首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
New and more complete compositional data are presented for a large number of water samples from the Lake Magadi area, Kenya. These water samples range from dilute inflow (<0.1 g/kg dissolved solids) to very concentrated brines (>300 g/kg dissolved solids). Five distinct hydrologic stages can be recognized in the evolution of the water compositions: dilute streamflow, dilute ground water, saline ground water (or hot spring reservoir), saturated brines, and residual brines. Based on the assumption that chloride is conserved in the waters during evaporative concentration, these stages are related to each other by the concentration factors of about 1:28:870:7600:16,800.Dilute streamflow is represented by perennial streams entering the Rift Valley from the west. All but one (Ewaso Ngiro) of these streams disappear in the alluvium and do not reach the valley floor. Dilute ground water was collected from shallow pits and wells dug into lake sediments and alluvial channels. Saline ground water is roughly equivalent to the hot springs reservoir postulated by Eugster (1970) and is represented by the hottest of the major springs. Saturated brines represent surficial lake brines just at the point of saturation with respect to trona (Na2CO3.NaHCO3.2H2O), while residual brines are essentially interstitial to the evaporite deposit and have been subjected to a complex history of precipitation and re-solution.The new data confirm the basic hydrologic model presented by Eugster (1970) which has now been refined, particularly with respect to the early stages of evaporative concentration. Budget calculations show that only bromide is conserved as completely as chloride. Sodium follows chloride closely until trona precipitation, whereas silica and sulfate are largely lost during the very first concentration' step (dilute streamflow-dilute ground water). A large fraction of potassium and all calcium plus magnesium are removed during the first two concentration steps (dilute streamflow-dilute ground water-saline ground water). Carbonate and bicarbonate are the dominant anions, and mechanisms by which they are extracted from the solution include precipitation of alkali and alkaline-earth carbonates, and degassing, as well as precipitation and re-solution of efflorescent crusts. Much sulfate is apparently lost from solution by sorption as well as subsurface reduction.Seasonal runoff, principally from the valley floor north of Lake Magadi, is considered to be the principal recharge to the Magadi ground water system. Evaporative concentration is the overall process responsible for the chemical evolution of the brines. This includes not only simple evaporation, but also mineral precipitation as films and cements in the unsaturated zone, re-solution, and reprecipitation of efflorescent crusts, with consequent recycling of salts. In fact, a large fraction of the solutes are acquired through dissolution of efflorescent crusts.Data were obtained for borehole brines from as deep as 297 m. They show the existence of two distinct brine bodies below the present lake, one shallow, coexistent with bedded salts, and highly concentrated (260 g/kg average dissolved solids), and the other deeper in lacustrine sediments or fractured lavas, and only half as concentrated.  相似文献   

2.
3.
The geochemistry of 5 salt springs in the southwestern Mamfe Basin was investigated in order to infer the mineral content of their source and to relate the genesis of the springs to the local geology. Field observations revealed that, they are cold springs (23–28 °C), and are composed of secondary brines that are neutral to alkaline with pH values ranging from 7 to 8.7. Results of chemical analysis show that the springs contain major ions that form evaporite minerals, as well as chalcophile elements. The dominant cation is Na+ (>96%), and the dominant anion is Cl (>99%). Based on correlation coefficients between ions that form evaporites and field occurrence of efflorescences of halite, it is suggested that the ancient evaporites in the Mamfe Basin are composed entirely of carbonate and chloride salts. Meteoric and convective fluid flow processes are responsible for the dissolution of ancient evaporites and subsequent migration of brines to the surface from underground. The brines migrate through permeable strata with migration pathways resulting from a combination of fracture porosity created by post––Cretaceous tectonism and intergranular porosity enhanced by the chemically aggressive migrating brines.  相似文献   

