首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Liu  Syalie  Altay  Sacha  Mercier  Hugo 《Climatic change》2022,170(1-2):1-21

As the world’s largest fossil fuels exporter, Russia is one of the key countries for addressing global climate change. However, it has never demonstrated any significant ambitions to reduce greenhouse gas (GHG) emissions. This paper applies ideational research methodology to identify the structural differences in economic, political, and social normative contexts between industrialized fossil fuel importing economies and Russia that lead to the fundamental gap in motivations driving decarbonization efforts. Russia is unlikely to replicate the approach to the green transition and climate policy instruments of energy-importing countries. In order to launch decarbonization in Russia, interested stakeholders need to frame climate policies in Russia differently. Specifically, the framing must address the priority of diversification as a means to adapting the national economy to a new green landscape, the combination of diverse channels for decarbonization, the promotion of energy-efficiency, closer attention to climate-related forest projects, and linkage of climate change with other environmental problems. Moreover, considering Russia’s emissions as a part of the global economic system and shifting from a simplistic national focus on GHG emissions reduction would help coordinate policies through dialogue between exporters and importers of fossil fuel energy-intensive goods, which is essential for the global movement towards a net-zero future.

  相似文献   

2.
Reducing fossil fuel supply is necessary to meet the Paris Agreement goal to keep warming ‘well below 2°C’, yet the Agreement is silent on the topic of fossil fuels. This article outlines reasons why it is important that Parties to the Agreement find ways to more explicitly address the phasing out of fossil fuel production under the UNFCCC. It describes how countries aiming to keep fossil fuel supply in line with Paris goals could articulate and report their actions within the current architecture of the Agreement. It also outlines specific mechanisms of the Paris Agreement through which issues related to the curtailment of fossil fuel supply can be addressed. Mapping out a transition away from fossil fuels – and facilitating this transition under the auspices of the UNFCCC process – can enhance the ambition and effectiveness of national and international climate mitigation efforts.

Key policy insights

  • The international commitment to limit global average temperature increases to ‘well below 2°C’ provides a strong rationale for Parties to the Paris Agreement and the UNFCCC to pursue a phase-down in fossil fuel production, not just consumption.

  • Several countries have already made commitments to address fossil fuel supply, by agreeing to phase down coal or oil exploration and production.

  • Integrating these commitments into the UNFCCC process would link them to global climate goals, and ensure they form part of a broader global effort to transition away from fossil fuels.

  • The Paris Agreement provides a number of new opportunities for Parties to address fossil fuel production.

  相似文献   

3.
This article analyses the trends in primary demand for fossil fuels and renewables, comparing regions with large and small domestic fossil fuel reserves. We focus on countries that hold 80% of global fossil fuel reserves and compare them with key countries that have meagre fossil fuel reserves. We show that those countries with large domestic fossil fuel reserves have experienced a large increase in primary energy demand from fossil fuels, but only a moderate or no increase in primary energy from renewables, and in particular from non-hydro renewable energy sources (NHRES), which are assumed to represent the cornerstone of the future transformation of the global energy system. This implies a tremendous threat to climate change mitigation, with only two principal mitigation options for fossil-fuel-rich economies if there is to be compliance with the temperature goals of the Paris Agreement: (1) leave the fossil fuels in the ground; and (2) apply carbon capture and storage (CCS) technologies. Combinations of these two options to exploit their respective possibilities synergistically will require strong initiatives and incentives to transform a certain amount of the domestic fossil fuel reserves (including the associated infrastructure) into stranded assets and to create an extensive CCS infrastructure. Our conclusion is that immediate and disruptive changes to the use of fossil fuels and investments in non-carbon-emitting technologies are required if global warming is to be limited to well below 2°C. Collective actions along value chains in business to divert from fossil fuels may be a feasible strategy.

Key policy insights

  • The main obstacle to compliance with any reasonable warming target is the abundance of fossil fuels, which has maintained and increased momentum towards new fossil-fuelled processes.

  • So far, there has been no increase in the share of NHRES in total global primary energy demand, with a clear decline in the NHRES share in India and China.

  • There is an immediate need for the global community to develop fossil fuel strategies and policies.

  • Policies must account for the global trade flow of products that typically occurs from the newly industrialized fossil fuel-rich countries to the developed countries.

