首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2009年初冬河套地区暴雪天气过程诊断分析   总被引:4,自引:0,他引:4  
利用常规资料、新一代天气雷达和自动站资料,对2009年初冬发生在河套地区的暴雪天气过程进行分析,结果表明:稳定深厚的极地冷涡不断分裂冷空气南下,促使高空槽强烈发展,为暴雪的发生提供了动力条件.高中层槽前西南气流与低层东南、偏东气流为暴雪的发生提供水汽条件.中低层负散度、正涡度,高层正散度、负涡度的分布有利于暴雪的发生和发展.逆温层和高能舌的存在为暴雪的发生储备了潜在能量.风向随高度顺转,风速随高度增大的垂直切变有利于暴雪的发生和发展.  相似文献   

2.
利用常规资料、新一代天气雷达和自动站资料,对2009年初冬发生在河套地区的暴雪天气过程进行分析,结果表明:稳定深厚的极地冷涡不断分裂冷空气南下,促使高空槽强烈发展,为暴雪的发生提供了动力条件。高中层槽前西南气流与低层东南、偏东气流为暴雪的发生提供水汽条件。中低层负散度、正涡度,高层正散度、负涡度的分布有利于暴雪的发生和发展。逆温层和高能舌的存在为暴雪的发生储备了潜在能量。风向随高度顺转,风速随高度增加的垂直切变有利于暴雪的发生和发展。  相似文献   

3.
利用地面观测、高空探测常规资料、NCEP 1°×1°再分析以及FY-2G红外云图资料,综合分析了2016年11月10—13日北疆北部的暖区暴雪过程成因,结果表明,此次暴雪天气是在“单阻型”经向环流和有利的高低空天气系统配置下发生的,主要表现为500 hPa东欧阻塞高压脊稳定,西西伯利亚低涡和冷槽东南下至北疆境外的中亚地区,200~500 hPa低涡和冷槽系统深厚且呈前倾结构,低涡底部极锋锋区加强并压至北疆上空,700~850 hPa北疆北部有暖平流和暖脊发展,地面气压场呈“两高夹一低”形势,北疆在地面冷锋前部和暖锋后部的暖区内。中高层西北急流、低层偏西气流和偏东气流三支气流在暴雪区上空汇合,暴雪区位于高空低涡底部西北急流、低层暖平流和切变线、地面暖低压南部的高低空重叠区域内。500 hPa以下仅有一条西方水汽输送路径,最强水汽输送在600~700 hPa,最强水汽辐合位于850 hPa附近,最大暴雪中心(裕民)的水汽输送强度更强、厚度更厚、时间更长,其平均云顶黑体亮温TBB值较富蕴偏高10℃左右。  相似文献   

4.
利用地面观测、高空探测常规资料、NCEP 1°×1°再分析以及FY-2G红外云图,综合分析2016年11月10—13日北疆北部的暖区暴雪过程成因,结果表明:此次暴雪天气是在"单阻型"经向环流和有利的高低空天气系统配置下发生的,主要表现为500 hPa东欧阻塞高压脊稳定,西西伯利亚低涡和冷槽东南下至北疆境外的中亚地区,200~500 hPa低涡和冷槽系统深厚且呈前倾结构,低涡底部极锋锋区加强并压至北疆上空,700~850 hPa北疆北部有暖平流和暖脊发展,地面气压场呈"两高夹一低"形势,北疆在地面冷锋前部和暖锋后部的暖区内。中高层西北急流、低层偏西气流和偏东气流3支气流在暴雪区上空汇合,暴雪区位于高空低涡底部西北急流、低层暖平流和切变线、地面暖低压南部的高低空重叠区域内。500 hPa以下仅有一条西方水汽输送路径,最强水汽输送在600~700 hPa,最强水汽辐合位于850 hPa附近,最大暴雪中心(裕民)的水汽输送强度更强、厚度更厚、时间更长,其平均云顶黑体亮温TBB值较富蕴偏高10℃左右。  相似文献   

5.
本文利用Micaps3.0资料,对2013年11月17-20日绥化市出现的一次大范围暴雪天气过程的环流特征和物理量场进行分析,结果表明,这次暴雪过程是由高空低涡的发展引起的,地面切变线是主要的影响系统,中低层较强的水汽辐合为暴雪提供充足水汽。暴雪产生于地面低压东风倒暖平流里。  相似文献   