4.
The chemical and isotopic characteristics (oxygen, hydrogen, and strontium) of spring waters and isotopic compositions of helium (He) and neon (Ne) in gases escaping from spring waters in the Lanping–Simao Basin are studied. A total of twenty-one spring water samples (twelve hot springs, four cold springs, and five saline springs) and eleven gas samples were collected from the study area, including one spring and one gas sample from northern Laos. It is found that saline spring waters in the study area are of chloride type, cold spring waters are of carbonate type or sulfate type, and hot spring waters are of various types. High total dissolved solids levels in saline springs are significantly related to Upper Cretaceous–Paleocene salt-bearing strata. On the basis of hydrochemical geothermometry, the reservoir temperatures (Tr) for hot springs, cold springs, and saline springs are 65.5–144.1, 37.8–64.4, and 65.1–109.0 °C, respectively, and the circulation depths of saline springs are much larger than those of hot and cold springs. The oxygen and hydrogen isotopic compositions of springs in the Lanping–Simao Basin and northern Laos are primarily controlled by meteoric waters with obvious latitude and altitude effects, and are also influenced by δ18O exchange to some extent. Most Sr2+ in spring waters of the study area is derived from varied sources (carbonate, evaporite, and silicate mineral dissolution), and the Sr isotopic compositions are greatly influenced by volcanic rocks. Wide distribution of crust-derived He in the Lanping–Simao Basin and northern Laos reveal that faults in these areas may not descend to the upper mantle. It is concluded that water circulation in the study area may be limited above the upper mantle, while saline springs may originate from the Upper Cretaceous–Paleocene evaporites. Hydrochemical characteristics demonstrate affinities among the Lanping–Simao Basin, northern Laos, and Yanjing, eastern Tibet, while disaffinities are observed between these areas and Tengchong on the basis of the hydrochemical characteristics and noble gas isotopic compositions.  相似文献   

5.
Travertine is present at 20% of the ca 60 hot springs that discharge on Loburu delta plain on the western margin of saline, alkaline Lake Bogoria in the Kenya Rift. Much of the travertine, which forms mounds, low terraces and pool‐rim dams, is sub‐fossil (relict) and undergoing erosion, but calcite‐encrusted artefacts show that carbonate is actively precipitating at several springs. Most of the springs discharge alkaline (pH: 8·3 to 8·9), Na‐HCO3 waters containing little Ca (<2 mg l?1) at temperatures of 94 to 97·5°C. These travertines are unusual because most probably precipitated at temperatures of >80°C. The travertines are composed mainly of dendritic and platy calcite, with minor Mg‐silicates, aragonite, fluorite and opaline silica. Calcite precipitation is attributed mainly to rapid CO2 degassing, which led to high‐disequilibrium crystal morphologies. Stratigraphic evidence shows that the travertine formed during several stages separated by intervals of non‐deposition. Radiometric ages imply that the main phase of travertine formation occurred during the late Pleistocene (ca 32 to 35 ka). Periods of precipitation were influenced strongly by fluctuations in lake level, mostly under climate control, and by related changes in the depth of boiling. During relatively arid phases, meteoric recharge of ground water declines, the lake is low and becomes hypersaline, and the reduced hydrostatic pressure lowers the level of boiling in the plumbing system of the hot springs. Any carbonate precipitation then occurs below the land surface. During humid phases, the dilute meteoric recharge increases, enhancing geothermal circulation, but the rising lake waters, which become relatively dilute, flood most spring vents. Much of the aqueous Ca2+ then precipitates as lacustrine stromatolites on shallow firm substrates, including submerged older travertines. Optimal conditions for subaerial travertine precipitation at Loburu occur when the lake is at intermediate levels, and may be favoured during transitions from humid to drier conditions.  相似文献   

