首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mount Nemrut, an active stratovolcano in eastern Turkey, is a great danger for its vicinity. The volcano possesses a summit caldera which cuts the volcano into two stages, i.e. pre- and post-caldera. Wisps of smoke and hot springs are to be found within the caldera. Although the last recorded volcanic activity is known to have been in 1441, we consider here that the last eruption of Nemrut occurred more recently, probably just before 1597. The present active tectonic regime, historical eruptions, occurrence of mantle-derived magmatic gases and the fumarole and hot spring activities on the caldera floor make Nemrut Volcano a real danger for its vicinity. According to the volcanological past of Nemrut, the styles of expected eruptions are well-focused on two types: (1) occurrence of water within the caldera leads to phreatomagmatic (highly energetic) eruptions, subsequently followed by lava extrusions, and (2) effusions–extrusions (non-explosive or weakly energetic eruptions) on the flanks from fissures. To predict the impact area of future eruptions, a series of morphological analyses based on field observations, Digital Elevation Model and satellite images were realized. Twenty-two valleys (main transport pathways) were classified according to their importance, and the physical parameters related to the valleys were determined. The slope values in each point of the flanks and the Heim parameters H/L were calculated. In the light of morphological analysis the possible impact areas around the volcano and danger zones were proposed. The possible transport pathways of the products of expected volcanic events are unified in three main directions: Bitlis, Guroymak, Tatvan and Ahlat cities, the about 135 000 inhabitants of which could be threatened by future eruptions of this poorly known and unsurveyed volcano.  相似文献   

2.
 The hydrologic structure of Taal Volcano has favored development of an extensive hydrothermal system whose prominent feature is the acidic Main Crater Lake (pH<3) lying in the center of an active vent complex, which is surrounded by a slightly alkaline caldera lake (Lake Taal). This peculiar situation makes Taal prone to frequent, and sometimes catastrophic, hydrovolcanic eruptions. Fumaroles, hot springs, and lake waters were sampled in 1991, 1992, and 1995 in order to develop a geochemical model for the hydrothermal system. The low-temperature fumarole compositions indicate strong interaction of magmatic vapors with the hydrothermal system under relatively oxidizing conditions. The thermal waters consist of highly, moderately, and weakly mineralized solutions, but none of them corresponds to either water–rock equilibrium or rock dissolution. The concentrated discharges have high Na contents (>3500 mg/kg) and low SO4/Cl ratios (<0.3). The Br/Cl ratio of most samples suggests incorporation of seawater into the hydrothermal system. Water and dissolved sulfate isotopic compositions reveal that the Main Crater Lake and spring discharges are derived from a deep parent fluid (T≈300  °C), which is a mixture of seawater, volcanic water, and Lake Taal water. The volcanic end member is probably produced in the magmatic-hydrothermal environment during absorption of high-temperature gases into groundwater. Boiling and mixing of the parent water give rise to the range of chemical and isotopic characteristics observed in the thermal discharges. Incursion of seawater from the coastal region to the central part of the volcano is supported by the low water levels of the lakes and by the fact that Lake Taal was directly connected to the China sea until the sixteenth century. The depth to the seawater-meteoric water interface is calculated to be 80 and 160 m for the Main Crater Lake and Lake Taal, respectively. Additional data are required to infer the hydrologic structure of Taal. Geochemical surveillance of the Main Crater Lake using the SO4/Cl, Na/K, or Mg/Cl ratio cannot be applied straightforwardly due to the presence of seawater in the hydrothermal system. Received: 12 February 1997 / Accepted: 26 January 1998  相似文献   