  相似文献   

4.
For countries without sufficient fossil fuel resources such as Japan, climate policies in the mid- to long term need to satisfy requirements not only for decarbonisation but also for energy security in the context of limitations on renewable energies and nuclear power. This study assesses the feasibility of decarbonization pathways to 2050 and their effects on energy security, considering the latest energy and climate policies in Japan using the AIM/Enduse model. The analysis illustrates that deep decarbonization by 2050 is technically feasible even without nuclear power based on three elements: energy efficiency improvements, low-carbon electricity and electrification in end-use sectors. These decarbonization pathways, in the long term, could also contribute to enhanced energy security, reducing import dependency to less than a half of the total primary energy and reducing import bills for fossil fuels by around 70% compared with the current level. Notably, renewable energies could play a strategically significant role in satisfying both climate and energy security requirements. In the mid-term (to 2030), however, although GHG emissions are reduced by 14–20% from 1990 levels, import dependency is relatively stable at today's levels, particularly without the restart of nuclear power. Given the limited potential for renewable energies in the mid-term, it is suggested that the availability of nuclear power will have negative impacts on carbon intensity and energy security, and policies to enhance the security of fossil fuels, including diversification of fuel sources and supply routes, will be required for the foreseeable future.

Policy relevance

Considering the scarcity of indigenous fossil fuel resources and the uncertain availability of nuclear power in Japan, renewable energy could play a strategically significant role in replacing unabated fossil fuels, which would contribute to satisfying both climate and energy security requirements in the long term. However, the renewable energy potential is insufficient to eliminate the requirement for fossil fuels by 2030; therefore the unavailability of nuclear power would affect energy security considerably. Thus, policies in the mid-term would still require enhancement of the energy security of fossil fuels, including the diversification of fuel sources and supply routes, as well as alleviation of the impacts of price volatility.  相似文献   

5.
Unleakable carbon, or the uncombusted methane and carbon dioxide associated with fossil fuel systems, constitutes a potentially large and heretofore unrecognized factor in determining use of Earth’s remaining fossil fuel reserves. Advances in extraction technology have encouraged a shift to natural gas, but the advantage of fuel switching depends strongly on mitigating current levels of unleakable carbon, which can be substantial enough to offset any climate benefit relative to oil or coal. To illustrate the potential warming effect of methane emissions associated with utilizable portions of our remaining natural gas reserves, we use recent data published in peer-reviewed journals to roughly estimate the impact of these emissions. We demonstrate that unless unleakable carbon is curtailed, up to 59–81% of our global natural gas reserves must remain underground if we hope to limit warming to 2°C from 2010 to 2050. Successful climate change mitigation depends on improved quantification of current levels of unleakable carbon and a determination of acceptable levels of these emissions within the context of international climate change agreements.

Policy relevance

It is imperative that companies, investors, and world leaders considering capital expenditures and policies towards continued investment in natural gas fuels do so with a complete understanding of how dependent the ultimate climate benefits are upon increased regulation of unleakable carbon, the uncombusted carbon-based gases associated with fossil fuel systems, otherwise referred to as ‘fugitive’, ‘leaked’, ‘vented’, ‘flared’, or ‘unintended’ emissions. Continued focus on combustion emissions alone, or unburnable carbon, undermines the importance of assessing the full climate impacts of fossil fuels, leading many stakeholders to support near-term mitigation strategies that rely on fuel switching from coal and oil to cleaner burning natural gas. The current lack of transparent accounting of unleakable carbon represents a significant gap in the understanding of what portions of the Earth’s remaining global fossil fuel reserves can be utilized while still limiting global warming to 2°C. Successful climate change mitigation requires that stakeholders confront the issue of both unburnable and unleakable carbon when considering continued investment in and potential expansion of natural gas systems as part of a climate change solution.  相似文献   

