首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Riverine influences on nearshore oceanic habitats often have detrimental consequences leading to algal blooms and hypoxia. In oligo- to mesotrophic systems, however, nutrient delivery via rivers may stimulate production and even be a vital source of nutrients, as may nutrient supplements from upwelling. We investigated the nutrient content (C, N, P) and stoichiometry of sediment, and several pelagic, benthopelagic and benthic species in the KwaZulu-Natal (KZN) Bight, a narrow shelf area on the south-east coast of South Africa, bordering the Agulhas Current. Three suggested nutrient sources to the bight are the Thukela River in the central region of the bight, upwelling in the northern part and a semi-permanent eddy (Durban Eddy) in the southern part. Elemental content of the various groups studied showed significantly higher values for most groups at the site near the Thukela River. C:P and N:P were highest in the southern part of the bight, and lowest near the Thukela Mouth or at Richards Bay in the north, indicating the latter were the P-richer sites. Sediment organic matter showed lowest elemental content, as expected, and zooplankton stoichiometry was highest compared to all other biotic groups. Environmental heterogeneity played a greater role in organismal C, N and P content and stoichiometry compared to phylogeny, with the exception of the differences in C:P and N:P of zooplankton. From this bight-wide study, the higher elemental content and lower ratios at the Thukela Mouth site supported previous findings of the importance of coastal nutrient sources to the bight ecosystem. Reductions in river flow for water use in the catchment areas may therefore have negative consequences for the productivity of the entire ecosystem.  相似文献   

2.
New in situ time-series data were acquired by two ADCP moorings placed on the shelf off Richards Bay on the east coast of South Africa at depths of 25 m and 582 m between October 2009 and August 2010. The 11-month inshore bottom-temperature record revealed five substantial upwelling events lasting 5–10 days each where temperatures decreased by about 7 °C to 17–18 °C. Satellite sea surface temperature data showed these events to coincide with cold-water plumes occupying the northern wedge of the KwaZulu-Natal (KZN) Bight. Numerous shorter duration (1–2 days) upwelling events with less vivid surface expressions were also observed throughout the entire record where bottom temperature dropped by 2–3 °C. The last four months of the record were characterised by a protracted cool period lacking a seasonal trend but punctuated with oscillations of warm and cooler bottom water. In contrast to earlier studies that suggested upwelling was topographically and dynamically driven by the juxtaposition of the Cape St Lucia offset and the Agulhas Current (a solitary mechanism), our analysis showed almost all major and minor cold-water intrusions to coincide with upwelling-favourable north-easterly winds that simultaneously force a south-westerly coastal current. Ekman veering in the bottom boundary layer of the Agulhas Current, and the concomitant movement of cold water up the slope, was found to coexist at times with coastal upwelling, but its absence did not impede inshore cold-water intrusions, calling into question its role as a primary driver of upwelling. Both major and minor upwelling events were observed to promote phytoplankton blooms in the northern KZN Bight which commonly extended to the Thukela River. Wind-driven upwelling was also observed in the inner bight between Richards Bay and Port Durnford, explaining the ribbon of coastal chlorophyll continuously observed on ocean colour images between Cape St Lucia and the Thukela River. Similarities in upwelling character and mechanisms are observed between the northern KZN Bight and the Florida Current shelf systems.  相似文献   

