首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Magnetic photo-Fenton catalysts based on spinel CuFe2O4 were successfully prepared by the starch-assisted sol–gel method. Various synthetic conditions such as annealing temperatures (700, 800 and 900 °C) and molar ratios of Cu2+/Fe3+/C6H10O5 in the precursor solution (from 1:2:2 to 1:2:4) were, respectively, used in order to study the influences of annealing temperatures and precursor starch contents on the magnetic and catalytic properties of CuFe2O4 powders. The photo-Fenton catalytic activity was evaluated via the degradation of methylene blue under ultraviolet and visible irradiation with H2C2O4 as a new oxidizing agent. According to the results, when the annealing temperature increased to 800 °C, the spinel CuFe2O4 phase amount was increased, which strongly enhances the photo-Fenton catalytic performance. However, above 800 °C, the catalytic activity was reduced, due to the increase in particle size. The starch content also affected the surface Cu2+ content and the particle size of catalysts. The catalyst prepared at 800 °C with the molar Cu2+/Fe3+/C6H10O5 ratio of 1:2:3 presented the best photo-Fenton performance, owing to its highest surface Cu2+ content. This catalyst also exhibits ferromagnetic properties (saturation magnetization of 25.836 emu/g and coercivity of 1010.23 Oe), which allows them to be easily separated from the solution by a magnet.  相似文献   

2.

Background

Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick).

Results

The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe3+. The water molecules capping surface Fe3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe3+, those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism.

Conclusions

Water molecules adjacent to the surface were found to only weakly interact with the surface and as a result were readily able to exchange with the bulk water. To account for the large surface Fe–OH2 distances in the DFT calculations it was proposed that the surface Fe3+ atoms, which already have their bond valence fully satisfied with only five neighbors, are under-coordinated with respect to the bulk coordination.
Graphical abstract All first principle calculations, at all practically achievable levels, for the goethite 100 aqueous interface support a long bond and weak interaction between the exposed surface Fe3+ and water molecules capping the surface. This result is supported by bond valence theory calculations and is indicative that each surface Fe3+ is coordinated with only 5 neighbors.
  相似文献   

3.
Adsorption of Cu2+, Zn2+, Cd2+, and Pb2+ onto goethite is enhanced in the presence of sulfate. This effect, which has also been observed on ferrihydrite, is not predicted by the diffuse layer model (DLM) using adsorption constants derived from single sorbate systems. However, by including ternary surface complexes with the stoichiometry FeOHMSO4, where FeOH is a surface adsorption site and M2+ is a cation, the effect of SO42− on cation adsorption was accurately predicted for the range of cation, goethite and SO42− concentrations studied. While the DLM does not provide direct molecular scale insights into adsorption reactions there are several properties of ternary complexes that are evident from examining trends in their formation constants. There is a linear relationship between ternary complex formation constants and cation adsorption constants, which is consistent with previous spectroscopic evidence indicating ternary complexes involve cation binding to the oxide surface. Comparing the data from this work to previous studies on ferrihydrite suggests that ternary complex formation on ferrihydrite involves complexes with the same or similar structure as those observed on goethite. In addition, it is evident that ternary complex formation constants are larger where there is a stronger metal-ligand interaction. This is also consistent with spectroscopic studies of goethite-M2+-SO42− and phthalate systems showing surface species with metal-ligand bonding. Recommended values of ternary complex formation constants for use in SO4-rich environments, such as acid mine drainage, are presented.  相似文献   