6.
Carbon emissions—and hence fossil fuel combustion—must decline rapidly if warming is to be held below 1.5 or 2 °C. Yet fossil fuels are so deeply entrenched in the broader economy that a rapid transition poses the challenge of significant transitional disruption. Fossil fuels must be phased out even as access to energy services for basic needs and for economic development expands, particularly in developing countries. Nations, communities, and workers that are economically dependent on fossil fuel extraction will need to find a new foundation for livelihoods and revenue. These challenges are surmountable. In principle, societies could undertake a decarbonization transition in which they anticipate the transitional disruption, and cooperate and contribute fairly to minimize and alleviate it. Indeed, if societies do not work to avoid that disruption, a decarbonization transition may not be possible at all. Too many people may conclude they will suffer undue hardship, and thus undermine the political consensus required to undertake an ambitious transition. The principles and framework laid out here are offered as a contribution to understanding the nature of the potential impacts of a transition, principles for equitably sharing the costs of avoiding them, and guidance for prioritizing which fossil resources can still be extracted.  相似文献   

7.
This paper applies a behavioral economics model of cigarette addiction to the issue of fossil fuel usage and climate change. Both problems involve consumption of a currently beneficial product that causes detrimental effects in the distant future and for which current reductions in usage induces an adjustment cost. The paper argues that because fossil fuel control requires solving an international public goods problem as well as an addiction-like problem, breaking it will be more challenging. Using insights from the model, it also suggests that fossil fuel addiction, like cigarette addiction, may generate a long period of time in which people express sincere desire to convert to clean energy, but accomplish little to achieve that outcome. Finally the paper examines the history of the international anti-smoking campaign to draw insights for the campaign against global climate change. The analogy suggests that policies to reduce the present cost of non-carbon energy sources to induce voluntary adjustments in energy usage, or, policies that induce cleaner usage of fossil fuels, or geo-engineering policies that work to reverse the warming effects of higher CO2 concentrations, may be more viable than policies that raise the cost of current fossil fuel consumption.  相似文献   

8.
Based on an estimated global fuel consumption of 2.57 × 1015g(C) y–1 and the assumption thatthe fossil fuel burned in Austria is globallyrepresentative, an upper limit of 0.021 (+150%, –50%)Tg y–1 for global CH3CN emission dueto fossil fuel burning was obtained from the relativeenhancement of the concentrations of toluene, benzene,and acetonitrile (methyl cyanide) during strong,short-term traffic pollution. This is less than 6% ofthe total global budget of CH3CN, which is dominatedby an emission rate of 0.8 Tg y–1 from biomassburning.  相似文献   

9.
《Climate Policy》2013,13(1):789-812
To what degree are recently built and planned power plants in the EU ‘capture-ready’ for carbon capture and storage (CCS)? Survey results show that most recently built fossil fuel power plants have not been designed as capture-ready. For 20 planned coal-fired plants, 13 were said to be capture-ready (65%). For 31 planned gas-fired power plants, only 2 were indicated to be capture-ready (6%). Recently built or planned power plants are expected to cover a large share of fossil fuel capacity by 2030 and thereby have a large impact on the possibility to implement CCS after 2020. It is estimated that around 15–30% of fossil fuel capacity by 2030 can be capture-ready or have CO2 capture implemented from the start. If CCS is implemented at these plants, 14–28% of baseline CO2 emissions from fossil fuel power generation in 2030 could be mitigated, equivalent to 220–410 MtCO2. A key reason indicated by utilities for building a capture-ready plant is (expected) national or EU policies. In addition, financial incentives and expected high CO2 prices are important. The implementation of a long-term regulatory framework for CCS with clear definitions of ‘capture- readiness’ and policy requirements will be important challenges.  相似文献   

10.
Fossil fuel subsidies are a key barrier for economic development and climate change mitigation. While the plunge in international fuel prices has increased the political will to introduce fossil fuel subsidy reforms, recently introduced reforms may risk backsliding when fuel prices rebound − particularly if they fail to address the underlying mechanisms that create demand for low fossil fuel prices. Extant literature has mostly focused on the consequences of fossil fuel subsidies, including their economic or environmental impact, and the social contract that make their reform difficult. In this paper, we complement the extant literature with a socio-technical perspective of fossil fuel subsidies to explore the systemic mechanisms that often keep subsidies in place and how these mechanisms can be weakened. Specifically, in case studies of the electricity sectors in South Africa and Tunisia, we trace the socio-technical foundations of their fossil fuel subsidy regimes and the potential of renewable energy policy in disrupting this regime We discuss the relevance of our results for national policymakers wishing to implement and international actors wishing to support fossil fuel subsidy reform. In particular, we highlight that the socio-technical perspective of fossil fuel subsidies offers new intervention points for subsidy reform and that policy designs and assistance should strengthen technologies and actors that are most likely to destabilize the fossil fuel subsidy regime.  相似文献   

