首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past decades, the Gujarat state of India experienced intensive agricultural and industrial activities, fertilizer consumption and abstraction of groundwater, which in turn has degraded the ground water quality. Protection of aquifers from nitrate pollution is a matter of prime concern for the planners and decision-makers. The present study assessed the spatial and temporal variation of groundwater nitrate levels in areas with different land use/land cover activities for both pre- and post-monsoon period. The pre-monsoon nitrate level (1.6–630.7 mg/L) in groundwater was observed to be higher as compared to the post-monsoon level (2.7–131.7 mg/L), possibly due to insufficient recharge and evaporation induced enrichment of agrichemical salts in groundwater. High HCO3 ? (200–1,000 mg/L) as well as SO4 2?/Cl? (0.111–0.992) in post-monsoon period provides a favourable environment for denitrification, and lower the NO3 levels during the post-monsoon period. The K vs NO3 scatter plot suggests a common source of these ions when the concentration is <5 mg/L, the relationships between different pollutants and nitrate also suggest that fertilizers and other sources, such as, animal waste, crop residue, septic tanks and effluents from different food processing units present in the area can be attributed to higher nitrate levels in the groundwater. Appropriate agronomic practices such as application of fertilizers based on calibrated soil tests and proper irrigation with respect to crop can minimize the requirement for inorganic fertilizers, which can bring down the cost of cultivation considerably, and also protect groundwater from further degradation.  相似文献   

2.
This study focuses on denitrification in a sandy aquifer using geochemical analyses of both sediment and groundwater, combined with groundwater age dating (3H/3He). The study sites are located underneath cultivated fields and an adjacent forested area at Oostrum, The Netherlands. Shallow groundwater in the region has high nitrate concentrations (up to 8 mM) due to intense fertilizer application. Nitrate removal from the groundwater below cultivated fields correlates with sulfate production, and the release of dissolved Fe2+ and pyrite-associated trace metals (e.g. As, Ni, Co and Zn). These results, and the presence of pyrite in the sediment matrix within the nitrate removal zone, indicate that denitrification coupled to pyrite oxidation is a major process in the aquifer. Significant nitrate loss coupled to sulfate production is further confirmed by comparing historical estimates of regional sulfate and nitrate loadings to age-dated groundwater sulfate and nitrate concentrations, for the period 1950-2000. However, the observed increases in sulfate concentration are about 50% lower than would be expected from complete oxidation of pyrite to sulfate, possibly due to the accumulation of intermediate oxidation state sulfur compounds, such as elemental sulfur. Pollutant concentrations (NO3, Cl, As, Co and Ni) measured in the groundwater beneath the agricultural areas in 1996 and 2006 show systematic decreases most likely due to declining fertilizer use.  相似文献   

3.
Biochar has excellent solute adsorption capacity, yet few studies have investigated its application as a nutrient carrier in the development of slow-release fertilizers. The current study developed a biochar-based N–P–K fertilizer (BSRF) and evaluated its nutrient release patterns relative to a conventional fertilizer. SEM and EDX analyses confirmed the coarse and highly porous microstructure of the biochar (SBC) that enabled it to effectively sorb NO3 ?, PO4 3?, and K+ and form a nutrient-impregnated BSRF. BSRF had lower NO3 ?, PO4 3?, and K+ release than the conventional chemical fertilizer, demonstrating its low release behavior. BSRF-amended sandy soil had higher water retention capacity than that amended with a conventional chemical fertilizer. BSRF has potential to reduce nutrient leaching, improve water retention, and hence increase crop nutrient and water use efficiencies. Future research should focus on understanding nutrient release mechanisms, synchronization of nutrient release with plant uptake, and applications of the BSRF in environmental remediation.  相似文献   

4.
Meng  Hao  Shu  Shuang  Gao  Yufeng  He  Jia  Wan  Yukuai 《Acta Geotechnica》2021,16(12):4045-4059

Kitchen waste and wind erosion are two worldwide environmental concerns. This study investigated the feasibility of using kitchen waste for Sporosarcina pasteurii cultivation and its application in wind erosion control of desert soil via microbially induced carbonate precipitation (MICP). Enzymatic hydrolysis was adopted to improve the release and recovery of protein in kitchen waste for subsequent microorganism production. After conditions optimized, the maximum biomass concentration (OD600) and urease activity of Sporosarcina pasteurii in the kitchen waste-based medium reached 4.19, and 14.32 mM urea min?1, respectively, which were comparable to those obtained in conventional standard media. The harvested Sporosarcina pasteurii was then used to catalyze the precipitation of calcium carbonate in the desert soil, and its performance in wind erosion control was evaluated through wind tunnel tests. The microbially mediated calcium carbonate could significantly decrease wind erosion loss of the desert soil even after 12 wet–dry or freeze–thaw cycles. Scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) confirmed the bridge effect of calcium carbonate crystals in the soil matrix. The kitchen waste, as a cost-effective alternative nutrient for bacterial cultivation and carbonate precipitation, showed great potential for large-scale applications in wind erosion control of desert soils.