3.
Following the collision along the Bitlis–Zagros suture, a north–south convergence between the Arabian Platform and Laurasia has continued uninterrupted until the present. As a result, the continental crust has been shortened, thickened and consequently elevated to form the Turkish–Iranian high plateau. On the high plateau volcanic activity began during the Neogene, intensified during the late Miocene–Pliocene and continued until historical times. Large volcanic centres have been developed during the Quaternary which form significant peaks above the Turkish–Iranian high plateau. Among the Quaternary volcanoes, the major volcanic centres are Ararat, Tendürek, Suphan and Nemrut. Ararat (Ağri Daği) is the largest volcanic center and is a compound stratovolcano, consisting of Greater Ararat and lesser Ararat. The former represents the highest elevation of Anatolia reaching over 5000 m in height. Tendürek is a double-peaked shield volcano, which produced a voluminous amount of basalt lava as extensive pahoehoe, and aa flows. It has an ill-defined semi-caldera. Suphan is an isolated stratovolcano, capped by silicic dome. It represents the second highest topographic elevation in Anatolia, with a height of over 4000 m. A cluster of subsidiary cones and small domes surrounds the volcano. Nemrut is the largest member of a group of volcanoes, which trend north–south. It is a stratovolcano, having a well-defined collapse caldera and a caldera lake. Various volcanic ejecta have been extruded from these volcanic centres over the last 1 to 2 million years. The Quaternary volcanic centres, although temporally and spatially closely associated, display a wide range of lavas from basalt to rhyolite. The volcanoes have diverse compositional trends; Ararat is distinctly subalkaline, Suphan is mildly subalkaline, Nemrut is mildly alkaline and Tendürek is strongly alkaline. The major and trace element compositions together with the isotope ratios indicate that their magmas were generated from a heterogeneous mantle source. Each of the volcanic centres has undergone a partly different magmatic evolution.  相似文献   

4.
This study summarizes the results of structural, geochemical and seismological surveys carried out at Nisyros volcano (Aegean Sea, Greece) during 1999–2001. Field mapping and mesostructural measurements at the summit caldera (Lakki plain) indicate that faults follow two main strikes: NE-SW and N-S. The N-S striking fault depicts extensional features accommodating the left-lateral component of motion of the NE-SW- striking main faults. The NE-SW preferred strike of the Lakki faults and of the mineral-filled veins as well as the distribution and NE-SW elongation of the hydrothermal craters indicate that tectonics plays a major role in controlling the fluid pathway in the Nisyros caldera. The same NE-SW trend is depicted by CO2 anomalies revealed through detailed soil CO2 flux surveys, thus indicating a structural control on the pattern of the hydrothermal degassing. Degassing processes account for a thermal energy release of about 43 MW, most of which occurs at Lofos dome, an area that was affected by hydrothermal eruptions in historical times. The seismic study was conducted in June 2001, using a deployment specifically aimed at detecting signals of magmatic-hydrothermal origin. Our instruments recorded local and regional earthquakes, a few local long-period events (LP), and bursts of monochromatic tremor. Local earthquake activity is concentrated beneath the caldera, at depths generally shallower than 6 km. Plane-wave decomposition of tremor signal indicates a shallow (<200 m) source located in the eastern part of the caldera. Conversely, LP events depict a source located beneath the central part of the caldera, in the area of Lofos dome, at depths in the 1–2-km range. In agreement with geochemical and structural measurements, these data suggest that both the deeper and shallower part of the hydrothermal system are subjected to instability in the fluid flow regimes, probably consequent to transient pressurization of the reservoir. These instabilities may be related to input of hot fluids from the deeper magmatic system, as suggested by the variations in geochemical parameters observed after the 1997–1999 unrest episode. The significance of seismological and geochemical indicators as precursors of hydrothermal explosive activity at Nisyros is discussed.Editorial responsibility: H. Shinohara  相似文献   

5.
One of the seven potentially active andesite stratovolcanoes in southern Peru, Misti (5822 m), located 17 km northeast and 3.5 km above Arequipa, represents a major threat to the population (900,000 inhabitants). Our recent geophysical and geochemical research comprises an extensive self-potential (SP) data set, an audio–magnetotelluric (AMT) profile across the volcano and CO2 concentrations in the soil along a radial profile. The SP survey is the first of its kind in providing a complete mapping of a large andesitic stratovolcano 20 km in diameter. The SP mapping enables us to analyze the SP signature associated with a subduction-related active volcano.The general SP pattern of Misti is similar to that of most volcanoes with a hydrogeologic zone in the lower flanks and a hydrothermal zone in the upper central area. A quasi-systematic relationship exists between SP and elevation. Zones with constant SP/altitude gradients (Ce) are observed in both hydrogeologic (negative Ce) and hydrothermal (positive Ce) zones. Transition zones between the different Ce zones, which form a concentric pattern around the summit, have been interpreted in terms of lateral heterogeneities in the lithology. The highest amplitudes of SP anomalies seem to coincide with highly resistive zones. The hydrothermal system 6 km in diameter, which extends over an area much larger than the summit caldera, may be constrained by an older, concealed collapse caldera. A sealed zone has apparently developed through alteration in the hydrothermal system, blocking the migration of CO2 upward. Significant CO2 emanations are thus observed on the lower flanks but are absent above the hydrothermal zone.  相似文献   

