首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the maps of the galactic structure based on the kinematical method, several systematic heliocentric anomalies are found: in the northern galactic hemisphere the spiral arms are more tightly wound and the extent of neutral hydrogen is smaller than in the southern hemisphere; with separate rotation curves for the north and the south the arms become anomalously circular with a consequent discrepancy to the stellar distribution; there are straight portions in the arms pointing towards the Sun, as well as systematic strong curvatures and knee-like features; the inner arms affect the structure of the outer arms; with the northern rotation model, Hii-regions and Hi avoid the southern tangential circle; in the rear of the Galaxy, at symmetric longitudes, enhanced Hi-densities are found; the Perseus arm is displaced atl=180°. All of these anomalies can be explained with a simple model involving a non-velocity redshift field within the Galaxy, with an enhancement within the spiral arms. This is demonstrated by numerical simulations of the structural anomalies. Reducing the redshift effect from the kinematic data, the Galaxy's structure and kinematics appear symmetric. The significance of the result for the redshift problem is discussed.  相似文献   

2.
The 21-cm line intensities in a (Z, R) distribution is studied at the locus of tangential points of the inner parts of the Galaxy using both Northern and Southern data. A corrugation effect is observed in the galactic neutral hydrogen layer with an average wave length of 2 kpc and a wave amplitude of 70 pc. The patterns obtained for the I and the IV quadrant indicate that the inner and the outer parts of the spiral arms are located, respectively, below and above the galactic plane. Also, with high angular resolution the corrugation pattern suggests the existence of ‘faults’ in a geological sense in the inter arm zones. Optical studies of spatial distribution of early objects show good agreement with the neutral hydrogen results, indicating that the observed corrugation pattern is an indication of real distribution of matter in the galactic layer, and not of a kinematical effect.  相似文献   

3.
The density distributions of the two main components in interstellar hydrogen are calculated using 21 cm line data from the Berkeley Survey and the Pulkovo Survey. The narrow, dense component (state I of neutral hydrogen) has a Gaussianz-distribution with a scale-height of 50 pc in the local zones (the galactic disk). For the wide, tenuous component (hydrogen in state II) we postulate a distribution valid in the zones where such a material predominates (70 pc?z? 350 pc the galactic stratum) i.e., $$n_H \left( z \right) = n_H \left( 0 \right)exp \left( { - \left( {z/300{\text{ }}pc} \right)^{3/2} } \right).$$ Similar components are found in the dust distribution and in the available stellar data reaching sufficiently highz-altitudes. The scale-heights depend on the stellar type: the stratum in M III stars is considerably wider than in A stars (500–700 pc against 300 pc). The gas to dust ratio is approximately the same in both components: 0.66 atom cm?3 mag?1 kpc in the galactic plane. A third state of the gas is postulated associating it the observed free electron stratum at a scale-height of 660 pc (hydrogen fully ionized at high temperatures). The ratio between the observed dispersions in neutral hydrogen (thermal width plus turbulence) and the total dispersions corresponding to the real inner energies in the medium is obtained by a comparison with the dispersion distribution σ(z) of the different stellar types associated with the disk and the stratum $$\sigma ^2 \left( {total} \right) = \sigma ^2 \left( {21{\text{ cm line}}} \right) \cdot {\text{ }}Q^2 ,$$ from which we graphically obtainedQ 2=2.9 ± 0.3, although that number could be lower in the densest parts of the spiral arms. Its dependence on magnetic field and cosmic rays is analysed, indicating equipartition of the different energy components in the interstellar medium and consistency with the observed values of the magnetic field: i.e., fluctuations with an average of ~ 3 μG (associated with the disk) in a homogeneous background of ~ 1 μG (associated with the stratum). A minimum and maximumK z-force are obtained assuming extreme conditions for the total density distribution (gas plus stars). TheK z-force obtained from the interstellar gas in its different states using approximations of the Boltzmann equation is a reasonable intermediate case between maximum and minimumK z. The mass density obtained in the galactic plane is 0.20±0.05M pc?3, and the results indicate that the galactic disk is somewhat narrower and denser than has usually been believed. The effects of wave-like distributions of matter in thez-coordinate are analysed in relation with theK z-force, and comparisons with theoretical results are performed. A qualitative model for the galactic field of force is postulated together with a classification of the different zones of the Galaxy according to their observed ranges in velocity dispersions and the behaviour of the potential well at differentz-altitudes. The disk containing at least two-thirds of the total mass atz<100 pc, the stratum containing one-third or less of the total mass atz≤600–800 pc, and the halo at higherz-altitudes with a small fraction of such a mass which is difficult to evaluate.  相似文献   