  相似文献   

5.
Nitrogen fertilizer consumption is very common in the agricultural practices. Nitrogen application could be an important source of groundwater N pollution. Normally, nitrogen can pass through the unsaturated zone to pollute the groundwater. Different agricultural practices have different cultivation methods, accordingly different fertilization and irrigation techniques. Hence, the agricultural practice determines the environment of the unsaturated zone, which subsequently determines the extent of groundwater N pollution. To verify the pollution modes and transformation mechanisms of nitrogen, both in situ and laboratory tests were conducted at four different sites to study the effects of agricultural practices on nitrogen distribution in unsaturated zones. The inorganic nitrogen in soil is extracted by potassium chloride solution, and the soil utilization form and pollution type are identified by δ15N by comparing with the known standard values. The experimental results indicate that continual fertilization and sewage irrigation in these agricultural regions were the primary sources of nitrogen in the unsaturated zone. In the soils planted with rice, δ15N–NH4 + was relatively elevated due to ammonium volatilization. In the unsaturated zone of rice–wheat rotation fields, NO3 ?–N and δ15N were both elevated because of manure fertilizer. Meanwhile, denitrification also occurred in the hypoxic environment due to the high soil water content.  相似文献   

6.
One of the important indicators to show the quality of water for drinking and irrigation is nitrate values in water and soil. Nitrate enters surface water and groundwater through degradation and decomposition of human and animal wastes, industrial productions, and agricultural runoff. The present paper focuses on the concentration of nitrite (NO2 ?1) and nitrate (NO3 ?1) of the groundwater in Taft region, Central Iran. Sixty-one samples of the region’s aqueducts, wells, and springs were collected in September 2008 and May 2009 and analyzed by ICP-MS method. However, distribution maps of nitrate and nitrite and their frequency diagram in the pertinent samples have been generated. Then, they were compared to the US Environmental Protection Agency (EPA) and WHO international standards. The mean of nitrate content measured in the samples was 18.52 mg/l, maximum was 115 mg/l which is higher than the EPA standard (i.e., 10 mg/l), and the mean of nitrite content was about 0.06 mg/l. According to the distribution maps, concentration of these anions is high in the downstream of settlements and farmlands of Taft region. With respect to the penetration of agricultural wastes, flooding irrigation, thin layer of alluvium, sandy texture, and the amount of fertilizer consumed in the region, and also absence of any natural source for these anions and absence of the major industrial activities in the region to produce sewage, it seems that nitrate and nitrite originated from the agricultural sewage and human waste. As the content of nitrate in drinking water in the region is higher than WHO and EPA standards, so there is the risk of methemoglobinemia disease in infants. In addition, nitrate content within the stomach and lungs interacts with amine and nitrosamines are made up which are potentially the initial cause of all cancers in human.  相似文献   

7.
During the past 50 years, the amount of agricultural fertilizer used in Northern China increased from about 7.5 kg ha?1 in the 1950s to approximately 348 kg ha?1 in the 1990s. Given that little is known about the effects of nitrogen fertilization on soil labile carbon fraction in Northern China, this paper evaluated such effects in terms of microbial biomass and dissolved organic carbon in the Sanjiang Plain located in Northeast China. Soils with different cultivation time and undisturbed marsh with Deyeuxia angustifolia were selected to study the effects of nitrogen fertilization on the soil labile organic fractions microbial C (biomass C, microbial quotient, and basal respiration) and to estimate the contributions of nitrogen input on the dynamics of soil labile carbon. Continuous nitrogen application decreased total organic and dissolved organic carbon concentrations significantly, leading to the lack of carbon source for microbes. Therefore, continuous nitrogen fertilizer application induced negative effects on measured soil microbiological properties. However, a moderate nitrogen application rate (60 kg N ha?1) stimulated soil microbial activity in the short term (about 2 months), whereas a high nitrogen application rate (150 kg N ha?1) inhibited measured soil microbiological properties in the same period.  相似文献   