11.
12.
Constraining global average temperatures to 2 °C above pre-industrial levels will probably require global energy system emissions to be halved by 2050 and complete decarbonization by 2100. In the nationally orientated climate policy framework codified under the Paris Agreement, each nation must decide the scale and method of their emissions reduction contribution while remaining consistent with the global carbon budget. This policy process will require engagement amongst a wide range of stakeholders who have very different visions for the physical implementation of deep decarbonization. The Deep Decarbonization Pathways Project (DDPP) has developed a methodology, building on the energy, climate and economics literature, to structure these debates based on the following principles: country-scale analysis to capture specific physical, economic and political circumstances to maximize policy relevance, a long-term perspective to harmonize short-term decisions with the long-term objective and detailed sectoral analysis with transparent representation of emissions drivers through a common accounting framework or ‘dashboard’. These principles are operationalized in the creation of deep decarbonization pathways (DDPs), which involve technically detailed, sector-by-sector maps of each country’s decarbonization transition, backcasting feasible pathways from 2050 end points. This article shows how the sixteen DDPP country teams, covering 74% of global energy system emissions, used this method to collectively restrain emissions to a level consistent with the 2 °C target while maintaining development aspirations and reflecting national circumstances, mainly through efficiency, decarbonization of energy carriers (e.g. electricity, hydrogen, biofuels and synthetic gas) and switching to these carriers. The cross-cutting analysis of country scenarios reveals important enabling conditions for the transformation, pertaining to technology research and development, investment, trade and global and national policies.

Policy relevance

In the nation-focused global climate policy framework codified in the Paris Agreement, the purpose of the DDPP and DDPs is to provide a common method by which global and national governments, business, civil society and researchers in each country can communicate, compare and debate differing concrete visions for deep decarbonization in order to underpin the necessary societal and political consensus to design and implement short-term policy packages that are consistent with long-term global decarbonization.  相似文献   

13.
Avoiding dangerous climate change will require a rapid transition away from fossil fuels. By some estimates, global consumption and production of fossil fuels—particularly coal and oil—will need to end almost entirely within 50 years. Given the scale of such a transition, nations may need to consider policies that constrain growth in fossil fuel supplies in addition to those that reduce demand. Here, we examine the emissions implications of a supply-constraining measure that was rapidly gaining momentum in the United States (US) under the Obama administration: ceasing the issuance of new leases for fossil fuel extraction on federal lands and waters. Such a measure could reduce global carbon dioxide emissions by an estimated 280 million tons annually by 2030, comparable to that of other major climate policies adopted or considered by the Obama administration. Our findings suggest that measures to constrain fossil fuel supply—though not currently viable in a US Trump administration—deserve further consideration at subnational levels in the US or by other countries now, and by future US administrations.  相似文献   

14.
This paper uses the OECD’s global recursive-dynamic general equilibrium model ENVLinkages to examine the mid-term economic consequences and the optimal energy supply mix adjustments of a simultaneous implementation of i) a progressive fossil fuel subsidy reform in emerging and developing economies and ii) a progressive phase out of nuclear energy, mostly affecting OECD countries, China and Russia. The analysis is then transposed in the context of climate change mitigation to depict the corresponding implications for CO2 emissions, to assess the interactions between the two energy policies, and to derive how the associated costs are affected by the different policies. The phase-out scenario projects a nuclear capacity halved by 2035 as compared to the Baseline, corresponding to $120 billion losses in value-added of the nuclear industry for that year. The nuclear phase-out leaves GDP and real household consumption marginally affected in energy importing countries. A multilateral subsidy reform is more likely to affect international fossil fuel prices and alter patterns of global energy use. The fossil fuel subsidy reform, when implemented together with nuclear phase-out, more than offsets negative consequences on household consumption but still leads to a decrease in global CO2 emissions. The combined policies help save the equivalent of current energy consumption in the Middle East. Combining a climate policy, an effective fossil fuel subsidy reform, even with a lower nuclear share in the power mix, brings about multiple benefits to OECD countries which reduce their energy bill and achieve large climate change mitigation at lower cost.  相似文献   