4.
The oxygen abundance gradient relative to hydrogen is considered, as derived for galactic Hii regions and type II planetary nebulae. The so-called simple model for the chemical evolution of the Galaxy is shown to explain well the observed gradients, provided some reasonable assumptions are made regarding the gas distribution in the galactic disk.  相似文献   

5.
The spiral structure of the Large Magellanic Cloud has been investigated using the best spiral indicators (Table I). A clear spiral pattern emerges from the distribution of the optical Hii-regions with diametersD256 pc and the blue supergiants with (U-B)o–0.60 (i.e., O-B8 Ia-O to Iab) (Figure 1). This structure is reflected in the distribution of supernova remnants, OB-associations, young open clusters, Wolf-Rayet-Stars and X-ray sources (Figure 3), andM-supergiants. The spiral features emanate from the 30 Doradus Hii-complex as centre and are completely unrelated to the LMC Bar. The structure around 30 Dor is especially well seen in the distribution and even the form (elongation) of the dark clouds (Figure 3). In Section 3 a new interpretation of the 21 cm-line data is attempted based on an analysis of the neutral hydrogen densityN HI integrated over the line of sight. The ridge lines of the integrated 21 cm-line intensities delineate two main features with a half-intensity width of 0.9 kpc, roughly coinciding with the two main optical features. Apart from many differing details the basic structure of the distribution of Hi and of the optical spiral tracers is similar: (1) 30 Dor is the centre of density and starting-point of the spiral features, (2) two main complex arms I and II dominate the distribution, (3) the arms are fragmented optically (Ia-c and IIa-e) as well as in the Hi, start with the same steep pitch angles in directions displaced by about 60° (instead of the usual diametral symmetry of common two-armed spirals) and wind in the same directions. In the discussion (Section 4) it is first shown why the optical Hii-regions with small diametersD<6 pc do not show the spiral structure (Figure 2) due to selection and age effects. The LMC is classified exclusively from the appearance of the spiral tracers as Scp in the Hubble-system (the peculiarity is the asymmetry of the spiral structure) and ScIII-IVp in the DDO-system. Arguments are given to justify such a classification procedure. Similar galaxies may be MCG 4-31-14 and NGC 3664 S(B)IV-V:.The tidal action of our Galaxy is most probably unimportant for the spiral structure of the LMC, certainly so in the inner parts where the features are sharpest. Evidence is presented to support the view that the enormous supergiant Hii-complex 30 Doradus (M H II3×105 M ,M tot=5×106 M ) is the nucleus of the spiral LMC.The LMC as a pathological spiral helps us to understand together with the disturbed also the normal function of spiral formation. A density-wave type theory of spiral structure is hardly compatible with the observations; an ejection theory appears to be more promising.  相似文献   

6.
The stellar polarization data have been examined using a new catalogue containing accurate stellar distances. On the assumption of a magnetic alignment hypothesis, correlations on the larger distance scale indicate the existence of a dominant regular magnetic field, although its characteristics are difficult to determine. Within 500 pc its direction is towardsl45° and beyond this towardsl60°, though it is clear that such a longitudinal model is too simple. There is also some evidence for an inclination of this field to the galactic plane. The distribution of the polarization vectors away from the galactic plane has been examined and it is proposed that the two largest loop structures, previously identified as Supernova remnants, are linked by the regular field. Incremental polarization maps have been produced but they show little correlation with the spiral structure. The polarization appears to be saturated at about 1 kpc from the Sun, which is explained as the result of an observational selection effect. On the smaller distance scales an autocorrelation analysis in different directions has revealed no obvious coherence in the irregular component on scales greater than 50 pc.  相似文献   

7.
An extensive concentration of neutral hydrogen has been observed in the fourth galactic quadrant, with a mean radial velocity of +44 km s?1 referred to the local standard of rest. At a distance ofR kpc from the Sun this structure would contain 2.5×104 R 2 solar masses of neutral hydrogen. Five possible interpretations of this extensive concentration are considered: (1) part of the shell of a nearby explosive event; (2) a distant spiral arm of the Galaxy; (3) an extragalactic object; (4) material falling into our Galaxy; (5) gas expelled from the galactic center. Arguments are offered against the first three possibilities.  相似文献   