8.
Analyses of groundwater samples collected from several locations in a small watershed of the Deccan Trap Hydrologic Province, indicated anomalously higher values of nitrate than the background. However, the NO3 concentrations in water from dug wells under pastureland where the subsurface material consisted of stony waste were minimum. The maximum values were reported for water from dug wells where the principal land use was agricultural. Lowering of NO3 values under shallow water-table conditions suggests denitrification. Higher concentrations of nitrate determined for samples collected from the wells with a deeper water-table indicate that denitrification process is inactive. The high values of nitrate coinciding with agricultural land use indicate fertilizers as the main source of nitrate pollution of ground-water. Decrease in Cl/NO3 ratio for agricultural land use confirms this inference.  相似文献   

9.
《Applied Geochemistry》2006,21(7):1216-1225
The aim of the study was to determine whether the application of bulk industrial chemicals (potassium permanganate and water-soluble phosphate fertilizer) to partly oxidized, polyminerallic mine wastes can inhibit sulfide oxidation, and metal and metalloid mobility. The acid producing waste rocks were metal (Pb, Zn, Cu) and metalloid (As, Sb) rich and consisted of major quartz, dickite, illite, and sulfide minerals (e.g., galena, chalcopyrite, tetrahedrite, sphalerite, pyrite, arsenopyrite), as well as minor to trace amounts of pre- and post-mining oxidation products (e.g., hydrated Fe, Cu, Pb, and alkali mineral salts). SEM-EDS observations of treated waste material showed that metal, metal–alkali, and alkali phosphate coatings developed on all sulfides. The abundance of phosphate phases was dependant on the fertilizer type and the availability of metal and alkali cations in solution. In turn, the release of cations was dependent on the amount of sulfide oxidation induced by KMnO4 during the experiment and the dissolution of soluble sulfates. Mn, Ca, Fe, and Pb phosphates remained stable during H2O2 leaching, preventing acid generation and metal release. In contrast, the lack of complete phosphate coating on arsenopyrite allowed oxidation and leaching of As to proceed. The mobilized As did not form phosphate phases and consequently, As displayed the greatest release from the coated waste. Thus, the application of KMnO4 and the water-soluble phosphate fertilizer Trifos (Ca(H2PO4)2) to partly oxidized, polyminerallic mine wastes suppresses sulfide oxidation and is most effective in inhibiting Cu, Pb, and Zn (Sb) release. However, the technique appears ineffective in suppressing oxidation of arsenopyrite and preventing As leaching.  相似文献   

10.
The investigation of the impact of different forms of nitrogen fertilizer (NO3-N and NH4-N) on microbial parameters, enzyme activities and phytotoxicity in a petroleum-contaminated soil was evaluated by an incubation study. The tested enzymes, microbial activity and seed germination index showed different patterns in response to both petroleum and nitrogen fertilizer addition and time of incubation. The results apparently showed that the contamination of soil with petroleum has a negative effect on soil ecosystem. Nitrogen fertilizer could improve inhibition of petroleum hydrocarbons in soil. Nevertheless, nitrogen fertilizer had no significant effect on urease activity in the petroleum-contaminated soil. As compared to NO3-N, the addition of NH4-N to the soil resulted in a greater impact on soil performance as attested by the recovery of the soil germination capability and higher values of the respiration. The application of nitrogen fertilizer may be suggested as a good strategy for restoring soils in regions affected by the same problem.  相似文献   

11.
随着邻苯二甲酸酯类(PAEs)增塑剂在塑料大棚、地膜覆盖栽培技术中的广泛应用,我国农业土壤中已普遍存在邻苯二甲酸二乙基己酯(DEHP)污染问题。针对我国中西部岩溶高原区农业土壤中存在的DEHP环境问题,本文选取云南岩溶高原区的红壤及烟草地膜作为研究对象,通过田间试验模拟覆膜土壤环境,并采用气相色谱-质谱分析法检测农膜、土壤介质中DEHP含量,定量研究了地膜中DEHP的释放及其在覆膜土壤中的浓度分布特征。结果表明:覆盖于原状土壤上的地膜,其DEHP释放量最大,均值为13.57mg/kg;覆盖于加生物抑制剂土壤上的地膜,其DEHP释放量略高于未覆土壤地膜,前者DEHP平均值为10.83mg/kg,后者为10.77mg/kg;地膜中DEHP的释放表现为缓慢释放和集中陡升两个释放段,总体释放量随时间的延长而增加。两组覆膜土壤中DEHP的检出浓度范围分别为0.17~3.74mg/kg(原状土)、0.34~4.29mg/kg(加生物抑制剂土壤),在国内外覆膜农田土壤PAEs类化合物检出浓度范围内;土壤中DEHP含量具有随时间呈先增后减的变化规律。相关性分析表明土壤中DEHP主要来自于地膜中DEHP的释放。研究认为在短周期内岩溶高原红壤不会出现DEHP的累积,合理安排农作物的覆膜种植可有效削减土壤的有机污染。  相似文献   