4.
Four samples of synthetic chromium-bearing spinels of (Mg, Fe2+)(Cr, Fe3+)2O4 composition and four samples of natural spinels of predominantly (Mg, Fe2+)(Al, Cr)2O4 composition were studied at ambient conditions by means of optical absorption spectroscopy. Synthetic end-member MgCr2O4 spinel was also studied at pressures up to ca. 10 GPa. In both synthetic and natural samples, chromium is present predominantly as octahedral Cr3+ seen in the spectra as two broad intense absorption bands in the visible range caused by the electronic spin-allowed 4 A 2g  → 4 T 2g and 4 A 2g  → 4 T 1g transitions (U- and Y-band, respectively). A distinct doublet structure of the Y-band in both synthetic and natural spinels is related to trigonal distortion of the octahedral site in the spinel structure. A small, if any, splitting of the U-band can only be resolved at curve-fitting analysis. In all synthetic high-chromium spinels, a couple of relatively narrow and weak bands of the spin-allowed transitions 4 A 2g  → 2 E g and 4 A 2g  → 2 T 1g of Cr3+, intensified by exchange-coupled interaction between Cr3+ and Fe3+ at neighboring octahedral sites of the structure, appear at ~14,400 and ~15,100 cm?1. A vague broad band in the range from ca. 15,000 to 12,000 cm?1 in synthetic spinels is tentatively attributed to IVCr2+ + VICr3+ → IVCr3+ + VICr2+ intervalence charge-transfer transition. Iron, mainly as octahedral Fe3+, causes intense high-energy absorption edge in near UV-range (ligand–metal charge-transfer O2? → Fe3+, Fe2+ transitions). As tetrahedral Fe2+, it appears as a strong infrared absorption band at around 4,850 cm?1 caused by electronic spin-allowed 5 E → 5 T 2 transitions of IVFe2+. From the composition shift of the U-band in natural and synthetic MgCr2O4 spinels, the coefficient of local structural relaxation around Cr3+ in spinel MgAl2O4–MgCr2O4 system was evaluated as ~0.56(4), one of the lowest among (Al, Cr)O6 polyhedra known so far. The octahedral modulus of Cr3+ in MgCr2O4, derived from pressure-induced shift of the U-band of Cr3+, is ~313 (50) GPa, which is nearly the same as in natural low-chromium Mg, Al-spinel reported by Langer et al. (1997). Calculated from the results of the curve-fitting analysis, the Racah parameter B of Cr3+ in natural and synthetic MgCr2O4 spinels indicates that Cr–O-bonding in octahedral sites of MgCr2O4 has more covalent character than in the diluted natural samples. Within the uncertainty of determination in synthetic MgAl2O4 spinel, B does not much depend on pressure.  相似文献   

5.
In this paper, the adsorption and degradation phenomenon involved in the photocatalytic degradation of dimethyl phthalates (DMPs) by titanium dioxide (TiO2) was studied. A variety of operating variables were selected firstly. Then, it was proved that even for such weak adsorption properties molecules as DMP, adsorption was still an important prerequisite for photolysis. A surface-mediated reaction process was proposed that the photodegradation of DMP assisted by TiO2 particles occurred primarily at the surface of the photocatalyst rather than in the homogeneous phase. According to Langmuir–Hinshelwood model, the adsorption constant determined from the dark adsorption was far less than that obtained in the light condition. Enhanced DMP adsorption on the surface of TiO2 under irradiation was the possible reason for the improvement of photodegradation efficiency. Under the irradiation of light, a synergistic mechanism of adsorption and photocatalysis was responsible for DMP degradation. The quantitative analysis by adding scavengers indicated that ·OH radical was primarily responsible for the photodegradation of DMP. It was further verified that ·OH was produced much more from conduction band electrons rather than valance band holes toward photodegradation of DMP by adding foreign Cu2+.  相似文献   

6.
本文通过两组不同水镁石-苯酚投料比的实验,研究固体沉淀物与水质变化的关系。实验显示,水镁石解离出的Mg2+与苯酚降解的中间产物能形成难溶盐,并发生沉淀分离,促进含苯酚废水臭氧化降解的效率。当苯酚的初始浓度为47 g/L,初始碳镁原子比(C/Mg)为30时,经3小时充分臭氧化曝气后,投加的水镁石全部耗尽。XRD、TG/DSC结果显示新形成的沉淀物为草酸镁。反应终点的pH值在4以下,TOC去除率为40%。当体系的初始C/Mg(原子比)为1,苯酚的初始浓度为1.5 g/L时,同样的臭氧化曝气过程体系残留的沉淀物仍是水镁石。反应终点的pH值在10左右,TOC去除率为92.8%。研究证明,苯酚臭氧化过程也是体系酸化的过程,至少在高C/Mg比条件下新生的质子能与水镁石解离出的羟基中和,水镁石解离出的Mg2+可与草酸根结合沉淀出草酸镁。  相似文献   