6.
A 23-m.y.-old, fossil meteoric-hydrothermal system in the Lake City caldera (11 × 14 km) has been mapped out by measuring δ 18O values of 300 rock and mineral samples. δ 18O varies systematically throughout the caldera, reaching values as low as −2. Great topographic relief, regional tilting, and variable degrees of erosion within the caldera all combine to give us a very complete section through the hydrothermal system, from the surface down to a depth of more than 2000 m. The initial δ 18O value of the caldera-fill Sunshine Peak Tuff was very uniform (+7.2 ± 0.1), making it easy to determine the exact amount of 18O depletion experienced by each sample during hydrothermal alteration. Also, we have excellent stratigraphic control on depths beneath the mid-Tertiary surface, quantitative information on mineralogical alteration products, and accurate data on the shape of the central resurgent intrusion, which was the principal ‘heat engine’ that drove the hydrothermal circulation. Major conclusions are: (1) Although pristine mid-Tertiary meteoric waters in this area had δ 18O −14, these fluids were 18O-shifted upward to about δ18O = −8 to −5 prior to entering the shallow convective system associated with the resurgent intrusive rocks. Although there was undoubtedly radial inflow toward the caldera from all directions, the highly fractured Eureka Graben, southwest of the caldera, was probably the principal source of recharge groundwater for the Lake City system. (2) Fluid flow within the caldera was dominated by three major categories of permeable zones: the porous megabreccia units (which dip outward from the resurgent dome), vertical fractures and faults related to resurgence, and the caldera ring fault itself. All of these zones exhibit marked 18O depletions, and they are also typically intensely mineralogically altered. (3) The resurgent intrusive stock and its contact metamorphic aureole of hornfels both experienced water/rock ratios lower than the permeable zones; however, they have similarly low δ 18O values because they were altered at higher temperatures. (4) Throughout the caldera, the δ 18O of Sunshine Peak Tuff decreases with increasing depth (about 6 per mil/km), indicative of a shallow thermal gradient, typical of a convective hydrothermal system. The near-surface portion of this gradient was controlled by the temperature drop associated with boiling in the uprising fluid. (5) Deeply circulating meteoric water rose along permeable ring fractures 3 to 5 km beneath the mid-Tertiary surface. These fluids were drawn into the shallow convective system through the lower, porous, megabreccia units. Near the resurgent intrusions, fluid flow was again directed upward where resurgence-related, near-vertical fractures intersect the megabreccia units.  相似文献   

7.
The first crater of Nakadake, peak of Aso volcano, Japan, contains a hot water lake that shows interesting variations in water level and temperature. These variations were discovered by precise, continuous observations of the lake independent of precipitation. We developed a numerical model of a hot crater lake and compared with observational data for the period from July 2006 to January 2009. The numerical model revealed seasonal changes in mass flux (75–132 kg/s) and enthalpy (1,840–3,030 kJ/kg) for the fluid supplied to the lake. The relation between the enthalpy and mass flux indicates that the bottom input fluid is a mixture of high- and low-temperature fluids. Assuming a mixture of high-temperature steam at 800°C and liquid water at 100°C, we evaluated the liquid and steam fluxes. The liquid water flux shows a seasonal increase lagging behind the rainy season by 2 months, suggesting that the liquid water is predominantly groundwater. The fluctuation pattern in the flux of the high-temperature steam shows a relation with the amplitude of volcanic tremor, suggesting that heating of the hydrothermal system drives the tremor. Consequently, precise observations of a hot crater lake represent a potential method of monitoring volcanic hydrothermal systems in the shallow parts of the volcanoes.  相似文献   