12.
Monitoring of municipal wells near the town of Sidney and domestic wells near Oshkosh in Nebraska's Panhandle indicated the nitrate-nitrogen (NO3-N) levels were increasing and exceeded the maximum contaminant level of 10 mg/l NO3-N in several wells. Both areas are located in narrow stream valleys that are characterized by well-drained soils, highly permeable intermediate vadose zones, shallow depths to groundwater, and intensive irrigated corn production. Both areas also have a large confined cattle feeding operation near the suspected contamination and potentially could be contaminated by more than on nitrate source.At Sidney NO3-N concentrations were measured in 13 monitoring wells installed along an east-west transect im the direction of groundwater flow, 26 private wells, and eight municipal wells. Nitrate-nitrogen concentrations were homogeneous beneath a 5 km by 1.2 km area and averaged 11.3 ± 1.8 mg/l NO3-N. The δ15N-NO3 values in the monitoring and municipal wells had a narrow range from +5.8 to +8.8%. The isotopic ratios are indicative of a mixed source of nitrate contamination, which originates from agronomic (commercial fertilizer N and mineralized N) N and animal waste. Both commercial fertilizer N and animal wastes are applied to the irrigated fields.Nitrate-nitrogen concentrations in two multilevel samplers installed downgradient from irrigated cornfields at the Oshkosh site averaged 20.1 ± 13.3 mg/l NO3-N and 37.3 ± 8.2 mg/l NO3-N. The δ15N-NO3 values spanned a narrow range from +3.5 to +5.9% and averaged +4.0 ± 0.5% and +5.0 ± 0.6%. These low values are indicative of leachates from commercial fertilizer applied to the irrigated fields.  相似文献   

13.
Biochar has been considered a safe soil additive to enhance soil fertility and agronomic traits of different crops. This study was conducted to explore the impacts of sugarcane waste straw biochar on soil characteristics and some agronomic traits of okra. The experiment was carried out with four treatments, i.e., control, sugarcane waste straw biochar (10 ton ha?1), farmyard manure (FYM, 10 ton ha?1), and chemical fertilizers (NPK; 120:100:80 kg ha?1) having three replications of each treatment. Soil samples were tested for texture, bulk density, particle density, pH, electrical conductivity (EC), organic matter content, nitrate nitrogen (NO3-N), and extractable-P. The sugarcane waste straw biochar was characterized for plant major nutrient elements. The impact of various treatments was observed on soils and agronomic traits of okra like plant height, fruit size, fruit length, and yield of okra. Results revealed that sugarcane waste straw biochar expressed higher EC value and noticeable amounts of nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and magnesium (Mg). The sugarcane waste straw biochar, in comparison with FYM and NPK, significantly improved the NO3-N, extractable-P, OM and EC of the calcareous soil, and reduced the soil bulk density. Furthermore, plant growth and yield parameters were significantly improved under biochar application over the control, FYM and NPK. Overall, sugarcane waste straw biochar proved to be a good alternative to conventional organic and inorganic fertilizers under calcareous soil conditions.  相似文献   

14.
Qatar economy has been growing rapidly during the last two decades during which waste generation and greenhouse gas emissions increased exponentially making them among the main environmental challenges facing the country. Production of biochar from municipal solid organic wastes (SOWs) for soil application may offer a sustainable waste management strategy while improving crop productivity and sequestering carbon. This study was conducted to (1) investigate the physicochemical parameters of biochars for SOW, (2) select the best-performing biochars for soil fertility, and (3) evaluate the potential benefits of these biochars in lowering greenhouse gases (GHGs) during soil incubation. Biochars were produced from SOW at pyrolysis temperatures of 300–750 °C and residence times of 2–6 h. Biochars were characterized before use in soil incubation to select the best-performing treatment and evaluation of potential GHG-lowering effect using CO2 emission as proxy. Here, soil–biochar mixtures (0–2%w/w) were incubated in greenhouse settings for 120 days at 10% soil moisture. Soil properties, such as pH, EC, TC, and WHC, were significantly improved after soil amendment with biochar. Two biochars produced from mixed materials at 300–500 °C for 2 h and used at 0.5–1% application rate performed the best in enhancing soil fertility parameters. A significant decrease in CO2 emission was observed in vials with soil–biochar mixtures, especially for biochars produced at 500 °C compared the corresponding raw materials which exhibited an exponential increase in the CO2 emission. Hence, application of biochar to agricultural soils could be beneficial for simultaneously improving soil fertility/crop productivity while sequestering carbon, thereby reducing anthropogenic emissions of GHGs.  相似文献   