7.
Despite a close geo-chemical association between vanadium (V) and iron (Fe) in natural environments, there is little research on the substitution of V in goethite. To assess the effect of temperature on V-substitution in goethite, a series of V-substituted goethite were prepared under varying synthesis temperatures, and analysed using wet chemical and multi-spectroscopic techniques. Vanadium substitution was inversely related to synthesis temperatures and was hindered by the oxidation of V3+ to V4+/5+ as indicated by X-ray absorption near-edge spectroscopy. The presence of V (V5+ > V4+ > V3+) at high temperature hindered the nucleation of goethite and crystal growth along particular faces resulting in large-sized and twinned crystals as shown by transmission electron microscopy. The large-sized goethite crystals released more Fe (mmoles) per unit surface area during proton-promoted dissolution than the smaller-sized crystals, which could be due to distorted V4+/5+ local coordination environments in the mineral structure. The dissolution studies showed a heterogeneous distribution of V and/or crystal defects in goethite crystals. The results show that low synthesis temperatures preserved the oxidation state of V3+, which has ionic radius and hydrolytic properties similar to Fe3+, and hence resulted in as much as 13.3 mol per cent substitution. The structural stability of the goethite decreased upon V-substitution in order; V3+ > V4+ > V5+. This research provides important information about the interaction between temperature, V incorporation, and crystal structure properties of goethite for V sequestration and other potentially toxic metal cations.  相似文献   

8.
During solidification of magma chambers as systems closed to chemical exchange with environs, the residual siliceous melt may follow a trend of rising, constant, or decreasing oxidation state, relative to reference buffers such as nickel?+?nickel oxide (NNO) or fayalite?+?magnetite?+?quartz. Titanomagnetite–hemoilmenite thermometry and oxybarometry on quenched volcanic suites yield temperature versus oxygen fugacity arrays of varied positive and negative slopes, the validity of which has been disputed for several years. We resolve the controversy by introducing a new recorder of magmatic redox evolution employing temperature- and redox-sensitive trace-element abundances in zircon. The zircon/melt partition coefficients of cerium and uranium vary oppositely in response to variation of magma redox state, but vary in tandem as temperature varies. Plots of U/Pr versus Ce4+/Ce3+ in zircon provide a robust test for change in oxidation state of the melt during zircon crystallisation from cooling magma, and the plots discriminate thermally induced from redox-induced variation of Ce4+/Ce3+ in zircon. Temperature-dependent lattice strain causes Ce4+/Ce3+ in zircon to increase strongly as zircon crystallises from cooling magma at constant Ce4+/Ce3+ ratio in the melt. We examine 19 zircon populations from igneous complexes in varied tectonic settings. Variation of zircon Ce4+/Ce3+ due to minor variation in melt oxidation state during crystallisation is resolvable in 11 cases but very subordinate to temperature dependence. In many zircon populations described in published literature, there is no resolvable change in redox state of the melt during tenfold variation of Ce4+/Ce3+ in zircons. Varied magmatic redox trends indicated by different slopes on plots of zircon U/Pr versus Ce4+/Ce3+ are corroborated by Fe–Ti-oxide-based T–?O2 trends of correspondingly varied slopes. Zircon and Fe–Ti-oxide compositions agree that exceptionally, H2O-rich arc magmas tend to follow a trend of rising oxidation state of the melt during late stages of fluid-saturated magmatic differentiation at upper-crustal pressures. We suggest that H2 and/or SO3 and/or Fe2+ loss from the melt to segregating fluid is largely responsible. Conversely, zircon and Fe–Ti-oxide compositions agree in indicating that H2O-poor magmas tend to follow a T–?O2 trend of decreasing oxidation state of the melt during late stages of magmatic differentiation at upper-crustal pressures, because the precipitating mineral assemblage has higher Fe3+/Fe2+ than coexisting rhyolitic melt. We present new evidence showing that the Fe–Ti-oxide oxybarometer calibration by Ghiorso and Evans (Am J Sci 308(9):957–1039, 2008) retrieves experimentally imposed values of ?O2 in laboratory syntheses of Fe–Ti-oxide pairs to a precision of ±?0.2 log unit, over a large experimental temperature range, without systematic bias up to at least log ?O2?≈?NNO?+?4.4. Their titanomagnetite–hemoilmenite geothermometer calibration has large systematic errors in application to Ti-poor oxides that precipitate from very oxidised magmas. A key outcome is validation of Fe–Ti-oxide-based values of melt TiO2 activity for use in Ti-in-zircon thermometry and Ti-in-quartz thermobarometry.  相似文献   