6.
During the Cenozoic numerous shallow epicontinental evaporite basins formed due to tectonic movements in the Northern Province of the Central Iran Tectonic Zone (the Great Kavir Basin). During the Miocene, due to sea‐level fluctuations, thick sequences of evaporites and carbonates accumulated in these basins that subsequently were overlain by continental red beds. Development of halite evaporites with substantial thickness in this area implies inflow of seawater along the narrow continental rift axis. The early ocean basin development was initiated in Early Eocene time and continued up to the Middle Miocene in the isolated failed rift arms. Competition between marine and non‐marine environments, at the edge of the encroaching sea, produced several sequences of both abrupt and gradual transition from continental wadi sediments to marginal marine evaporites in the studied area. These evaporites show well‐preserved textures indicative of relatively shallow‐brine pools. The high Br content of these evaporites indicates marine‐derived parent brines that were under the sporadic influence of freshening by meteoric water or replenishing seawater. However, the association of hopper and cornet textures denotes stratified brine that filled a relatively large pool and prevented rapid variations in the Br profile. Unstable basin conditions that triggered modification of parent brine chemistry prevailed in this basin and caused variable distribution patterns for different elements in the chloride units. The presence of sylvite and the absence of Mg‐sulphate/chlorides in the paragenetic sequence indicate SO4−depleted parent brine in the studied sequence. Petrographic examinations along with geochemical analyses on these potash‐bearing halites reveal parental brines which were a mixture of seawater and CaCl2‐rich brines. The source of CaCl2‐rich brines is ascribed to the presence of local rift systems in the Great Kavir Basin up to the end of the Early Miocene. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Large pisoliths from the Laguna Pastos Grandes playa in the Bolivian Altiplano have a wide diversity of cortical fabrics and variable mineralogical composition. The cortical laminae are composed of radial calcite bundles, spar calcite, micrite, amorphous silica, mixed micrite-amorphous silica, quartz, gypsum and halite. Diatoms are common in the outer parts of some radial calcite laminae and amorphous silica laminae, but cyanobacterial filaments are rare. Although the organization of the cortical laminae is highly variable, some repetitive sequences of different laminae are present. Cavities in and between pisoliths contain micrite, detrital grains, calcite bundles and peloids morphologically similar to those found in marine reefs. The pisoliths grow in shallow ephemeral pools fed by hot springs. Radial bundles of calcite precipitate rapidly by degassing and photosynthetic removal of CO2 following spring snowmelt. Conditions for micrite precipitation are unclear, but there is evidence to suggest formation in partially stagnant waters, some of elevated salinity. Amorphous silica laminae precipitate mainly by evaporative concentration; quartz may precipitate from warm silica-rich spring waters that remain below amorphous silica saturation. The evaporite minerals form during desiccation of the pools or from spray. The peloids in cavities are probably primary precipitates. Different types of laminae may form simultaneously in different pools because of the highly variable conditions across the playa. Lateral migration of spring locations through time has created a complex carbonate-silica pavement. Large spherical pisoliths form in outflow channels near spring orifices and across discharge aprons where waters are several decimetres deep. With mineral precipitation, channels are filled and become shallow, producing discoid pisoliths and crusts. In shallow waters and on distal aprons only small pisolith gravels form. As spring pools fill with deposits, their locations shift laterally; new pisoliths form elsewhere or precipitation may recommence on older abandoned pisoliths.  相似文献   

8.
南襄盆地泌阳凹陷油、碱共生的地质条件   总被引:7,自引:1,他引:6       下载免费PDF全文
秦伟军  段心建 《地质科学》2004,39(3):339-345
南(阳)襄(樊)盆地泌阳凹陷是一个油、碱共生的蒸发岩盆地,已探明规模石油与天然碱(NaHCO3和Na2CO3·3NaHCO3)地质储量。原油分为成熟油和未熟(低熟)油,成熟油储集于碎屑岩中,未熟(低熟)油储集于白云岩的裂缝和孔洞之中,而天然碱矿的围岩就是白云岩(裂缝和孔洞中也有天然碱赋存)。其地质特征与美国绿河盆地和犹英塔盆地十分相似,油碱共生受控于大地构造背景、古地貌、古地理、古气候、古沉积环境和物质来源等地质条件。  相似文献   

9.
The Jifei hot spring emerges in the form of a spring group in the Tibet–Yunnan geothermal zone, southwest of Yunnan Province, China. The temperatures of spring waters range from 35 to 81°C and are mainly of HCO3–Na·Ca type. The total discharge of the hot spring is about 10 L/s. The spring is characterized by its huge travertine terrace with an area of about 4,000 m2 and as many as 18 travertine cones of different sizes. The tallest travertine cone is as high as 7.1 m. The travertine formation and evolution can be divided into three periods: travertine terrace deposition period, travertine cone formation period and death period. The hydrochemical characteristics of the Jifei hot spring was analyzed and compared with a local non-travertine hot spring and six other famous travertine springs. The results indicate that the necessary hydrochemical conditions of travertine and travertine cones deposition in the Jifei area are (1) high concentration of HCO3 and CO2; (2) about 52.9% deep source CO2 with significantly high value; (3) very high milliequivalent percentage of HCO3 (97.4%) with not very high milliequivalent percentage of Ca2+ (24.4%); and (4) a large saturation index of calcite and aragonite of the hot water.  相似文献   