15.
Short-rotation woody crops (SRWC) could potentially displace fossil fuels and thus mitigate CO2 buildup in the atmosphere. To determine how much fossil fuel SRWC might displace in the United States and what the associated fossil carbon savings might be, a series of assumptions must be made. These assumptions concern the net SRWC biomass yields per hectare (after losses); the amount of suitable land dedicated to SRWC production; wood conversion efficiencies to electricity or liquid fuels; the energy substitution properties of various fuels; and the amount of fossil fuel used in growing, harvesting, transporting, and converting SRWC biomass. Assuming the current climate, present production, and conversion technologies and considering a conservative estimate of the U.S. land base available for SRWC (14 × 106 ha), we calculate that SRWC energy could displace 33.2 to 73.1 × 106 Mg of fossil carbon releases, 3–6% of the current annual U.S. emissions. The carbon mitigation potential per unit of land is larger with the substitution of SRWC for coal-based electricity production than for the substitution of SRWC-derived ethanol for gasoline. Assuming current climate, predicted conversion technology advancements, an optimistic estimate of the U.S. land base available for SRWC (28 × 106 ha), and an optimistic average estimate of net SRWC yields (22.4 dry Mg/ha), we calculate that SRWC energy could displace 148 to 242 × 106 Mg of annual fossil fuel carbon releases. Under this scenario, the carbon mitigation potential of SRWC-based electricity production would be equivalent to about 4.4% of current global fossil fuel emissions and 20% of current U.S. fossil fuel emissions.Research sponsored by the Biofuels Systems Division, U.S. Department of Energy, under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc. Environmental Sciences Division Publication number 3952.  相似文献   

16.
Carbon capture and storage (CCS) is increasingly depicted as an important element of the carbon dioxide mitigation portfolio. However, critics have warned that CCS might lead to “reinforced fossil fuel lock-in”, by perpetuating a fossil fuel based energy provision system. Due to large-scale investments in CCS infrastructure, the fossil fuel based ‘regime’ would be perpetuated to at least the end of this century.In this paper we investigate if and how CCS could help to avoid reinforcing fossil fuel lock-in. First we develop a set of criteria to estimate the degree of technological lock-in. We apply these criteria to assess the lock-in reinforcement effect of adding CCS to the fossil fuel socio-technical regime (FFR).In principle, carbon dioxide could be captured from any carbon dioxide point source. In the practice of present technological innovations, business strategies, and policy developments, CCS is most often coupled to coal power plants. However, there are many point sources of carbon dioxide that are not directly related to coal or even fossil fuels. For instance, many forms of bio-energy or biomass-based processes generate significant streams of carbon dioxide emissions. Capturing this carbon dioxide which was originally sequestered in biomass could lead to negative carbon dioxide emissions.We use the functional approach of technical innovations systems (TIS) to estimate in more detail the strengths of the “niches” CCS and Bio-Energy with CCS (BECCS). We also assess the orientation of the CCS niche towards the FFR and the risk of crowding out BECCS. Next we develop pathways for developing fossil energy carbon capture and storage, BECCS, and combinations of them, using transition pathways concepts. The outcome is that a large-scale BECCS development could be feasible under certain conditions, thus largely avoiding the risk of reinforced fossil fuel lock-in.  相似文献   

17.
Fossil resource endowments and the future development of fossil fuel prices are important factors that will critically influence the nature and direction of the global energy system. In this paper we analyze a multi-model ensemble of long-term energy and emissions scenarios that were developed within the framework of the EMF27 integrated assessment model inter-comparison exercise. The diverse nature of these models highlights large uncertainties in the likely development of fossil resource (coal, oil, and natural gas) consumption, trade, and prices over the course of the twenty-first century and under different climate policy frameworks. We explore and explain some of the differences across scenarios and models and compare the scenario results with fossil resource estimates from the literature. A robust finding across the suite of IAMs is that the cumulative fossil fuel consumption foreseen by the models is well within the bounds of estimated recoverable reserves and resources. Hence, fossil resource constraints are, in and of themselves, unlikely to limit future GHG emissions this century. Our analysis also shows that climate mitigation policies could lead to a major reallocation of financial flows between regions, in terms of expenditures on fossil fuels and carbon, and can help to alleviate near-term energy security concerns via the reductions in oil imports and increases in energy system diversity they will help to motivate. Aggressive efforts to promote energy efficiency are, on their own, not likely to lead to markedly greater energy independence, however, contrary to the stated objectives of certain industrialized countries.  相似文献   