6.
利用内蒙古呼伦贝尔市常规观测资料和GDAS、NCEP/NCAR再分析资料,采用欧拉方法分析了2016年春季内蒙古东北部地区一次极端暴雪过程的水汽输送及收支特征,利用HYSPLIT模式和聚类分析模拟计算了此次暴雪天气过程的水汽源地、主要水汽输送通道及其对水汽输送的贡献,并与传统的欧拉方法结果进行对比。结果表明:(1)有3支不同源地的水汽流在内蒙古东北部地区交汇,对呼伦贝尔地区暴雪的发生与维持有重要影响;(2)经向和纬向输送为此次暴雪天气的发生提供了充足的水汽,暴雪区水汽主要源于中高层的南边界和随西风气流的西边界;(3)利用HYSPLIT模式模拟发现,在此次暴雪天气过程中水汽主要来源于新地岛以西洋面、日本海以及巴尔喀什湖,且三者贡献率大致相当。  相似文献   

7.
本文利用MICAPS常规资料、新一代天气雷达和自动站资料,对2009年初冬发生在河套地区的暴雪天气过程进行分析,结果表明:(1)稳定深厚的极地冷涡不断分裂冷空气南下,促使高空槽强烈发展,为暴雪的发生提供了动力条件。(2)高中层槽前西南气流与低层东南、偏东气流为暴雪的发生提供重要的水汽条件。(3)中低层负散度,正涡度,高层正散度,负涡度的分布特征非常有利于暴雪的发生和发展。(4)逆温层和高能舌的存在为暴雪的发生储备了潜在能量。(5)垂直风廓线显示图上,风向随高度顺转,风速随高度增加的垂直切变非常有利于暴雪的发生和发展。  相似文献   

8.
渤海西岸边界层东风与暴雪天气的机理分析   总被引:1,自引:0,他引:1       下载免费PDF全文
2008年12月20-21日和2010年1月3日天津地区分别出现了历史同期罕见的暴雪天气。为了提高对这种极端天气发生机理的认识,利用多种资料对这两次天气过程进行了分析。结果表明:两次暴雪过程均属于回流型降雪,但环流形势和影响系统的演变却不尽相同。影响系统分别为高空横槽(高空槽)、850 hPa切变(850 hPa低涡切变)、地面倒槽(地面气旋),水汽源自700 hPa西南气流和边界层东风的水汽输送。由于两次过程均与边界层东风相伴,特别对渤海西岸边界层东风对降雪天气的影响和作用作了探讨,表明偏东风不仅为本地输送一定量级的水汽,同时这种具有冷湿特征的东风还会与内陆具有暖湿结构的偏南风形成地面辐合线,加强地面的动力抬升作用,产生上升运动,有利于雨雪天气的加强和维持,因此可以认为边界层东风对暴雪的发生发展起到了显著的作用。  相似文献   

9.
2008年12月20—21日和2010年1月3日天津地区分别出现了历史同期罕见的暴雪天气。为了提高对这种极端天气发生机理的认识,利用多种资料对这两次天气过程进行了分析。结果表明:两次暴雪过程均属于回流型降雪,但环流形势和影响系统的演变却不尽相同。影响系统分别为高空横槽(高空槽)、850 hPa切变(850 hPa低涡切变)和地面倒槽(地面气旋),水汽源自700 hPa西南气流和边界层东风的水汽输送。由于两次过程均与边界层东风相伴,特别对渤海西岸边界层东风对降雪天气的影响和作用进行探讨,表明偏东风不仅为本地输送一定量级的水汽,同时这种具有冷湿特征的东风还会与内陆具有暖湿结构的偏南风形成地面辐合线,加强地面的动力抬升作用,产生上升运动,有利于雨雪天气的加强和维持,因此可以认为边界层东风对暴雪的发生发展起到了显著的作用。  相似文献   

10.
利用2010-2019年地面自动站资料、探空资料和NCEP 1°×1°逐6 h再分析资料,对陕北地区西北涡暴雨个例进行统计和合成分析。结果表明:陕北暴雨有1/3以上是由西北涡引起,基本都发生在7-8月;西北涡多于青海西部生成,一般东移36~48 h后可造成陕北地区暴雨天气;陕北西北涡暴雨是在高空急流、高空槽、西太平洋副热带高压、700 hPa西北涡以及低层偏南偏东气流共同作用下产生的。对西北涡的结构研究表明,一方面700 hPa正涡度中心东南侧由于高层辐散、低层辐合的共同作用造成显著上升运动,这一区域正好对应暴雨落区;另一方面陕北处于高能高湿区中,并有偏南和偏东两条水汽通道将充沛的水汽输送至陕北并在此辐合上升,为暴雨的产生提供了有利的不稳定能量和水汽条件。  相似文献   