8.
A study of the historic record of activity of Piton de la Fournaise has revealed a cyclic pattern of eruption involving effusion of oceanite lava from major-flank centers every 20–40 years. Calculated volumes of the recent lava flows and pyroclastic ejecta have established an effusion rate of 3.9 m3 s−1 since 1931 and 6.2 m3 s−1 since 1951. Flank eruptions outside the present caldera define a distribution maximum which is expected to correlate with the depth range of a high-level magma reservoir.A model has been constructed which requires replenishment of a high-level magma chamber at a constant rate and regular eruption from summit and minor-flank centers, acting as “safety valves” to the magma chamber; when the magma chamber reaches its maximum expansion, a major-flank outburst of oceanitic lava occurs.The fact that calculated effusion rates are not consistent with radiometric dates implies an increase in effusion volume with time for the volcano.  相似文献   

9.
Lake Caviahue (northern Patagonia, Argentina) is a large glacial lake acidified by volcanic fluids from Copahue volcano. The lake and the feeding rivers were sampled annually from 1997 till early 2006, including the eruptive period of 2000. Lake Caviahue waters evolved over time, with the most concentrated waters in 2000 during the eruptive period, followed by gradual dilution that was interrupted by renewed acidification in 2003–2004. Inversion of the lake water data and application of a dynamic non-steady state model for the lake provides our best quantitative estimates for the variation in element fluxes over the 9-year period. The model flux results agree well with most of the measured fluxes. The Copahue hydrothermal system had gently declining element fluxes between 1997 and mid-1999, although the lake was still becoming more concentrated. About 2–3 months before the 2000 eruption, element fluxes increased strongly, but the hydrothermal fluxes almost shutoff directly after the main eruptive events. The fluxes of several elements recovered post-2001, with an increase in element fluxes in 2003–2004; the lake became more dilute between 2004 and 2006. The intrusion of new magma into the hydrothermal system just prior to the 2000 eruption led to enhanced water rock interaction, with higher concentrations of the rock forming elements in the fluids, and the hot spring flow rate increased as a result of the higher pressure in the reservoir. The fluids became saturated in alunite and jarosite, and they were already saturated with anhydrite. Precipitation of these minerals possibly led to a decreased permeability of the hydrothermal reservoir, leading to the strongly reduced element fluxes just after the eruption. In addition, K, Al and S were retained in the newly precipitated minerals as well, further diminishing their export. The acidification in 2003–2004 may have resulted from a new small intrusion of magma or resulted from seismic activity that created new permeability and fresh rock surfaces for water rock interaction. The volcano is a significant source of toxic trace elements such as F, As, B and Li as well as a nutrient (P) for the local watershed. Monitoring of the hydrothermal fluids in the river that drains Copahue, especially the S/Cl, Mg/Cl and Mg/K values as well as the magnitude of the element fluxes would provide the best information for eruption forecasting for this volcano.  相似文献   

10.
The thermal energy balance and the temperature profile of the Hakone volcano are considered quantitatively. Across the Hakone volcano and its surroundings the heat flow values vary from 10–1 to 103 mW/m2, due to thermal conduction and mass flow involving volcanic steam and hot spring discharge. An area with extremely low heat flow is observed in the western side of the caldera showing the presence of percolating meteoric water. The hydrothermal activity is intense in the eastern half of the caldera.The total heat discharge from the high temperature zone (discharge area) of the Hakone volcano amounts to 11.0×107 W. The magmatic steam energy discharge is 95.0×106 W. The thermal energy by redistribution of the terrestrial heat flow by the lateral deep ground water flow is calculated to be 9.00×106 W. For the model having the vertical vent in the volcano's central part up to 1 km depth below the ground surface from a magma reservoir the computed temperature distribution is consistent with the observed values. The depth of the magma reservoir is 7 km below the ground surface and the diameter is 5 km.  相似文献   