10.
The Oylat spa is located 80 km southeast of Bursa and 30 km south of Ineg?l in the Marmara region. With temperature of 40°C and discharge of 45 l/s, the Oylat main spring is the most important hot water spring of the area. Southeast of the spa the Forest Management spring has a temperature of 39.4°C and discharge of 2 l/s. The G?z spring 2 km north of the spa, which is used for therapy of eye disease, and cold waters of the Saadet village springs with an acidic character are the further important water sources of the area. EC values of Main spring and Forest Management hot spring (750–780 μS/cm) are lower than those of Saadet and G?z spring waters (2,070–1,280 μS/cm) and ionic abundances are Ca > Na + K > Mg and SO4 > HCO3 > Cl. The Oylat and Sızı springs have low Na and K contents but high Ca and HCO3 concentrations. According to AIH classification, these are Ca–SO4–HCO3 waters. Based on the results of δ18O, 2H and 3H isotope analyses, the thermal waters have a meteoric origin. The meteoric water infiltrates along fractures and faults, gets heated, and then returns to surface through hydrothermal conduits. Oylat waters do not have high reservoir temperatures. They are deep, circulating recharge waters from higher enhanced elevations. δ13CDIC values of the Main spring and Forest Management hot spring are −6.31 and −4.45‰, respectively, indicating that δ13C is derived from dissolution of limestones. The neutral pH thermal waters are about +18.7‰ in δ34S while the sulfate in the cold waters is about +17‰ (practically identical to the value for the neutral pH thermal waters). However, the G?z and Saadet springs (acid sulfate waters) have much lower δ34S values (~+4‰).  相似文献   

11.
The ion-interaction model of PITZER (1973), is very effective in deriving stability relationships at high concentrations for the system Na-Cl-HCO3-CO3-OH-H2O. The solubility products of the main sodium carbonates have been calculated from solubility data between 5 and 50°C. The stability diagram in log pco2 — temperature coordinates and the invariant points deduced from the newly determined data are in good agreement with the most recent measurements.These results are used to calculate the activities of the major dissolved species in Lake Magadi brines (Kenya). The thermodynamic treatment confirms the main conclusions reached earlier by Eugster (1970, 1980) mainly from field observations. Trona precipitation occurs at equilibrium while natron is likely to form when the temperature decreases below 25°C. After the salt deposition the CO2 supply from the atmosphere is too slow to allow equilibrium between the atmosphere and the brines. In the next stages of evaporative concentration thermonatrite and halite precipitate. The deposition of the latter salts along with the observed HCO?3 depletion suggest that fractional crystallization is likely to control trona deposition.  相似文献   

12.
中国三叠纪钾盐沉积——以四川为例   总被引:3,自引:0,他引:3  
中国三叠系蒸发岩分布于华南,面积超过100×104km2,发现硫酸钾盐及富钾卤水,钾盐矿物有杂卤石、无水钾镁矾、硫锶钾石及多钙钾石膏等,富钾卤水矿化度255~382g/l,含钾量4~49g/l。蒸发盆地的发展受控于古构造及古地理,经历了开放台地一局限台地一堰塞湖一盐湖的发展阶段。钾盐沉积后,经历多阶段的复杂演变。富钾卤水中的钾主要来自硫酸钾盐的深滤,其次来自蒸发浓缩卤水及火山灰吸附钾的释放。杂卤石与富钾卤水的钾同位素测年值分别为210~150Ma及264~150Ma,说明固液相钾盐同源。从地质背景及成矿环境预测,三叠系的钾盐类型只能是硫酸钾盐,主要目的层为T1j5~2及T2l4~2,主要成矿带为构造分异及钾异常明显的四川盆地东、西部,富钾卤水的储集取决于蒸发岩地层的含钾性、碳酸盐夹层的裂隙发育程度及构造控矿条件。找矿模型应是油气钾卤兼探。  相似文献   