11.
使用NCAR再分析资料,对新疆北部阿勒泰地区2000.11.20-24特大暴雪天气进行诊断分析,结果表明:500hPa极涡、贝加尔湖后部的东南气流、850hPa暖切变以及地面气旋的共同作用是产生新疆北部阿勒泰地区2000.11.20-24特大暴雪天气过程的环流背景条件。特大暴雪天气发生在较强的能量锋区、高湿区和水汽通量辐合区内。特大暴雪天气发生时,在阿勒泰地区上空形成一个由低层到高层强盛的动力性纬向垂直环流圈,为冷暖气流共同作用提供了持续不断的动力条件。正涡度的输送,使得阿勒泰地区上空的低值系统和锋区得以维持和加强。高空急流加强了特大暴雪天气的上升运动;低空偏南急流将巴尔喀什湖以南的高温高湿的不稳定大气源源不断地输送到阿勒泰地区上空,为特大暴雪天气提供了热力、水汽和不稳定能量的条件。  相似文献   

12.
南疆西部一次罕见大暴雪过程分析   总被引:2,自引:0,他引:2  
利用高分辨率卫星资料、多普勒雷达产品、常规观测和再分析资料,分析了2011年2月25-28日南疆西部一次历史罕见大暴雪天气过程的多尺度特征和物理量配置。结果表明:中亚低涡是此次大暴雪天气过程的主要影响系统,强降雪期间高、低空风场配置与夏季南疆西部典型暴雨过程类似。冬季低空偏东急流中心最大风速超过20 m·s~(-1)较为罕见。南疆西部三面环山,低空偏东急流先于高空西南急流12 h在南疆盆地东部建立,有利于将南疆盆地东部的水汽向西输送并在南疆西部汇合;受地形影响低层气流向西汇合过程中也有利于垂直上升运动的生成。大暴雪过程中存在偏西、偏东和偏南三支异常水汽输送,其中偏东水汽输送最为重要。两个β中尺度云团是造成大暴雪的主要系统,强降雪出现在云团内部局地增强阶段。大暴雪过程中以层状云雷达回波为主,局地回波强度梯度较大、边界清晰,具有一定短时弱对流特征。  相似文献   

13.
利用气象观测资料、NCEP再分析资料、GDAS资料,结合HYSPLIT模式分析2018年1月3—4日鄂北地区大暴雪的异常环流形势和水汽输送特征。结果表明:1)100 hPa极涡向亚洲东北部分裂,极锋急流位置偏南,500 hPa乌山的阻塞形势和偏强偏东的东亚大槽,有利于将强冷空气向我国中东部输送;700 hPa强盛的西南急流配合850?hPa偏东风辐合,提供有利的动力、水汽;地面冷高压势力偏强,从东路南下并不断补充,有利于降雪天气长时间的维持。2)整层水汽通量高值舌从华南沿海伸至长江沿线,鄂北地区水汽输送强度、水汽辐合偏强;4条水汽输送路径分别是650 hPa干冷空气在黄海转向从东北路输送水汽,水汽贡献率排第二;650~700 hPa气团将孟加拉湾的水汽输送至暴雪区,水汽贡献率排第一;500 hPa干冷空气自偏西方向过来,水汽贡献率最少;近地层暖湿气团将南海水汽自偏南路径输送至暴雪区,水汽贡献率排第三。与一般降雪过程比,增加了偏南的输送路径,且水汽贡献最多和次多路径的气团水汽含量更高。  相似文献   

14.
利用NECP再分析资料、卫星云图资料、新一代天气雷达资料及实况观测资料对2010年4月12-13日一次东北低涡产生的黑龙江省暴雪天气过程进行分析,详细讨论了此次暴雪的发生机制及天气特点。此次降雪过程由地面气旋北上引发,高空低涡前部东风暖平流和槽后冷平流相遇形成暖锋锋生,低涡东北部产生暴雪。低空急流对水汽的输送作用和低层较强的辐合上升运动为此次降雪过程提供增强机制。云系的发展、移动与降雪有较好的对应关系,较大降雪出现在逗点云系顶部。  相似文献   

15.
利用NECP再分析资料、卫星云图资料、新一代天气雷达资料及实况观测资料对2010年4月12-13日一次东北低涡产生的黑龙江省暴雪天气过程进行分析,详细讨论了此次暴雪的发生机制及天气特点。此次降雪过程由地面气旋北上引发,高空低涡前部东风暖平流和槽后冷平流相遇形成暖锋锋生,低涡东北部产生暴雪。低空急流对水汽的输送作用和低层较强的辐合上升运动为此次降雪过程提供增强机制。云系的发展、移动与降雪有较好的对应关系,较大降雪出现在逗点云系顶部。  相似文献   

16.
山西中部一次暴雪天气过程分析   总被引:1,自引:0,他引:1  
利用常规气象观测资料和NCEP全球再分析资料,对2013年4月19日出现在山西中部的一次暴雪天气过程进行了综合分析。结果表明:高原槽、低空低涡切变线、地面回流以及河套气旋等的共同存在为暴雪天气提供了有利的流型配置;700 h Pa西南急流、850 h Pa偏东南急流和925 h Pa偏东急流为此次暴雪天气提供了强的水汽输送和补充;500 h Pa偏西北急流和850 h Pa偏东北强气流耦合加强,且高层正涡度输送以及低层辐合、高层辐散的倾斜垂直结构使得上升运动加强,触发低层不稳定能量释放,导致暴雪天气的发生。低层和近地层温度变化、0℃层高度下降、逆温层增厚以及垂直风切变加大是判断此次降水过程相态变化和降雪强度增强的重要指标。  相似文献   