11.
Self-potential (SP) surveys were made on Mount Pelée volcano (Martinique Island, French West Indies) in 1991 and 1992 in order to recognize its hydrothermal system, the associated groundwater channeling and the main superficial structures of the massif. Almost 70 km of profiles were carried out with an average sample spacing of 50 m. Measurements essentially reveal negative SP anomalies, down to −1700 mV, with high gradients (−1.83 mV/m) due to the infiltration of meteoric water into the massif. Rims of summit calderas Morne Macouba and Etang-Sec present sharp negative SP anomalies on the western, northern, and eastern flanks. Negative SP anomalies indicate no upward water flow beneath Mount Pelée summit. On the southwestern volcano flank, a 3.5×6 km horseshoe-shaped structure corresponding to a southwest flank collapse event, older than 25,000 years BP, is clearly identified by the SP mapping. High gradients border the inner southern rim from Morne Calebasse to St Pierre town and the Caribbean Sea. Along the northern rim of the horseshoe-shaped structure the negative SP anomalies give place to a positive SP anomaly, up to 200 mV, of SW–NE trend. This zone covers the area of two active hot springs (Sources Chaudes and Puits Chaud: 40–65°C). Marine magnetic surveys and bathymetry show that the horseshoe-shaped structure spreads into the Caribbean Sea up to about 10 km from the coast. Buried structural discontinuities are evidenced inside the flank collapse structure. The upper one deviates the groundwater flow coming from the summit toward the south flank where the flow finds an indentation to expand again downwards. This discontinuity is either an old hypothetical caldera rim partly destroyed by the collapse of the south–southwestern flank and covered by recent pyroclastic deposits, or more probably the trace of a bulge landslide. A circulation model of the hydrothermal waters is proposed. Rainfall (5–6 m/year) is partly drained inside the summital calderas and the flank collapse zone through pyroclastic flows down to an impermeable basement. There the groundwater constitutes perched aquifers at the contact of the bulge landslide, or of the hypothetical old caldera rim. Along the inner northern border of the flank collapse structure the phreatic water is reheated. Warm groundwater flows along the northern avalanche structure rim and discharges near the coast in ground and marine outcrops, of medium temperature. Finally, the main part of the meteoric water is channeled along the old caldera rim, or along the bulge landslide towards the south flank of Mount Pelée, where some gaps in the rim exist. There the groundwater finds again a subhorizontal gravitational circulation along Mount Pelée slopes into the Caribbean Sea.  相似文献   

12.
The Sierra La Primavera volcanic complex consists of late Pleistocene comenditic lava flows and domes. ash-flow tuff, air-fall pumice, and cold caldera-lake sediments. The earliest lavas were erupted about 120,000 years ago, and were followed approximately 95,000 years ago by the eruption of about 20 km3 of magma as ash flows that form the compositionally-zoned Tala Tuff. Collapse of the roof zone of the magma chamber led to the formation of a shallow 11-km-diameter caldera. It soon filled with water, forming a caldera lake in which sediment began to collect. At about the same time, two central domes erupted through the middle of the lake and a “giant pumice horizon”, an important stratigraphic marker, was deposited. Shortly thereafter ring domes erupted along two parallel arcs: one along the northeast portion of the ring fracture, and the other crossing the middle of the lake. All these events occurred during a period of approximately 5,000–10,000 years. Sedimentation continued and a period of volcanic quiescence was marked by the deposition of some 30 m of fine-grained ashy sediments virtually free from pumice lapilli. Approximately 75,000 years ago, a new group of ring domes erupted at the southern margin of the lake. These domes are lapped by only 10–20 m of sediments, as uplift resulting from renewed insurgence of magma brought an end to the lake. This uplift culminated in the eruption, beginning approximately 60,000 years ago, of aphyric lavas along a southern arc. The youngest of these lavas erupted approximately 20,000–30,000 years ago.The four major fault systems in the Sierra La Primavera are related to caldera collapse or to uplift caused by the insurgence of the southern are magma. Steam vents and larga-discharge 65°C hot springs are associated with the faulting. Calculated equilibrium temperatures of the geothermal fluids are 170°C, but temperatures in excess of 240°C have been encountered in an exploratory drill hole.A seismic survey showed attenuation of both S and P waves within the caldera, P waves attenuated more severely than S waves. The greatest attenuation is associated with an area of steam vents, and the rapid lateral variations in attenuation suggest that they are produced by a shallow geothermal system rather than by underlying magma.  相似文献   