9.
Binary mixture of Variovorax sp. BS1 and Achromobacter denitrificans degraded >99 % of 300 mg l?1 of ortho-dimethyl phthalate (DMP) within 24 h of incubation at 30 °C. Rate of degradation of DMP followed the order: A. denitrificans > binary mixture > Variovorax sp. BS1. Transient intermediate metabolites were not detected using HPLC analyses at any time points using Variovorax sp. BS1 and binary mixture. However, using pure culture of A. denitrificans, monomethyl phthalate was accumulated during the course of DMP biodegradation which disappeared with time of incubation. Binary mixture of Variovorax sp. BS1 and A. denitrificans exhibited better efficiency in terms of biodegradation of DMP as compared to either individual bacterial strain. In addition, fluorescence in situ hybridization technique was used to estimate the population dynamics of Variovorax sp. BS1 in binary mixture. A. denitrificans in mixed culture were estimated by subtracting total number of cells of Variovorax sp. BS1 from the total counts of microbial cells using an epifluorescence microscope after staining with 4′,6-diamidino-2-phenylindole. Results obtained at mid-exponential growth phase suggested the abundance of both bacterial strains as primary degraders.  相似文献   

10.
The topotactic oxidation and delithiation reaction from triphylite, Li(Fe,Mn)PO4, leading to ferrisicklerite, Li<1(Fe3+,Mn2+)PO4, was investigated under hydrothermal conditions. A cuboid cut from a triphylite single-crystal (Palermo Mine, New Hampshire, USA) with the composition Li0.93(3)(Fe2+ 0.733(6),Fe3+ 0.015(1),Mn2+ 0.210(4),Mg0.063(2))1.021(8)P1.00(2)O4 in addition with ground bulk material were treated with KMnO4 and 30 % H2O2(aq) as oxidizing agent in a 0.1 N hydrochloric acid solution in the temperature range between 60 and 200 °C. At 120 °C a rim of 0.1 mm thickness of ferrisicklerite had formed around the core of unreacted triphylite. The sharp reaction boundary was clearly visible, due to the reddish brown absorption colors of ferrisicklerite, compared to colorless triphylite. Using single-crystal X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), electron probe micro-analysis (EPMA) and 57Fe-Mössbauer spectroscopy the product ferrisicklerite was characterized and its composition determined as Li0.30(7)(Fe2+ 0.049(1)Fe3+ 0.65(2)Mn2+ 0.218(5)Mg0.062(2))0.98(1)P1.01(3)O4, with unit cell parameters a?=?4.795(1), b?=?9.992(4), and c?=?5.886(2) Å. EPMA investigations across the reaction boundary showed no changes in the concentrations of Fe, Mn, Mg, and P. In contrast, SIMS measurements clearly proved the delithiated state of the ferrisicklerite product. Polarization microscopy revealed that the orientation of the ferrisicklerite rim was the same as that of the original triphylite single-crystal, confirming the strictly topotactic character of the reaction.  相似文献   