8.
We investigate the dynamical effects of a molecular cloud complex with a mass ∼ 107 M and a size ∼ a few 100 pc on the vertical distribution of stars and atomic hydrogen gas in a spiral galactic disc. Such massive complexes have now been observed in a number of spiral galaxies. The extended mass distribution in a complex, with an average mass density 6 times higher than the Oort limit, is shown to dominate the local gravitational field. This results in a significant redistribution or clustering of the surrounding disc components towards the mid-plane, with a resulting decrease in their vertical scaleheights.
The modified, self-consistent stellar density distribution is obtained by solving the combined Poisson equation and the force equation along the z -direction for an isothermal stellar disc on which the complex is imposed. The effect of the complex is strongest at its centre, where the stellar mid-plane density increases by a factor of 2.6 and the vertical scaleheight decreases by a factor of 3.4 compared with the undisturbed stellar disc. A surprising result is the large radial distance of ∼ 500 pc from the complex centre over which the complex influences the disc; this is due to the extended mass distribution in a complex. The complex has a comparable effect on the vertical distribution of the atomic hydrogen gas in the galactic disc. This 'pinching' or constraining effect should be detectable in the nearby spiral galaxies, as for example has been done for NGC 2403 by Sicking. Thus the gravitational field of a complex results in local corrugations of the stellar and H  i vertical scaleheights, and the galactic disc potential is highly non-uniform on scales of the intercomplex separation of ∼ 1 kpc.  相似文献   

9.
Using the recent observational data on atomic and molecular hydrogen in the Galaxy, we analyse the dynamics of the interstellar gas in a spiral density wave. Within the framework of Marochniket al.'s (1972) model of the galactic spiral structure, the gas flow is obtained, with self-gravitation and thermal processes taken into account.It is shown that: (1) the self-gravitation of gas does not practically affect the galactic shock if the dominant contribution into the gas density comes from atomic hydrogen; (2) the effects of self-gravitation could be essential for both the gas flow and the stellar spiral wave only if the density contribution of H2 exceeded several times that ofHi, with molecular hydrogen as a continuous medium having the isothermal equation of state; (3) however, regardless of the estimates of H2 abundance in the Galaxy, its reaction to the density wave is weak, since it forms a collisionless system not dragged by the intercloud gas.It has been found that, if we allow for thermal processes in the interstellar medium, new types of gas flow can develop alongside with a previously-known continuous flow and galactic shock. They are: (1) galactic shock with the phase transition leading to the formation of dense cold clouds; (2) a three-phase flow where hot cavities and dense cold clouds coexist with an initial, moderately dense and cold phase; (3) an accretion wave which is a specific type of nonlinear wave with an amplitude of 11/2 orders of magnitude larger than that of the isothermal galactic shock appearing under the same conditions, but without heating and cooling.  相似文献   

10.
Evidence is presented for the hypothesis that the supergiantHii-complex 30 Doradus (NGC 2070) is the mildly active galactic nucleus of the Large Magellanic Cloud. For this purpose the general properties of galactic nuclei and the characteristics of active nuclei are reviewed (Section 2). Examination of 30 Doradus shows that it plasy the same exceptional role among allHii-regions of the LMC as Sgr A among those of our Galaxy, and has all the properties of a galactic nucleus (luminosity, emission spectrum, IR source, semistellar central object R 136, symmetry centre of an starting point of spiral structure). Evidence for the activity is given by the peculiar filamentary structure (Figure 1), the young spiral filaments superposed on old, broad and smooth near-circular arms (Figure 2), the splitting of the [Oiii] 5007 profile in two components corresponding to an expansion velocity of 50 km s–1, and the strong non-thermal component (Section 3). The mass loss of 30 Dor is estimated at 0.05M /a. It is speculated that the nucleus of a galaxy may be wandering due to explosive events.  相似文献   

11.
The Sun in not located in a major spiral arm, and sits in a small ‘Local Arm’ (variously called arm, armlet, blob, branch, bridge, feather, finger, segment, spur, sub-arm, swath, etc.). The diversity of names for the ‘Local Arm’ near the Sun indicates an uncertainty about its shape or pitch or its extent from the Sun in each galactic quadrant, as well as an uncertainty about its origin.Here we extract data about the small ‘Local Arm’ near the Sun, from the recent observational literature, over many arm tracers, and we use statistics in order to find the local arm’s mean extent from the Sun, its possible shape and pitch angle from the direction of galactic longitude \(90^{\circ}\). Employing all tracers, the Local Arm is about 4 kpc long by 2 kpc large. The Sun is within 1 kpc of the center of the local arm. Proposed ‘bridges’ and ‘fingers’ are assessed. These bridges to nearby spiral arms and fingers across spiral arms may not reach the nearest spiral arms, owing to kinematic and photometric distance effects.We then compare these statistical results with some predictions from recent models proposed to explain the local arm (perturbations, resonances, density wave, halo supercloud, debris trail from a dwarf galaxy).The least controversial models involve importing materials from elsewhere (halo supercloud, debris trail) as a first step, and to be later deformed in a second step (by the Galaxy’s differential rotation into become roughly parallel to spiral arms) and then subjected to ongoing forces (global density waves, local perturbations).  相似文献   