13.
Karthala volcano is a basaltic shield volcano with an active hydrothermal system that forms the southern two-thirds of the Grande Comore Island, off the east coat of Africa, northwest of Madagascar. Since the start of volcano monitoring by the local volcano observatory in 1988, the July 11th, 1991 phreatic eruption was the first volcanic event seismically recorded on this volcano, and a rare example of a monitored basaltic shield. From 1991 to 1995 the VT locations, 0.5<Ml<4.3, show a crack shaped pattern (3 km long, 1 km wide) within the summit caldera extending at depth from –2 km to +2 km relative to sea level. This N-S elongated pattern coincides with the direction of the regional maximum horizontal stress as deduced from regional focal mechanism solutions. This brittle signature of the damage associated with the 1991 phreatic eruption is a typical pattern of the seismicity induced by controlled fluid injections such as those applied at geothermal fields, in oil and gas recovery, or for stress measurements. It suggests the 1991 phreatic eruption was driven by hydraulic fracturing induced by forced fluid flow. We propose that the extremely high LP and VT seismicity rates, relative to other effusive volcanoes, during the climax of the 1991 phreatic explosion, are due to the activation of the whole hydrothermal system, as roughly sized by the distribution of VT hypocenters. The seismicity rate in 1995 was still higher than the pre-eruption seismicity rate, and disagrees with the time pattern of thermo-elastic stress readjustment induced by single magma intrusions at basaltic volcanoes. We propose that it corresponds to the still ongoing relaxation of pressure heterogeneity within the hydrothermal system as suggested by the few LP events that still occurred in 1995.Editorial responsibility: H Shinohara  相似文献   

14.
The 1995–1996 eruption of Mt. Ruapehu has provided a number of insights into the geochemical processes operating within the magmatic-hydrothermal system of this volcano. Both pre-eruption degassing of the rising magma and its eventual intrusion into the convective zone of the hydrothermal system beneath the lake were clearly reflected in lake water compositions. The eruptions of September–October 1995 expelled the lake, and provided the first-ever opportunity to characterise gas discharges from this volcano. The fumarolic discharges revealed compositions typical of andesite volcanoes and strong interaction with the enclosing meteoric and hydrothermal system fluids. Some 1.1 MT of SO2 gas was released from the volcano between September 1995 and December 1996, whereas ca. twice this amount (2.2 MT equivalent SO2) was erupted as soluble (i.e. leachable) oxyanions of sulphur. Significantly more sulphur was released from the volcano over this period than can be accounted for from the magma volume actually erupted. The evidence suggests that a sizable component of the evolved sulphur was remobilised from the long-lived hydrothermal system within the volcano during the 1995–1996 activity.  相似文献   

15.
Crustal earthquakes near Ruapehu and Ngauruhoe fall into two classes, each of which can be subdivided. On the one hand, there are high-frequency events ( 3 Hz) with sharp, well-defined phases, mainly concentrated beneath Ruapehu Crater Lake. Low-frequency events (< 2 Hz), on the other hand, are common at shallower depths under both volcanoes. These are usually emergent multiple events, and are often closely associated with eruptions.The low-frequency events resemble Minakami's B-type and explosion earthquakes, but sometimes occur where no vent exists and rather deeper than his formal definition (< 1 km) permits. More importantly, they lack reliable criteria (wave-form or magnitude differences) to distinguish between his two groups. Whether or not they accompany an eruption (Minakami's definition of explosion earthquake) appears to depend on whether the volcanoes are in a “closed-” or “open-vent” condition. The high-frequency earthquakes are similar in wave-form to Minakami's A-type. However, many at Ruapehu (here designated “roof-rock” earthquakes) originate at shallower depths than the B-type earthquakes, which is contrary to Minakami's definition.Difficulty in applying Minakami's classification rigorously, and the fact that low frequencies may be due to abnormal attenuation of higher frequencies along the path, rather than to their suppression or absence at the source, has led to reclassification of earthquakes near the volcanoes into two broad groups, tectonic and volcanic. The former includes all high-frequency earthquakes, and those discrete events in which dominant low frequencies are due to path effects. The latter includes multiple and emergent events which show evidence of prolonged or repetitive source mechanism. Dominant low frequencies are ascribed to occurrence in heat-weakened material, and high frequencies to instantaneous source mechanisms operating in competent rock. The term volcano-tectonic describes tectonic earthquakes within some arbitrary distance of a volcano.At Ngauruhoe and Ruapehu, volcanic earthquakes accompany explosive, vent-clearing eruptions. Subsequent “open-vent” degassing and ash emission, however, although often powerful and prolonged, usually occurs without earthquakes. Such activity is, however, frequently accompanied by volcanic tremor. At Ruapehu, under “closed-vent” conditions, when lake temperature is low, low-frequency earthquakes up to magnitude ML = 3.4 have occurred without any eruption.Five types of phreatic eruptions are identified at Ruapehu, each having a distinctive seismic pattern. The three most explosive types appear to be generated by a chain reaction process, and all involve flashing of water to steam; the first by failure of the roof, with little precursory seismicity, after a “closed-vent” period, during which lake temperature decreases; the second, after prolonged heating of the lake and much preliminary volcanic tremor, interpreted as due to rising magma; and the third, under “open-vent” conditions in the wake of one of the two preceding types. A fourth probably occurs in wet sediments near the base of the lake, as a result of upward migration of hot gas, and a fifth, aseismic, or accompanied by very weak volcanic tremor, is associated with convective overturn within Crater Lake.  相似文献   