11.
The present study deals with the effect of Fe2+ on degradation kinetics of imidacloprid in moist soil under UV system. The moist soil samples were spiked with imidacloprid and irradiated in specially designed UV-photoreactor. The analysis of imidacloprid was carried out by using HPLC–DAD system. UV irradiation caused about ten fold increase in photodegradation rate of the pesticide. Amendment of soil with Fe2+ at concentrations of 30 mg/kg led to a further increase in the rate of photodegradation, i.e., a 98 % degradation of imidacloprid was observed in the presence of iron after 32 days of irradiation. Moreover, the half-life of imidacloprid in Fe2+ -amended soil was observed to be reduced to 7 days that in the absence of Fe2+ was recorded to be 21 days. Iron was also observed to affect the half-life of imidacloprid in dark. When compared with unsterilized Fe2+-amended batch treatments, the t 1/2 in sterilized Fe2+-amended batch treatments increased from 58 to 96 days. Imidacloprid-urea was detected by HPLC as the only stable photodegradation byproduct of imidacloprid in the soil.  相似文献   

12.
Iron oxides may undergo structural transformations when entering an anoxic environment. These transformations were investigated using the isotopic exchange between aqueous Fe(II) and iron oxides in experiments with 55Fe-labelled iron oxides. 55Fe was incorporated congruently into a ferrihydrite, two lepidocrocites (#1 and #2), synthesised at 10°C and 25°C, respectively, a goethite and a hematite. The iron oxides were then submerged in Fe2+ solutions (0-1.0 mM) with a pH of 6.5. In the presence of aqueous Fe2+, an immediate and very rapid release of 55Fe was observed from ferrihydrite, the two lepidocrocites and goethite, whereas in the absence of Fe2+ no release was observed. 55Fe was not released from hematite, even at the higher Fe2+ concentration. The release rate is mainly controlled by characteristics of the iron oxides, whereas the concentration of Fe2+ only has minor influence. Ferrihydrite and 5-nm-sized lepidocrocite crystals attained complete isotopic equilibration with aqueous Fe(II) within days. Within this timeframe ferrihydrite transformed completely into new and more stable phases such as lepidocrocite and goethite. Lepidocrocite #2 and goethite, having larger particles, did not reach isotopic equilibrium within the timeframe of the experiment; however, the continuous slow release of 55Fe suggests that isotopic equilibrium will ultimately be attained.Our results imply a recrystallization of solid Fe(III) phases induced by the catalytic action of aqueous Fe(II). Accordingly, iron oxides should properly be considered as dynamic phases that change composition when exposed to variable redox conditions. These results necessitate a reevaluation of current models for the release of trace metals under reducing conditions, the sequestration of heavy metals by iron oxides, and the significance of stable iron isotope signatures.  相似文献   

13.
The effect of TiO2 and P2O5 on the ferric/ferrous ratio in silicate melts was investigated in model silicate melts at air conditions in the temperature range 1,400–1,550 °C at 1-atm total pressure. The base composition of the anorthite–diopside eutectic composition was modified with 10 wt % Fe2O3 and variable amounts of TiO2 (up to 30 wt %) or P2O5 (up to 20 wt %). Some compositions also contained higher SiO2 concentrations to compare the role of SiO2, TiO2, and P2O5 on the Fe3+/Fe2+ ratio. The ferric/ferrous ratio in experimental glasses was analyzed using a wet chemical technique with colorimetric detection of ferrous iron. It is shown that at constant temperature, an increase in SiO2, TiO2, and P2O5 content results in a decrease in the ferric/ferrous ratio. The effects of TiO2 and SiO2 on the Fe3+/Fe2+ ratio was found to be almost identical. In contrast, adding P2O5 was found to decrease ferric/ferrous ratio much more effectively than adding silica. The results were compared with the predictions from the published empirical equations forecasting Fe3+/Fe2+ ratio. It was demonstrated that the effects of TiO2 are minor but that the effects of P2O5 should be included in models to better describe ferric/ferrous ratio in phosphorus-bearing silicate melts. Based on our observations, the determination of the prevailing fO2 in magmas from the Fe3+/Fe2+ ratio in natural glasses using empirical equations published so far is discussed critically.  相似文献   