12.
The proper motion in galactic latitude of O-B stars enables us to detect the kinematic behaviour of an optical counterpart of the large-scale warp of the HI gas layer in our Galaxy. A selected set of the proper motions of about 350 O-B stars within 3kpc from the sun (R0=8.5kpc) is analyzed on the proper motion systems of N30, FK4, and FK5. A remarkable differece in the kinematic behaviour of the warp appears between the old systems (N30 and FK4) and FK5-system. On the old systems, the O-B stars in the belt 8.5kpcR<9.5kpc exhibit a systematic z-motion upward from the galactic plane forl180° and downward forl>180° with the mean proper motions of about ±0".4/century, respectively. On the other hand, the results on the FK5-system show no meaningful systematic z-motion, even though the O-B star layer exterior to the solar circle is inclined (3°) with respect to the galactic plane. These findings can neither be inferred from the model of the oblique material flow nor from the concepts of the precessional stellar rings and of the bending oscillation of a stellar disk. The remarkable difference in the kinematic behaviour of the warp, appearing between the old and new systems, is caused mainly by the conversion of the proper motions on the old systems into those on the J2000.0 frame. The conversion near the galactic plane is given by µb(FK4(J2000.0))–µb(FK4)–0.50 sinl/century. The implication of this relation is discussed in connection with the warping motion of stars detected here.  相似文献   

13.
G01 New evidence for a connection between massive black holes and ULX G02 Long‐Term Evolution of Massive Black Hole Binaries G03 NBODY Meets Stellar Population Synthesis G04 N‐body modelling of real globular star clusters G05 Fokker‐Planck rotating models of globular clusters with black hole G06 Observational Manifestation of chaos in spiral galaxies: quantitative analysis and qualitative explanation G07 GRAPE Clusters: Beyond the Million‐Body Problem G08 Orbital decay of star clusters and Massive Black Holes in cuspy galactic nuclei G09 An Edge‐on Disk Galaxy Catalog G10 Complexes of open clusters in the Solar neighborhood G11 Search for and investigation of new stellar clusters using the data from huge stellar catalogues G12 Computing 2D images of 3D galactic disk models G13 Outer Pseudoring in the Galaxy G14 Where are tidal‐dwarf galaxies? G15 Ultra compact dwarf galaxies in nearby clusters G16 Impact of an Accretion Disk on the Structure of a stellar cluster in active galactic nuclei G17 Order and Chaos in the edge‐on profiles of disk galaxies G18 On the stability of OB‐star configurations in the Orion Nebula cluster G19 Older stars captured in young star clusters by cloud collapse G20 General features of the population of open clusters within 1 kpc from the Sun G21 Unstable modes in thin stellar disks G22 From Newton to Einstein – Dynamics of N‐body systems G23 On the relation between the maximum stellar mass and the star cluster mass  相似文献   

14.
We have studied the interstellar column densities of Alii, Siii,Sii, Feii, Niii, and Znii in the direction of 18 O- and 6 B-type stars so as to improve the relations of element depletions withE(B-V), and to look for other possible relations with two stellar parameters: namely, the rate of mass loss and rotational velocity. The stars were chosen in order to cover several directions in the Galaxy, as well as a wide range in interstellar reddening. We found a clear inverse trend relating the abundance of elements to interstellar reddening.  相似文献   

15.
We compute a new grid of plage models to determine the difference in temperature versus mass column density structure T(m) between plage regions and the quiet solar chromosphere, and to test whether the solar chromosphere is geometrically thinner in plages. We compare partial redistribution calculations of Mg ii h and k and Ca ii K to NRL Skylab observations of Mg ii h and k in six active regions and Ca ii K intensities obtained from spectroheliograms taken at approximately the same time as the Mg ii observations. We find that the plage observations are better matched by models with linear (in log m) temperature distributions and larger values of m 0 (the mass column density at the 8000 K layer in the chromosphere), than by models with larger low chromosphere temperature gradients but values of m 0 similar to the quiet Sun. Our derived temperature structures are in agreement with the grid originally proposed by Shine and Linsky, but our analysis is in contrast to the study by Kelch which implies that stellar chromospheric geometrical thickness is not affected by chromospheric activity. We conclude that either the stellar Mg ii observations upon which the Kelch study was based are of poorer quality than had been assumed, or that the spatial averaging of inhomogeneous structures, which is inherent in the stellar data, does not lead to a best fit one-component model similar in detail to that of a stellar or a solar plage.Visiting Astronomer at Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.Staff member, Quantum Physics Division, National Bureau of Standards.  相似文献   