13.
Chemical and isotopic compositions of three hot springs and one cold spring in the Kirkgecit geothermal field, located 15 km southwest of Canakkale-Biga in the northwest of Turkey, were monitored five times during 2005 and 2007. The physico-chemical characteristics of the hot springs are average discharge 3–3.5 L/s, surface temperature 45–52°C, pH 8.9–9.3, and electrical conductivity (EC) 620–698 μS/cm. The cold spring has a temperature of 12–13°C, pH 7.5–8.3, and EC 653–675 μS/cm. The hot waters are Na-SO4 type, whereas the cold water is Ca-HCO3 type. Chemical geothermometers suggest that the reservoir temperature is around 80–100°C. The isotopic data (oxygen-18, deuterium and tritium) indicate that the thermal waters are formed by local recharge and deep circulation of meteoric waters.  相似文献   

14.
Evaporite outcrops are rare in the Basque Cantabrian basin due to a rainy climate, but saline springs with total dissolved solids ranging from 0.8 to 260 g/L are common and have long been used to supply spas and salterns. New and existing hydrochemistry of saline springs are used to provide additional insight on the origin and underground extent of their poorly known source evaporites. Saline water hydrochemistry is related to dissolution of halite and gypsum from two evaporitic successions (Triassic “Keuper” and Lower Cretaceous “Wealden”), as supported by rock samples from outcrops and oil exploration drill cuttings. The δ34S value of gypsum in the Keuper evaporites and sulfate in the springs is δ34SSO4 = 14.06 ± 1.07‰ and δ18OSO4 = 13.41 ± 1.44‰, and the relationship between Cl/Br ratio of halite and water shows that waters have dissolved halite with Br content between 124 and 288 ppm. The δ34S value of gypsum in the Wealden evaporites and sulfate in the springs is δ34SSO4 = 19.66 ± 1.76‰, δ18OSO4 = 14.93 ± 2.35‰, and the relationship between Cl/Br ratio of halite and water shows that waters have dissolved halite with Br content between 15 and 160 ppm. Wealden evaporites formed in a continental setting after the dissolution of Keuper salt. Gypsum δ34SSO4 and δ18OSO4 modification from Keuper to Wealden evaporites was due mainly to bacterial SO4 reduction in an anoxic, organic matter-rich environment. Saline springs with Wealden δ34SSO4 values are present in a 70 × 20 km wide area. Saline water temperatures, their δ2HH2O and δ18OH2O values, and the geological structure defines a hydrogeological model, where meteoric water recharges at heights up to 620 m above spring levels and circulates down to 720 m below them, thereby constraining the height range of evaporite dissolution. Groundwater flow towards saline springs is driven by gravity and buoyancy forces constrained by a thrust and fault network.  相似文献   

15.
Laminated and desiccated siliceous dolostones, dolomitic mudstones and dolomitic sandstones in the Cambrian Parakeelya Alkali Member of the Observatory Hill Formation accumulated in an alkaline playa. Four facies are recognized (from lake centre to lake edge): lake, saline mudflat, dry mudflat and sandflat facies. The facies occur in cycles. Cycles of tens of metres thickness record the gradual expansion and contraction of the playa. Superimposed smaller cycles of tens of centimetres thickness record minor oscillations in the position of the strandline in a shallow lake. The dominance of saline mudflat, dry mudflat and sandflat facies indicates that the lake was rimmed by broad flat areas with negligible relief. The high δ18O values of primary and penecontemporaneous diagenetic carbonates of +24 to +28‰ (SMOW) indicate strong evaporation of ground and surface waters within the lake system. Calcite pseudomorphs of the sodium carbonate minerals trona and shortite have δ18O values between + 19 and + 22.5‰, and contain fluid inclusions with variable salinites and homogenization temperatures up to around 110°C. This suggests that the euhedral alkaline evaporites were dissolved by heated waters; calcite pseudomorphs then precipitated from a mixed solution formed by the interaction of these incoming fluids with the relatively saline interstitial brines. The sodium bicarbonate solutions formed by dissolution of the evaporites would have been dispersed by the basinal brines so that despite the closed drainage, further groundwater concentration did not take place.  相似文献   