14.
Permian karstic bauxite and its Quaternary derivative, in western Guangxi, southwestern, South China Block, possess a total tonnage greater than 0.5 billion tons. The primary late Permian karstic bauxite formed in reduced environment in the background of Tethyan accretionary orogenesis. And as one consequence of Cenozoic convergence of the Indian and Eurasia continents, the primary orebody was uplifted, eroded and re-sedimented within Quaternary laterite. The geochemical variation and its controls during the ore transformation from Permian to Quaternary remain poorly understood. Quaternary ore blocks comprise an inner zone of fresh ore, and then it gradually transited through a middle zone to a margin with extensive weathering. One such bauxite block was selected and further subdivided into twenty-three samples for geochemical and mineralogical analysis. The inner and middle zones contain similar mineralogical compositions, dominated by diaspore and amesite, with minor illite, anatase, goethite, pyrite, zircon, and rutile. The margin is composed of diaspore, with small amounts of amesite, boehmite, illite, goethite, anatase, kaolinite, zircon, rutile, and barite. Bauxite in all three zones is composed of mainly Al, Si, Fe, and Ti, and high contents of Zr, Cr, Li, F, S, Zn, V, Sr, Nb, Ba, and REE. Variations in Fe2+ and Fe3+ between the three zones were observed. The elements Si, Al, Fe2+, Mg, Ba, Cr, F, Li, Ni, Zn, and REE decrease from the core of the ore block outwards, corresponding to an increase in S and Fe3+. Depletions in Si, Al, Fe2+, Mg, Ba, and Cr were caused by the dissolution of amesite. Most of the Al and Si in amesite were lost during the weathering, and minor retained to form kaolinite. Depletions in Li, Ni, and Zn resulted from changes in the depositional environment between the late Permian and Quaternary. Dissolution of REE-bearing fluorocarbonates resulted in depletions of REE and F. The enrichment of Fe3+ and S was related to the precipitation of goethite, hematite, and barite in an oxidizing environment, while local enrichment of Ce resulted from the redox change of Ce3+  Ce4+ under the same condition. This shows that the chemical composition of laterite enwrapping the bauxite also took part in Quaternary bauxite transformation. This study shows that the elements migrations during bauxite transformation were influenced by multiple independent factors except for the elemental attributes.  相似文献   

15.
The crystal chemistry of volcanic allanites from both the Youngest Toba Tuff (YTT), Sumatra, Indonesia and SK100 volcanic ash beds (SK100-VAB), Niigata, Japan has been examined by electron microprobe analysis (EMPA), Fourier-transform infrared spectroscopic analysis (FTIR), and single-crystal structure analysis. In the FTIR study, based on the Diamond ATR accessory, YTT and SK100- VAB allanites were observed to have different OH contents, respectively: the former has 0.64 wt% H2O (OH: 0.40 apfu.), while the latter has 1.65 wt% H2O (OH: 1.00 apfu.). The crystal structures of these two allanites have been refined to individual R indices (3.64 and 4.25) based on 1350 observed reflections (|Fo| > 4sig|Fo|) measured using a single-crystal diffractometer with MoKα X-radiation. The OH-poor YTT allanite has a shorter b axis, a longer c axis, and larger β value than the relatively OH-rich SK100-VAB one. The bond valence sums of O4 (accepter oxygen for H atom) and O10 (donor oxygen for H atom) are 1.962 and 1.709 v.u. for YTT allanite (valence sum: 3.671 v.u.) and 1.754 and 1.271 v.u. for SK100-VAB one (valence sum: 3.025 v.u.). The difference from the ideal total bond valence value (4.00 v.u.) of O4 and O10 in YTT allanite (0.33 v.u.) is smaller than that in SK100-VAB (0.98 v.u.). These difference values are also broadly consistent with the corresponding differences in OH content between the YTT (OH: 0.40 apfu.) and SK100-VAB allanites (OH: 1.00 apfu.) determined by FTIR- ATR. Chemical analyses, FTIR-ATR and crystal structure refinement of YTT and SK100-VAB allanites yielded the following crystal chemical formula: YTT: (Ca0.83Mn2+ 0.06Fe2+ 0.11)(La0.24Ce0.32Pr0.04Nd0.11Sm0.02Th0.04Ca0.21)(Al0.73Fe3+ 0.19Ti0.08)(Al0.89Fe3+ 0.11)(Fe2+ 0.22Fe3+ 0.62Mg0.16)(SiO4)Si2O7O1.6(OH)0.4, SK100-VAB: (Ca0.81Fe2+ 0.13Mn2+ 0.06)(La0.22Ce0.34Pr0.05Nd0.13Sm0.02Th0.02Ca0.22)(Al0.76Fe3+ 0.19Ti0.05)Al1.00(Fe2+ 0.73Fe3+ 0.17Mg0.10)(Si0.96Al0.04O4)Si2O7O(OH). Therefore, it is concluded that welding of the Youngest Toba Tuff caused the following post-crystallization changes to occur in YTT allanite: oxidation of Fe2+ to Fe3+, release of H2, and the concomitant replacement of OH? by O2?. These oxidation and dehydrogenation processes advanced during the welding to thereby produce oxyallanite. Oxyallanite had been reported only in laboratory studies where it was produced by heating natural allanite. Our report on natural oxyallanite suggests that it may be present in other welded silicic volcanic rocks as well.  相似文献   

