground velocity and lower frequency content caused large rocking amplitudes, whereas non-pulse type records caused random rocking motion confined to small rocking amplitudes. Coherent velocity pulses were therefore identified as the primary cause of significant rocking motion. Using a suite of pulse-type ground motions, it was observed that idealized wavelets fitted to velocity pulses can adequately describe the rocking response of large structures. Further, a parametric analysis demonstrates that pulse shape parameters affect the maximum rocking response significantly. Based on these two findings, a probabilistic analysis method is proposed for estimating the maximum rocking demand to pulse-type earthquakes. The dimensionless demand maps, produced using these methods, have predictive power in the near-field provided that pulse period and amplitude can be estimated a priori. Use of this method within a probabilistic seismic demand analysis framework is briefly discussed.  相似文献   

13.
A rocking podium structure is a class of structures consisting of a superstructure placed on top of a rigid slab supported by free‐standing columns. The free‐standing columns respond to sufficiently strong ground motion excitation by uplifting and rocking. Uplift works as a mechanical fuse that limits the forces transmitted to the superstructure, while rocking enables large lateral displacements. Such ‘soft‐story’ system runs counter to the modern seismic design philosophy but has been used to construct several hundred buildings in countries of the former USSR following Polyakov's rule‐of‐thumb guidelines: (i) that the superstructure behave as a rigid body and (ii) that the maximum lateral displacement of the rocking podium frame be estimated using elastic earthquake displacement response spectra. The objectives of this paper are to present a dynamic model for analysis of the in‐plane seismic response of rocking podium structures and to investigate if Polyakov's rule‐of‐thumb guidelines are adequate for the design of such structures. Examination of the rocking podium structure response to analytical pulse and recorded ground motion excitations shows that the rocking podium structures are stable and that Polyakov's rule‐of‐thumb guidelines produce generally conservative designs. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Failure of masonry structures generally occurs via specific collapse mechanisms which have been well documented. Using rocking dynamics, equations of motion have been derived for a number of different failure mechanisms ranging from the simple overturning of a single block to more complicated mechanisms. However, most of the equations of motion derived thus far assume that the structures can be modelled as rigid bodies rocking on rigid interfaces with an infinite compressive strength—which is not always the case. In fact, crushing of masonry—commonly observed in larger scale constructions and vertically restrained walls—can lead to a reduction in the dynamic capacity of these structures. This paper rederives the rocking equation of motion to account for the influence of flexible interfaces, characterized by a specific interface stiffness as well as finite compressive strength. The interface now includes a continually shifting rotation point, the location of which depends not only on the material properties of the interface but also on its geometry. Expressions have thus also been derived for interfaces of different geometries, and parametric studies conducted to gauge their influence on dynamic response. The new interface formulations are also implemented within a new analytical modelling tool that provides a novel approach to the dynamic analysis of masonry collapse mechanisms. Finally, this tool is exemplified, along with the importance of the interface formulation, by evaluating the collapse of the Dharahara Tower in Kathmandu, which was almost completely destroyed during the 2015 Gorkha earthquake.  相似文献   

15.
In this paper the rocking response of slender/rigid structures stepping on a viscoelastic foundation is revisited. The study examines in depth the motion of the system with a non‐linear analysis that complements the linear analysis presented in the past by other investigators. The non‐linear formulation combines the fully non‐linear equations of motion together with the impulse‐momentum equations during impacts. The study shows that the response of the rocking block depends on the size, shape and slenderness of the block, the stiffness and damping of the foundation and the energy loss during impact. The effect of the stiffness and damping of the foundation system along with the influence of the coefficient of restitution during impact is presented in rocking spectra in which the peak values of the response are compared with those of the rigid block rocking on a monolithic base. Various trends of the response are identified. For instance, less slender and smaller blocks have a tendency to separate easier, whereas the smaller the angle of slenderness, the less sensitive the response to the flexibility, damping and coefficient of restitution of the foundation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Rocking isolation has been increasingly studied as a promising design concept to limit the earthquake damage of civil structures. Despite the difficulties and uncertainties of predicting the rocking response under individual earthquake excitations (due to negative rotational stiffness and complex impact energy loss), in a statistical sense, the seismic performance of rocking structures has been shown to be generally consistent with the experimental outcomes. To this end, this study assesses, in a probabilistic manner, the effectiveness of using rocking isolation as a retrofit strategy for single-column concrete box-girder highway bridges in California. Under earthquake excitation, the rocking bridge could experience multi-class responses (eg, full contacted or uplifting foundation) and multi-mode damage (eg, overturning, uplift impact, and column nonlinearity). A multi-step machine learning framework is developed to estimate the damage probability associated with each damage scenario. The framework consists of the dimensionally consistent generalized linear model for regression of seismic demand, the logistic regression for classification of distinct response classes, and the stepwise regression for feature selection of significant ground motion and structural parameters. Fragility curves are derived to predict the response class probabilities of rocking uplift and overturning, and the conditional damage probabilities such as column vibrational damage and rocking uplift impact damage. The fragility estimates of rocking bridges are compared with those for as-built bridges, indicating that rocking isolation is capable of reducing column damage potential. Additionally, there exists an optimal slenderness angle range that enables the studied bridges to experience much lower overturning tendencies and significantly reduced column damage probabilities at the same time.  相似文献   