15.
The freshwater marshes in northern China are heavily impacted by anthropogenic disturbances such as cultivation and fertilization and increased levels of nutrients (especially N and P) through atmospheric deposition and agricultural surface runoff. These disturbances have affected the emission of N2O from these systems. This laboratory study was conducted to determine the effects of increased inputs of inorganic N and P on N2O emission from marsh soil in response to different soil moisture conditions. The results showed that the emission of N2O increased with the enhancement of N inputs when the soil was submerged, but that the highest N treatment suppressed the emission of N2O when the soil was at 60% water holding capacity (WHC), which may have occurred due to an inadequate amount of available C. Furthermore, the results of this study indicated that a small amount of N fertilizer induced much more N2O evolution from freshwater wetland soil, while P fertilizer inputs appeared to stimulate the emission of N2O only during the first few days of the experiment. Additionally, soil that was treated with P appeared to absorb N2O when it was at 60% WHC after around 6 weeks of the incubation, which indicates that the input of P fertilizer might serve as a shift of source or N2O sink in wetland soils under non-flooded conditions. When compared to soil at 60% WHC, submerged soil had significantly higher N2O emissions, except when subjected to the medial N treatment. These findings indicate that the soil moisture condition had a significant effect on N2O emissions when the same amount of N or P was applied. Therefore, the effects of N and P fertilization in the northern temperate wetlands cannot be neglected from regional or national emissions of N2O.  相似文献   

16.
The identification of sources and behavior of contaminants is important to control and manage groundwater quality of aquifer systems in urban areas. In this study, hydrogeochemistry of major constituents and stable isotope ratios of nitrate in groundwater were determined to identify contamination sources and transformation processes occurring in soils and deeper groundwater of Beijing with intense human activities. The nitrogen and oxygen isotopic compositions of nitrate in pore water extracts from groundwater samples indicate at least three potential sources of nitrate in groundwaters at Beijing. Stable isotope analyses from this study site, which has atmospheric, chemical fertilizer and human waste nitrate sources, provide a tool to distinguish nitrate sources in a confined aquifer where concentrations alone do not. These data indicate that the most common sources of high nitrate concentrations in groundwater at Beijing are wastewater and denitrification process occurred specially in the Central area. NO3–N and cation and anion concentrations (Ca2+, Mg2+ Cl? and SO 4 2 ) showed strong correlations indicating that they originated from the same sources. This study demonstrates that a thorough evaluation of hydrodynamic and hydrochemical parameters with dual isotopes of NO3 ? constitutes an effective approach for identifying sources and transformation processes of NO3 ? in deeper groundwater systems.  相似文献   

17.
The reuse of waste materials as soil additives could be a welcome development in soil remediation. The mobility of Cd, Pb and As in a contaminated soil was investigated using natural and calcined poultry wastes (eggshell and chicken bone), CaCO3 and CaO at different application rates (0, 1, 3 and 5 %). The chemical composition accompanied with mineralogical composition indicated that CaCO3 and CaO were the major components in natural and calcined eggshells, respectively, while hydroxyapatite (HAP) dominated the natural and calcined chicken bones. The results showed that soil pH tended to increase in response to increasing application rates of all soil additives. The effectiveness of the additives in reducing Cd, Pb and As mobility was assessed by means of chemical extractions with 0.1 N HCl for Cd and Pb or 1 N HCl for As, according to Korean Standard Test (KST) method. Both calcined eggshell and chicken bone were equally effective with CaO or CaCO3 in reducing the concentration of 0.1 N HCl-extractable Cd from 6.17 mg kg?1 to below warning level of 1.5 mg kg?1, especially at the highest application rate. The application of calcined eggshell, CaO and CaCO3 also decreased the concentration of 0.1 N HCl-extractable Pb from 1,012 mg kg?1 to below warning level of 100 mg kg?1. The Pb concentration decreased significantly with an increasing application rate of chicken bone, but remained above warning level even at the highest application rate. On the contrary, natural and calcined chicken bones led to a significant increase in the mobility of As when compared with the control soil. These findings illustrate that calcined eggshell in particular is equally effective as pure chemical additives in stabilizing Cd and Pb in a contaminated agricultural soil. The presence of As in metal-contaminated soils should be taken into consideration when applying phosphate-containing materials as soil additives, because phosphate can compete with arsenate on adsorption sites and result in As mobilization.  相似文献   