16.
The behaviour of trace amounts of arsenate coprecipitated with ferrihydrite, lepidocrocite and goethite was studied during reductive dissolution and phase transformation of the iron oxides using [55Fe]- and [73As]-labelled iron oxides. The As/Fe molar ratio ranged from 0 to 0.005 for ferrihydrite and lepidocrocite and from 0 to 0.001 for goethite. For ferrihydrite and lepidocrocite, all the arsenate remained associated with the surface, whereas for goethite only 30% of the arsenate was desorbable. The rate of reductive dissolution in 10 mM ascorbic acid was unaffected by the presence of arsenate for any of the iron oxides and the arsenate was not reduced to arsenite by ascorbic acid. During reductive dissolution of the iron oxides, arsenate was released incongruently with Fe2+ for all the iron oxides. For ferrihydrite and goethite, the arsenate remained adsorbed to the surface and was not released until the surface area became too small to adsorb all the arsenate. In contrast, arsenate preferentially desorbs from the surface of lepidocrocite. During Fe2+ catalysed transformation of ferrihydrite and lepidocrocite, arsenate became bound more strongly to the product phases. X-ray diffractograms showed that ferrihydrite was transformed into lepidocrocite, goethite and magnetite whereas lepidocrocite either remained untransformed or was transformed into magnetite. The rate of recrystallization of ferrihydrite was not affected by the presence of arsenate. The results presented here imply that during reductive dissolution of iron oxides in natural sediments there will be no simple correlation between the release of arsenate and Fe2+. Recrystallization of the more reactive iron oxides into more crystalline phases, induced by the appearance of Fe2+ in anoxic aquifers, may be an important trapping mechanism for arsenic.  相似文献   

17.
Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5–Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg–Fe silicates. Multi-anvil experiments were performed at 11–20 GPa and 1100–1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least ~?1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot?=?~?0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+?+?[6]Mg2+?=?2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential “water-storing” mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298?=???1981.5 kJ mol??1. Solid solution is complete across the Fe4O5–Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg–Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.  相似文献   