17.
The seismic behaviour of a wide variety of structures can be characterized by the rocking response of rigid blocks. Nevertheless, suitable seismic control strategies are presently limited and consist mostly on preventing rocking motion all together, which may induce undesirable stress concentrations and lead to impractical interventions. In this paper, we investigate the potential advantages of using supplemental rotational inertia to mitigate the effects of earthquakes on rocking structures. The newly proposed strategy employs inerters, which are mechanical devices that develop resisting forces proportional to the relative acceleration between their terminals and can be combined with a clutch to ensure their rotational inertia is only employed to oppose the motion. We demonstrate that the inclusion of the inerter effectively reduces the frequency parameter of the block, resulting in lower rotation seismic demands and enhanced stability due to the well-known size effects of the rocking behaviour. The effects of the inerter and inerter-clutch devices on the response scaling and similarity are also studied. An examination of their overturning fragility functions reveals that inerter-equipped structures experience reduced probabilities of overturning in comparison with uncontrolled bodies, while the addition of a clutch further improves their seismic stability. The concept advanced in this paper is particularly attractive for the protection of rocking bodies as it opens the possibility of nonlocally modifying the dynamic response of rocking structures without altering their geometry.  相似文献   

18.
Under strong seismic excitation, a rigid block will uplift from its support and undergo rocking oscillations which may lead to (complete) overturning. Numerical and analytical solutions to this highly nonlinear vibration problem are first highlighted in the paper and then utilized to demonstrate how sensitive the overturning behavior is not only to the intensity and frequency content of the base motion, but also to thc presence of strong pulses, to their detailed sequence, and even to their asymnletry. Five idealised pulses capable of representing "rupture-directivity" and "fling" affected ground motions near the fault, are utilized to this end : the one-cycle sinus, the one-cycle cosinus, the Ricker wavelet, the truncated (T)-Ricker wavelet, and the rectangular pulse "Overturning-Acceleration Amplification" and "Rotation" spectra are introduced and presented. Artificial neural network modeling is then developed as an alternative numerical solution. The neural network analysis leads to closed-form expressions for predicting the overturning failure or survival of a rigid block, as a function of its geometric properties and the characteristics of the excitation time history. The capability of the developed neural network modeling is validated through comparisons with the numerical solution. The derived analytical expressions could also serve as a tool for assessing the destructiveness of near-fault ground motions, for structures sensitive to rocking with foundation uplift.  相似文献   

19.
In this paper, the effects of a mass damper on the rocking motion of a non‐symmetric rigid block‐like structure, subject to different seismic excitation, are investigated. The damper is modelled as a single degree of freedom oscillating mass, running at the top of the block and connected to it by a linear visco‐elastic device. The equations of rocking motion, the uplift and the impact conditions are derived. A nondimensionalisation of the governing equations is performed with the aim to obtain an extensive parametric analysis. The results are achieved by numerical integration of these equations. The slenderness and the base of the rigid block, and the eccentricity of the centre of mass are taken as variable parameters in the analyses. The main objective of the study is to check the performance of the damper versus the spectral characteristics of the seismic input. Three earthquake registrations with different frequency contents are used in the analyses. The results show that the presence of the mass damper leads to different levels of improvement of the response of the system, depending on the spectral characteristics of the seismic input. Curves providing the overturning slenderness of blocks of specific sizes versus the characteristics of the TMD are obtained. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
This paper characterizes the ability of natural ground motions to induce rocking demands on rigid structures. In particular, focusing on rocking blocks of different size and slenderness subjected to a large number of historic earthquake records, the study unveils the predominant importance of the strong‐motion duration to rocking amplification (ie, peak rocking response without overturning). It proposes original dimensionless intensity measures (IMs), which capture the total duration (or total impulse accordingly) of the time intervals during which the ground motion is capable of triggering rocking motion. The results show that the proposed duration‐based IMs outperform all other examined (intensity, frequency, duration, and/or energy‐based) scalar IMs in terms of both “efficiency” and “sufficiency.” Further, the pertinent probabilistic seismic demand models offer a prediction of the peak rocking demand, which is adequately “universal” and of satisfactory accuracy. Lastly, the analysis shows that an IM that “efficiently” captures rocking amplification is not necessarily an “efficient” IM for predicting rocking overturning, which is dominated by the velocity characteristics (eg, peak velocity) of the ground motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号