18.
The atmospheric levels of carbon dioxide (CO2) and other greenhouse gases (GHGs) have increased dramatically since the industrial revolution. The atmospheric enrichment with CO2 and other GHGs has resulted in multiple negative consequences: such as the increase in the average temperature and the rise of the sea level. Hence, there is a growing interest in developing feasible methods to reduce the atmospheric levels of these gases. One of these strategies is to enhance C sequestration through the increase of soil organic carbon (SOC) pool by the amendment of agricultural soils with sewage sludge. However, there is considerable uncertainty about the effects (positive or negative) of sewage sludge applications on the SOC pool. Thus, a simple approach developed under laboratory conditions is presented to discern the effect of a single sewage sludge application of 50 t ha−1 on the short-term SOC pool in 60 contrasting agricultural soils. The role of soil factors in the C sequestration of the recently added carbon was also studied. The application of sewage sludge supposed a mean increase of 1.7 ± 1.6 g SOC kg−1, with peak increases of up to 3.8 g SOC kg−1 and decreases of up to 4.6 g SOC kg−1. The initial SOC contents conditioned the C sequestration after sewage sludge application, and no other soil property was related.  相似文献   

19.
In agricultural areas, fertilizer application is the main source of nitrate contamination of groundwater. To develop fertilizer management strategies to combat this problem, arable land in Hokkaido, Japan was evaluated using geographic information system techniques for intrinsic groundwater vulnerability to nitrate contamination. The DRASTIC method was modified to adapt it to the Hokkaido environment and used for the evaluation. Of the seven original DRASTIC factors, the depth to water (D), net recharge (R), soil media (S), topography (T), and impact of vadose zone media (I) were selected and used to explain the vertical movement of contaminants to the aquifer. The rating for the net recharge factor was also modified to a dilution factor for contaminants, rather than as a transporter. The frequency of wells with nitrate concentrations exceeding the Japanese environmental standard (10 mg/L) was reasonably explained by vulnerability evaluation results (GLM: logit-link, quasi-binomial distribution, Y = [1 + exp(6.873765 − 0.045988 × X)]−1, p < 0.001). However, in the paddy fields and pastures, vulnerability did not exhibit a clear relationship with the frequency of wells exceeding the standard. This suggests that the modified DRASTIC method is applicable for fertilizer application management in upland fields. In addition, under the ongoing policy for acreage allotment for rice production, this method will be useful for deciding the arrangement of arable land and crop rotation taking into consideration the potential risk of fertilizer-induced nitrate contamination of groundwater.  相似文献   

20.
In this study, activity concentrations of 40K, 226Ra and 232Th in fertilized soil samples and different organic and inorganic fertilizers used in agricultural soil were analysed using gamma-ray spectrometry NaI (Tl) detector in order to access the implications of extended use of fertilizers in 2–3 years. The concentrations of radionuclides in some granular fertilizer brands were discovered to be higher for 40K, 226Ra and 232Th than those obtained in leafy fertilizer, animal fertilizer and fertilized soil samples. From the results, the highest overall mean concentrations of the specific activities of 40K, 226Ra and 232Th were 2301.8 (granular fertilizer), 42.5 (leafy fertilizer) and 327.1 (animal fertilizer) in Bq kg?1, while the lowest values observed in the specific activities of the same radionuclides were 357.7 (leafy fertilizer), 28.1 (animal fertilizer) and 36.5 (animal fertilizer). The radiological hazards of the radium equivalent (Raeq), normative value (NRN), outdoor radium equivalent (Raeq-out), external hazard index (H ext), internal hazard index (H in), dose rate, annual effective dose rate, activity utilization index and concentration accumulation index (CAI) and RaFZ due to the presence of these radionuclides in the investigated samples were calculated. Nevertheless, some of the fertilizer brands have higher concentration values than the recommended limit, and the values of hazard indices of fertilizer brands used in the selected teaching and research farms were within acceptable limit. Therefore, the fertilized soil samples in the studied farms are safe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号