16.
Following a period of net uplift at an average rate of 15±1 mm/year from 1923 to 1984, the east-central floor of Yellowstone Caldera stopped rising during 1984–1985 and then subsided 25±7 mm during 1985–1986 and an additional 35±7 mm during 1986–1987. The average horizontal strain rates in the northeast part of the caldera for the period from 1984 to 1987 were: 1 = 0.10 ± 0.09 strain/year oriented N33° E±9° and 2 = 0.20 ± 0.09 strain/year oriented N57° W±9° (extension reckoned positive). A best-fit elastic model of the 1985–1987 vertical and horizontal displacements in the eastern part of the caldera suggests deflation of a horizontal tabular body located 10±5 km beneath Le Hardys Rapids, i.e., within a deep hydrothermal system or within an underlying body of partly molten rhyolite. Two end-member models each explain most aspects of historical unrest at Yellowstone, including the recent reversal from uplift to subsidence. Both involve crystallization of an amount of rhyolitic magma that is compatible with the thermal energy requirements of Yellowstone's vigorous hydrothermal system. In the first model, injection of basalt near the base of the rhyolitic system is the primary cause of uplift. Higher in the magmatic system, rhyolite crystallizes and releases all of its magmatic volatiles into the shallow hydrothermal system. Uplift stops and subsidence starts whenever the supply rate of basalt is less than the subsidence rate produced by crystallization of rhyolite and associated fluid loss. In the second model, uplift is caused primarily by pressurization of the deep hydrothermal system by magmatic gas and brine that are released during crystallization of rhyolite and them trapped at lithostatic pressure beneath an impermeable self-sealed zone. Subsidence occurs during episodic hydrofracturing and injection of pore fluid from the deep lithostatic-pressure zone into a shallow hydrostatic-pressure zone. Heat input from basaltic intrusions is required to maintain Yellowstone's silicic magmatic system and shallow hydrothermal system over time scales longer than about 105 years, but for the historical time period crystallization of rhyolite can account for most aspects of unrest at Yellowstone, including seismicity, uplift, subsidence, and hydrothermal activity.  相似文献   

17.
Occurrences of debris avalanche deposits newly identified in Tahiti (Society Islands) and Ua Huka (Marquesas Archipelago) are described and interpreted here. In both islands, the breccias are located within horseshoe-shaped residual calderas. In Tahiti, the epiclastic formations, up to 500 m thick, lie on the floor of the central depression and in the valley of the northwards running Papenoo River. In Ua Huka, the breccias crop out within a depression limited by a semicircular crest in four bays along the southern coast. Their thickness is ca. 100 m. A few clasts collected in the Tahitian breccias and some rocks forming their substratum have been dated (K–Ar datings) and analysed (major and trace elements, Sr–Nd isotopes) for this study. Using these data, we show that the debris avalanche(s) occurred in Tahiti Nui at the end of the growth of the shield volcano (between 570 000 and 390 000 years ago), maybe in consequence of the emplacement of the plutonic body which occupies the central part of the caldera. In Ua Huka, the collapse took place nearly 3 Ma ago, between the construction of the shield volcano and that of the inner one. The southwards orientation of the caldera, like that of the neighbouring island Nuku Hiva, might reflect a preferential direction of weakness in the substratum of the central Marquesas.  相似文献   