18.
Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global service demand (passenger-kilometers, ton-kilometers), fuel use, and CO2 emissions of five different global transport models using harmonized input assumptions on income and population. For four models we also evaluate the impact of a carbon tax. All models project a steep increase in service demand over the century. Technology change is important for limiting energy consumption and CO2 emissions, the study also shows that in order to stabilise or even decrease emissions radical changes would be required. While all models project liquid fossil fuels dominating up to 2050, they differ regarding the use of alternative fuels (natural gas, hydrogen, biofuels, and electricity), because of different fuel price projections. The carbon tax of 200 USD/tCO2 in 2050 stabilizes or reverses global emission growth in all models. Besides common findings many differences in the model assumptions and projections indicate room for further understanding long-term trends and uncertainty in future transport systems.  相似文献   

19.
Proponents of climate change mitigation face difficult choices about which types of policy instrument(s) to pursue. The literature on the comparative evaluation of climate policy instruments has focused overwhelmingly on economic analyses of instruments aimed at restricting demand for greenhouse gas emissions (especially carbon taxes and cap-and-trade schemes) and, to some extent, on instruments that support the supply of or demand for substitutes for emissions-intensive goods, such as renewable energy. Evaluation of instruments aimed at restricting the upstream supply of commodities or products whose downstream consumption causes greenhouse gas emissions—such as fossil fuels—has largely been neglected in this literature. Moreover, analyses that compare policy instruments using both economic and political (e.g. political “feasibility” and “feedback”) criteria are rare. This article aims to help bridge both of these gaps. Specifically, the article demonstrates that restrictive supply-side policy instruments (targeting fossil fuels) have numerous characteristic economic and political advantages over otherwise similar restrictive demand-side instruments (targeting greenhouse gases). Economic advantages include low administrative and transaction costs, higher abatement certainty (due to the relative ease of monitoring, reporting and verification), comprehensive within-sector coverage, some advantageous price/efficiency effects, the mitigation of infrastructure “lock-in” risks, and mitigation of the “green paradox”. Political advantages include the superior potential to mobilise public support for supply-side policies, the conduciveness of supply-side policies to international policy cooperation, and the potential to bring different segments of the fossil fuel industry into a coalition supportive of such policies. In light of these attributes, restrictive supply-side policies squarely belong in the climate policy “toolkit”.  相似文献   

20.
Mounting evidence suggests that a large portion of the world's fossil fuel reserves will have to remain in the ground to prevent dangerous climate change. Yet, the fossil fuel industry continues to invest in new infrastructure to expand fuel supply. There appears to be a prevailing logic that extraction is inevitable, in spite of growing climate change concerns. Few political leaders seem to be willing to challenge this logic. The absence of adequate political action on climate change has sparked a burgeoning social movement focused on constraining fossil fuel supply. This article describes this movement, and explores the role that social mobilization may play in enabling policies that limit fossil fuel extraction. Drawing from literature on social mobilization and political change, this work: (1) discusses some of the social and political barriers to mobilization focused on restricting fossil fuel supply; (2) describes the pathways through which mobilization efforts may influence climate policy; and (3) highlights insights from studies of successful social movements that have relevance for the issue of fossil fuel extraction. The article concludes with directions for future research on social mobilization focused on supply-side climate policy.

Key policy insights
  • Enacting policies to limit fossil fuel supply has proven challenging in many contexts.

  • There is renewed interest in the role social movements may play in shifting the political landscape, to make it more likely that policies to restrict fossil fuel extraction may succeed.

  • Effective social mobilization requires a combination factors aligning at the right time to influence policy outcomes, such as windows of political opportunity opening, and compelling framing that calls citizens to action.

  • Critical examination of the factors that lead to movement success is necessary to understand the circumstances where social mobilization may influence supply-side climate policies.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号