18.
Unusual Ti–Cr–Zr-rich garnet crystals from high-temperature melilitic skarn of the Maronia area, western Thrace, Greece, were investigated by electron-microprobe analysis, powder and single-crystal X-ray diffraction, IR, Raman and Mössbauer spectroscopy. Chemical data showed that the garnets contain up to 8 wt.% TiO2, 8 wt.% Cr2O3 and 4 wt.% ZrO2, representing a solid solution of andradite (Ca3Fe3+ 2Si3O12 ≈46 mol%), uvarovite (Ca3Cr2Si3O12 ≈23 mol%), grossular (Ca3Al2Si3O12 ≈10 mol%), schorlomite (Ca3Ti2[Si,(Fe3+,Al3+)2]O12 ≈15 mol%), and kimzeyite (Ca3Zr2[Si,Al2]3O12 ≈6 mol%). The Mössbauer analysis showed that the total Fe is ferric, preferentially located at the octahedral site and to a smaller extent at the tetrahedral site. Single-crystal XRD analysis, Raman and IR spectroscopy verified substitution of Si mainly by Al3+, Fe3+ and Ti4+. Cr3+ and Zr4+ are found at the octahedral site along with Fe3+, Al3+ and Ti4+. The measured H2O content is 0.20 wt.%. The analytical data suggest that the structural formula of the Maronia garnet can be given as: (Ca2.99Mg0.03)Σ=3.02(Fe3+ 0.67Cr0.54Al0.33Ti0.29Zr0.15)Σ=1.98(Si2.42Ti0.24Fe0.18Al0.14)Σ=2.98O12OH0.11. Ti-rich garnets are not common and their crystal chemistry is still under investigation. The present work presents new evidence that will enable the elucidation of the structural chemistry of Ti- and Cr-rich garnets.  相似文献   

19.
Microprobe analysis, single crystal X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray absorption spectroscopy were applied on Fe-rich osumilite from the volcanic massif of Mt. Arci, Sardinia, Italy. Osumilite belongs to the space group P6/mcc with unit cell parameters a = 10.1550(6), c = 14.306(1) Å and chemical formula (K0.729)C (Na0.029)B (Si10.498 Al1.502)T1 (Al2.706 Fe 0.294 2+ )T2 (Mg0.735 Mn0.091 Fe 1.184 2+ )AO30. Structure refinement converged at R = 0.0201. Unit cell parameter a is related to octahedral edge length as well as to Fe2+ content, unlike the c parameter which does not seem to be affected by chemical composition. The determination of the amount of each element on the mineral surface, obtained through X-ray photoelectron spectroscopy high-resolution spectra in the region of the Si2p, Al2p, Mg1s and Fe2p core levels, suggests that Fe presents Fe2+ oxidation state and octahedral coordination. Two peaks at 103.1 and 100.6 eV can be related to Si4+ and Si1+ components, respectively, both in tetrahedral coordination. The binding energy of Al2p, at 74.5 eV, indicates that Al is mostly present in the distorted T2 site, whereas the Mg peak at 1,305.2 eV suggests that this cation is located at the octahedral site. X-ray absorption at the Fe L2,3-edges confirms that iron is present in the mineral structure, prevalently in the divalent state and at the A octahedral site.  相似文献   

20.
Zero-valent iron (Fe0), as an alternative iron source, was evaluated to activate persulfate (PS) to degrade acetaminophen (APAP), a representative pharmaceutically active compound in water. Effects of key factors in the so-called Fe0/PS process, including Fe0 dosage, initial pH, temperatures and chelating agents, were studied. Under all the conditions tested, the APAP degradation followed a pseudo-first-order kinetics pattern. The degradation efficiency of APAP was highest when the Fe0 to PS molar ratio increased to 1:1, and the degradation rate constant and removal were 23.19 × 10?3 min?1 and 93.19 %, respectively. Comparing with Fe2+, Fe0 served as an alternative iron source that can gradually release Fe2+ into water, thereby consistently activating PS to produce sulfate radicals. The Fe0/PS system was effective in a broader pH range from 3 to 8.5. Heat could facilitate production of sulfate radicals and enhance the APAP degradation in the Fe0/PS system. High reaction temperature also improved the Fe2+/PS oxidation of APAP. Finally, sodium citrate (a chelating agent) at an appropriate concentration could improve the APAP degradation rate in the Fe2+/PS and Fe0/PS system. The optimal molar ratio of Fe0 to citrate depended on solution pH. Our results demonstrated that Fe0 was an alternative iron source to activate PS to degrade APAP in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号