16.
Sabkhas are ubiquitous geomorphic features in eastern Saudi Arabia. Seven brine samples were taken from Sabkha Jayb Uwayyid in eastern Saudi Arabia. Brine chemistry, saturation state with respect to carbonate and evaporate minerals, and evaporation-driven geochemical reaction paths were investigated to delineate the origin of brines and the evolution of both brine chemistry and sabkha mineralogy. The average total dissolved solids in the sabkha brines is 243 g/l. The order of cation dominance is Na+   >>  Mg2+ >>  Ca2+>K+, while anion dominance is Cl >> SO4 2− >> HCO3 . Based on the chemical divide principle and observed ion ratios, it was concluded that sabkha brines have evolved from deep groundwater rather than from direct rainfall, runoff from the surroundings, or inflow of shallow groundwater. Aqueous speciation simulations show that: (1) all seven brines are supersaturated with respect to calcite, dolomite, and magnesite and undersaturated with respect to halite; (2) three brines are undersaturated with respect to both gypsum and anhydrite, while three brines are supersaturated with respect to both minerals; (3) anhydrite is a more stable solid phase than gypsum in four brines. Evaporation factors required to bring the brines to the halite phase boundary ranged from 1.016 to 4.53. All reaction paths to the halite phase boundary follow the neutral path as CO2 is degassed and dolomite precipitates from the brines. On average, a sabkha brine containing 1 kg of H2O precipitates 7.6 g of minerals along the reaction path to the halite phase boundary, of which 52% is anhydrite, 35.3% is gypsum, and 12.7% is dolomite. Bicarbonate is the limiting factor of dolomite precipitation, and sulfate is the limiting factor of gypsum and anhydrite precipitation from sabkha brines.  相似文献   

17.
《Precambrian Research》2006,144(1-2):39-51
Data on chemical composition of brines in primary inclusions of marine halites and on mineralogy of marine evaporites and carbonates lead to the conclusion that during the Phanerozoic two long-term cycles of chemical composition of seawater existed. During each of those cycles, seawater dominantly a Na-K-Mg-Ca-Cl (Ca-rich) type changed to a Na-K-Mg-Cl-SO4 (SO4-rich) type. Recrystallised halite from the uppermost Neoproterozoic Salt Range Formation (ca. 545 Ma) in Pakistan, contains solitary inclusions indicating SO4-rich brines. This supports the concept derived from the study on primary fluid inclusions from the Neoproterozoic Ara Formation of Oman; SO4-rich seawater existed during latest Neoproterozoic time (ca. 545 Ma). In contrast, samples of recrystallised halite from the Bitter Springs Formation (840–830 Ma) in Australia contain inclusion brines that are entirely Ca-rich, indicating that basin brines and seawater were Ca-rich during deposition of central Australian evaporites. These combined data supported by the timing of aragonite and calcite seas suggest that during the Proterozoic, significant oscillations of the chemical composition of marine brines, and seawater, occurred, which are similar to those known to exist during the Phanerozoic. It is suggested that Ca-rich seawater dominated for a substantial period of time (more than 200 Ma), at 650 Ma, this was replaced by SO4-rich seawater, finally returning to Ca-rich seawater at 530 Ma.  相似文献   

18.
The deposition of metal-rich black or reddish muds by many thermal springs in the Cordilleras and the Altiplano of Bolivia suggest that these geothermal waters may be related to those that once formed the world-class Bolivian tin, silver and gold mineralisation. The discharge temperatures of these springs are as high as 70 °C. According to δ18O, δD, tritium data and Ar/N2 ratios these waters are predominantly of meteoric origin. Less than 10% of the discharging thermal water represents deep-seated metal-rich thermal brines of at least 530 °C according to carbon exchange between CO2 and CH4. These brines ascend along tectonic faults and mix with low-temperature meteoric water in surface-near aquifers. The meteoric component of the thermal water is recharged in the high Cordilleras with residence times exceeding 50 years. The chemical composition of the thermal water is dominated by the rather inefficient low-temperature leaching of the surface-near aquifer rocks by meteoric water. The small fraction of metal-rich hot deep-seated water is not able to increase the metal content of the water mix to a level sufficient to classify these thermal waters as ore-bearing. Surface-near leaching is supported, e.g., by the B/Li ratios of the spring water of the Western Cordillera and Caleras/Pulacayo in the Eastern Cordillera that correspond very closely to that of the easily leachable glassy inclusions of the outcropping andesitic lavas. The often remarkable metal content of the muds deposited by the springs originate from efficient scavenging of heavy metals by ferric oxyhydroxides. Under the given arid to semi-arid climate the muds are additionally enriched in metals by wind-transported dust. The present study does support a relation of the actual thermal waters with neither the classical subduction-related Upper Tertiary tin, silver and gold mineralisation nor the supposed younger Sb mineralisation of Bolivia.  相似文献   