18.
An audio-magnetotelluric investigation in Terceira Island (Azores)   总被引:2,自引:0,他引:2  
Ten audio-magnetotelluric soundings have been carried out along a profile crossing the Serra do Cume caldera in the eastern part of the Terceira Island (Azores). The main objectives of this investigation were to detect geoelectrical features related with tectonic structures and to characterize regional hydrological and hydrothermal aspects mainly those related to geothermal fluid dynamics.Three-dimensional numerical investigation showed that the data acquired at periods shorter than 1 s are not significantly affected by ocean effect. The data was analysed using the Smith's decomposition method in order to investigate possible distortions caused by superficial structures and to estimate a global regional strike. The results suggest that in general the soundings were not distorted. A regional N55°W strike was chosen for the two-dimensional data inversion.The low-resistivity zones (10–30 ohm-m) displayed in the central part of the 2-D geoelectrical model have been interpreted as caused by hydrothermal circulation. The low-resistivity anomalies at the ends of the profile might be attributed to alteration zones with interaction of seawater intrusion. High-resistivity (> 300 ohm-m) values have been related with less permeable zones in the SW of Cinco Picos and Guilherme Moniz caldera walls.  相似文献   

19.
Mayor Island is a peralkaline rhyolitic caldera volcano characterised by numerous, sector-confined pyroclastic deposits, together with lavas forming at least five composite shields. Correlation of sequences between sectors is difficult because of the scarcity of island-wide marker beds. However, eight distal calc-alkaline fall tephras (ca. 7.3 14C ka to 64 ka) from Okataina and Taupo volcanic centres in the nearby Taupo Volcanic Zone (TVZ) have been identified on the island. These “foreign” TVZ tephras provide marker planes to correlate activity in different sectors of Mayor Island volcano, and refine an eruptive chronology. At least seventeen pyroclastic eruptions and fourteen lava-producing events (including multiple, shield-forming events) have occurred in the past ca. 64 ka. Age controls provided by the calc-alkaline tephras confirm the extremely local dispersal characteristics of many of the Mayor Island eruptives and show that K/Ar ages as young as 25–33 ka on obsidians with 4.2–4.4% K2O are reliable.  相似文献   

20.
New age determinations from Tenerife, together with those previously published (93 in all), provide a fairly comprehensive picture of the volcanic evolution of the island. The oldest volcanic series, with ages starting in the late Miocene, are formed mainly by basalts with some trachytes and phonolites which appear in Anaga, Teno and Roque del Conde massifs. In Anaga (NE), three volcanic cycles occurred: one older than 6.5 Ma, a second one between 6.5 and 4.5 Ma, with a possible gap between 5.4 and 4.8 Ma, and a late cycle around 3.6 Ma. In Teno (NW), after some undated units, the activity took place between 6.7 and 4.5 Ma, with two main series separated by a possible pause between 6.2 and 5.6 Ma. In the zone of Roque del Conde (S), the ages are scattered between 11.6 and 3.5 Ma. Between 3.3 and 1.9 Ma, the whole island underwent a period of volcanic quiescence and erosion.The large Cañadas volcano, made up of basalts, trachytes and phonolites, was built essentially between 1.9 and 0.2 Ma. To the NE of this central volcano, linking it with Anaga, is a chain of basaltic emission centers, with a peak of activity around 0.8 Ma. The Cañadas Caldera had several collapse phases, associated with large ignimbrite emissions. There were, at least, an older phase more than 1 Ma old, on the western part of the volcano, and a younger one, less than 0.6 Ma old, in the eastern side. The two large “valleys” of Guimar and la Orotava were formed by large landslides less than 0.8 Ma ago, and probably before 0.6 Ma ago. The present Cañadas caldera was formed by another landslide, less than 0.2 Ma ago. This caldera was later filled by the huge Teide volcano, which has been active even in historic times. During the same period a series of small volcanoes erupted at scattered locations throughout the island.The average eruptive rate in Tenerife was 0.3 km3/ka, with relatively small variations for the different eruptive periods. This island and La Gomera represent a model of growth by discontinuous pulses of volcanic activity, separated by gaps often coinciding with episodes of destruction of the edifices and sometimes extended for several million years. The neighbouring Gran Canaria, on the other hand, had an initial, rapid “shield-building phase” during which more than 90% of the island was built, and a series of smaller pulses at a much later period.A comparison between these three central islands indicates that the previously postulated westward displacement in time of a gap in the volcanic activity is valid only as a first approximation. Several gaps are present on each island, overlapping in time and not clearly supporting either of the models proposed to explain the evolution of the Canaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号