16.
A large ring, 50 pc diameter, of H+[Nii] emission in the LMC has been investigated using several instruments. It is suggested that stellar winds from O and B stars could play a vital role in the formation of the structures revealed.  相似文献   

17.
The Monoceros ring, a circular optical nebulosity 3°.5 in diameter and centred at R.A.=6h37m, Dec.=6°30 (l ii =205°.5,b ii =0°.2) is in good structural agreement with radio observations. A neutral hydrogen shell is also accurately projected on the ring. These observations are consistent with the Monoceros ring being a supernova remnant 90–100 pc in diameter expanding at about 45 km s–1 and having an age of the order of a million years. Bright Hii regions containing early-type stars (e.g., galactic cluster NGC 2244 in the Rosette nebula) and extremely young stars of the OB association Mon OB2 lie at the edges of the ring. The positional and temporal coincidence of the Mon OB2 association with a supernova remnant suggests that probably the star formation in this region is induced or speeded up by the passage of a supernova shock wave through the clumpy interstellar medium.  相似文献   

18.
The kinematics of the Sagittarius (R = 5.7 kpc),Carina (R = 6.5 kpc), Cygnus (R = 6.8 kpc), and Perseus (R = 8.2 kpc) arms suggests the existence of two spiral patterns in the Galaxy that rotate with different speeds. The inner spiral pattern that is represented by the Sagittarius arm rotates with the speed of the bar, Ωb = 60 ± 5 km s−1 kpc−1, while the outer spiral pattern that includes the Carina, Cygnus, and Perseus arms rotates with a lower speed, Ωs = 12–22 km s−1 kpc−1.The existence of an outer slow tightly wound spiral pattern and an inner fast spiral pattern can be explained by numerically simulating the dynamics of outer pseudorings. The outer Lindblad resonance of the bar must be located between the Sagittarius and Carina arms. The Cygnus arm appears as a connecting link between the fast and slow spiral patterns.  相似文献   

19.
The spiral pattern in the nearby spiral galaxy NGC 6946 has been studied using the wavelet transformation technique, applied to galaxy images in polarized and total non-thermal radio emission at λλ 3.5 and 6.2 cm, in broadband red light, in the λ 21.1 cm H  i line and in the optical Hα line. Well-defined, continuous spiral arms are visible in polarized radio emission and red light, where we can isolate a multi-armed pattern in the range of galactocentric distances 1.5–12 kpc, consisting of four long arms and one short spiral segment. The 'magnetic arms' (visible in polarized radio emission) are localized almost precisely between the optical arms. Each magnetic arm is similar in length and pitch angle to the preceding optical arm (in the sense of galactic rotation) and can be regarded as its phase-shifted image. Even details like a bifurcation of an optical arm have their phase-shifted counterparts in the magnetic arms. The average relative amplitude of the optical spiral arms (the stellar density excess over the azimuthal average) grows with galactocentric radius up to 0.3–0.7 at r ≃5 kpc, decreases by a factor of two at r =5–6 kpc and remains low at 0.2–0.3 in the outer parts of the galaxy. By contrast, the magnetic arms have a constant average relative amplitude (the excess in the regular magnetic field strength over the azimuthal average) of 0.3–0.6 in a wide radial range r =1.5–12 kpc. We briefly discuss implications of our findings for theories of galactic magnetic fields.  相似文献   

20.
On the basis of the PLC relation (1) or the PL relation by Van den Bergh (2) and the PC relation by Deanet al. (1978), the distances of 284 galactic cepheids with photoelectric observations have been derived. The space distribution of these cepheids with 111 additional ones without photoelectric observations, is studied. In spite of the strong influence of the absorption matter, which makes a great number of distant cepheids unknown (Figure 4), a conclusion is drawn that the cepheids do not trace spiral arms with only one possible exception: the Carina arm. The cepheidz-coordinate distribution confirms the finding of Fernie (1968) that the cepheid layer is inclined towards the formal galactic plane. On the basis of cepheid space density, a number of vast star complexes (Table I) are identified in which other young objects, together with cepheids fall. The existence of these complexes is explained by star formation in giant molecular clouds. The cepheid mean period increase towards the galactic centre is most probably connected with the existence of a ring between the Sun and the centre of the Galaxy, with the highest density of hydrogen and the highest rate of star formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号