19.
The Upper Miocene and Pliocene evaporite deposits of the Atacama Desert of northern Chile (Hilaricos and Soledad Formations) are among the few non‐marine evaporites in which aridity not only formed the deposits, but has also preserved them almost unaltered under near‐surface conditions. These deposits are largely composed of displacive Ca sulphate and halite together with minor amounts of glauberite, thenardite and polyhalite. However, at the base and top of these deposits, there are also beds of gypsum crystal pseudomorphs that originally formed as free‐growth forms within shallow brine bodies, rather than as displacive sediments. The halite is present as interstitial cement, displacive cubes and shallow‐water, bottom‐growth chevron crusts. Most of the calcium sulphate is presently anhydrite, pseudomorphous after gypsum, that was the primary depositional sulphate mineral. The secondary anhydrite formed under early diagenetic conditions after slight burial (some metres) resulting from the effect of strongly evolved pore brines. The anhydrite has been preserved without rehydration during late diagenetic and exhumation stages on account of the arid environment of the Atacama Desert. Both the Hilaricos and the Soledad Formations contain geochemical markers indicating that these Neogene evaporites had a largely non‐marine origin. Bromine content in the halite is very low (few p.p.m.), indicating neither a sedimentological relation with sea water nor the likelihood of direct recycling of prior marine halites. Moreover, the δ34S of sulphates (+4·5‰ to +9‰) also reflects a non‐marine origin, with a strong volcanic influence, although some recycling of Mesozoic marine sulphates cannot be ruled out. δ34S of dissolved sulphate from hot springs and streams in the area commonly displays positive values (+2‰ to +10‰). Leaching of oxidized sulphur and chlorine compounds from volcanoes and epithermal ore bodies, very common in the associated drainage areas, have been the main contribution to the accumulation of evaporites. The sedimentary and diagenetic evolution of the Hilaricos and Soledad evaporites (based on lithofacies analysis) provides information about the palaeohydrological conditions in the Central Depression of northern Chile during the Neogene. In addition, the diagenesis and exhumation history of these evaporites confirms the persistence of strongly arid conditions from Late Miocene until the present. A final phase of tectonism took place permitting the internal drainage to change and open to the sea, resulting in dissolution and removal of a significant portion of these deposits. Despite the extensive dissolution, the remaining evaporites have undergone little late exhumational hydration.  相似文献   

20.
据记载,分布于上扬子区寒武系的石膏岩仅有零星资料。如今,大量蒸发岩如溶蚀角砾岩、硬石膏、石盐岩及富钾卤水等已被发现。沉积相经历了从盆地相、台地相到蒸发岩相的演化过程。在中、下寒武统中找到海退沉积序列。古构造-古地理背景是蒸发岩沉积的重要控矿条件之一。周边板块运动及塑性基底的褶皱,导致台缘隆起及台内坳陷的形成。岩相古地理图展示从碳酸盐、硫酸盐到氯化物盐类的“泪滴式”沉积相带。蒸发岩沉积于台缘隆起及礁生长进入堰塞潟湖至盐湖阶段。在稳定坳陷区沉积盆地中蒸发岩系发育;石盐岩较厚,其溴氯比值为0.2—0.4;古气候炎热、干燥;在蒸发岩体周围有沉积(封层)水及溶滤水,其含钾(K~+)量为0.10—4.76g/L;水文地球化学比值(如钾氯比值、钾盐比值及钾溴比值等)指示含钾异常;盐湖浓缩卤水达到氯化物盐类沉积阶段及相应的构造封闭程度;含盐地质标志广泛分布等等。鉴于上述,估计该区可能具备钾盐成矿条件。然而目的层埋藏太深,因此笔者建议,应在浅埋部位进行有效的成矿预测,为普查指出远景区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号