17.
2009年11月10-12日河南北部暴雪天气诊断分析   总被引:4,自引:2,他引:2  
利用常规观测资料和FY2C卫星产品,对2009年11月10-12日河南北部地区暴雪天气过程进行诊断分析,结果表明:500 hPa图上在中高纬地区形成稳定的"两槽一脊"环流形势,出现"南槽北脊"结构,低空急流显著发展,850 hPa盛行偏东气流,地面图上河套倒槽与回流形势同时发展,触发了这次暴雪天气;深厚的湿层和持续的水汽辐合为暴雪产生提供了充沛的水汽条件;低层辐合、高层辐散是触发不稳定能量释放的重要启动机制,中低空正涡度平流中心和温度冷平流中心先于暴雪出现,对暴雪天气预报有指示作用;低层冷空气较强,高层暖湿空气较强,这种"冷垫"与"暖盖"稳定形势是这次连续性区域暴雪产生的重要热力条件。  相似文献   

18.
应用常规气象观测资料、多普勒雷达数据和高时空分辨率的地面自动气象站资料,对2013年3月23日发生在通辽市的暴雪天气进行诊断分析,结果表明:强烈发展的高空槽是触发暴雪的动力机制;低空急流与地面西南气流在低层积聚大量水汽辐合,为暴雪的发生提供了重要的水汽条件;涡度和散度、能量与比湿等与暴雪关系密切;自动气象站逐时风场中"逆切变"的存在与强降雪发生时间和影响区域有较好的对应;雷达产品特征对暴雪有明显的指示作用。  相似文献   

19.
陈军  何为  杨群  雷霆  李小兰  杜小玲 《湖北气象》2020,39(2):158-166
利用常规观测资料、地面加密自动站资料、雷达探测资料与NCEP 1°×1°再分析资料等,对低层偏东气流影响下贵州铜仁梵净山东侧4次强降水天气过程进行了分析,重点探讨了在低层偏东气流与地形共同作用下的强降水形成机制,并归纳低层偏东气流影响下的梵净山东侧强降水概念模型。结果表明:(1)高空槽、低层切变线、地面中尺度辐合线是影响梵净山东侧强降水的主要天气系统;(2)低层浅薄偏东气流对梵净山东侧强降水起着关键作用,当低空气流u分量随高度减小时,地形迎风坡气流辐合上升,而气流v分量随高度增加时,地形迎风坡会产生与山脉垂直的水平涡管,在地形抬升作用下涡管向上凸起形成两个涡管环流圈,涡度垂直分量使山脚附近上升气流加强而有利于山脚产生强降水;(3)梵净山东侧强降水区的形成存在三种机制,即迎风坡山脚多次触发对流形成雨量叠加效应、地面中尺度辐合线自身触发组织对流、回波沿地面中尺度辐合线东移形成“列车效应”,三种机制产生的降水带与地面中尺度辐合线走向一致。  相似文献   

20.
2018年3月17-18日乌鲁木齐达坂城谷地出现一次极端暴雪天气过程,降雪量达28.7 mm,为冬半年历年平均降水量的4.35倍,实属罕见。本文利用区域自动气象站小时监测资料、常规与加密观测资料、NCEP/NCAR再分析资料、FY-2G卫星相当黑体亮温(TBB)资料,分析此次极端暴雪天气过程。结果表明: 此次极端暴雪发生在3月中旬的初春时节,以500 hPa低涡、700 hPa西南低空急流、切变线及气旋性辐合中心、850 hPa偏北气流作为环流背景的低涡型暴雪;水汽来源主要是地中海、红海的水汽沿着偏西气流经波斯湾-阿拉伯海加强后,随低涡前西南气流输送至暴雪区,另一支通过北大西洋沿西南路径输送至中天山北坡中段,同时有由低涡前偏西气流接力输送的里、咸海水汽补充。2~4 km水汽密度较高,2 km水汽密度最大值为8 g/m3以上;850~700 hPa乌鲁木齐附近为强上升运动区,西北急流受天山阻挡强迫爬升,对中尺度垂直上升支起加强作用,为此次暴雪提供持续的动力支持;乌鲁木齐城区至达坂城一线受斜压不稳定增长,利于暴雪的持续与增强;中尺度云团是造成暴雪最直接的影响系统,强降雪区均位于中尺度云团的北至东北侧TBB等值线梯度最大区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号