3.
The semi-permanent Durban Eddy is a mesoscale, lee-trapped, cold-core cyclonic circulation that occurs off the east coast of South Africa between Durban in the north and Sezela, some 70 km to the south. When present, strong north-eastward countercurrents reaching 100 cm s–1 are found inshore. It is hypothesised that the cyclone is driven by the strong south-westward flowing Agulhas Current offshore of the regressing shelf edge near Durban. Analysis of ADCP data and satellite imagery shows the eddy to be present off Durban approximately 55% of the time, with an average lifespan of 8.6 days, and inter-eddy periods of 4 to 8 days. After spin-up the eddy breaks loose from its lee position and propagates downstream on the inshore boundary of the Agulhas Current. The eddy is highly variable in occurrence, strength and downstream propagation speeds. There is no detectable seasonal cycle in eddy occurrence, with the Natal Pulse causing more variability than any seasonal signal. A thermistor array deployed in the eddy centre, together with ship CTD data, indicates upward doming of the thermal structure in the eddy core associated with cooler water and nutrients being moved higher in the water column, stimulating primary production. Together with the use of satellite imagery, our findings indicate a second mechanism of upwelling, viz. divergent upwelling in the northern limb of the eddy. Satellite-tracked surface drifters released in the eddy demonstrated the potential for nutrient-rich eddy water to be transported northwards along the inshore regions of the KwaZulu-Natal (KZN) Bight, thus contributing to the functioning of the bight ecosystem, as well as southwards along the KZN and Transkei coasts – both by the eddy migrating downstream and by eddy water being recirculated into the inshore boundary of the Agulhas Current itself.  相似文献   

4.
The Thukela Bank, KwaZulu-Natal, supports a diverse ecosystem and South Africa’s only prawn fishery. Oceanographic studies suggest riverine input is not important for the biology of this system, whereas biological studies suggest the contrary, with prawn catches increasing with increased fluvial run-off. The aim of this study was to determine (i) the importance of riverine and marine organic matter for the Thukela Bank food web; and (ii) whether there are seasonal changes in the Thukela River stable isotope values, and, if so, whether these are reflected in the isotope values of demersal organisms. Estuarine organic matter, sediments and demersal organisms were collected from several sites across the bank in the wet and dry seasons of 2008, 2009 and 2010. Marine particulate organic matter was also collected in 2010 and analysed for δ13C and δ15N, as well as C/N ratios. There were strong seasonal changes in isotopic values of organic matter and fauna, especially faunal δ13C. There was an apparent time-lag in organisms assimilating riverine organic matter isotopic values, with the isotopic signature of demersal organisms reflecting that of riverine organic matter from the previous season, which is likely the result of tissue turnover time. In 2010, Thukela Bank sediment organic matter was of riverine origin and this maintained the demersal food web. We conclude that Thukela River organic matter is an important input to the food web of the Thukela Bank, indicating that any future damming of the catchment area could have serious consequences for this ecosystem.  相似文献   

5.
The relatively wide KwaZulu-Natal Bight between St Lucia and Durban on the north-east shelf of South Africa is characterised by several circulation features driven by the Agulhas Current, wind and coastal inputs. A large multidisciplinary programme investigated the sources and relative influences of nutrients on the shelf. Within this, and to address a critical knowledge gap, this study describes macrobenthic (<1 mm) composition and frequency from 16 stations, assigned amongst four oceanographic focus areas. The areas were predetermined across the disciplines to represent upwelling, outwelling and a semi-persistent eddy, with nutrients and primary productivity being measured at each. Environmental variables such as sediment distribution, sediment TOC and bottom water physico-chemistry were determined at a significantly larger spatial scale. Our study postulated that oceanographic focus areas support significantly different macrobenthic assemblages, and that composition and relative distribution is due to measurable habitat attributes at each. Macrofauna were relatively abundant and particularly rich at >1 000 taxa. Annelida, Arthropoda, Mollusca, Echinodermata, Sipuncula and Cnidaria (>50 taxa each) were the dominant macrobenthic groups in the bight. Annelida were dominated by the polychaete families Spionidae, Terrebelidae and Cirratullidae, which were generally associated with outwelling and a mud depocentre off the Thukela River. Two unique and distinctive assemblages were found, one in the Thukela Mouth focus area and another on the midshelf between Thukela and Durban. The latter is influenced by poorly sorted, coarse sand and with probable influences from the Durban Eddy. There assemblages were abundant, rich and specific to this habitat. Correlation, PERMANOVA and CAP analyses showed assemblage fidelity to the focus areas. Medium sand, fine sand, mud and the variance of overall sediment type were the habitat drivers underlying macrofaunal abundance distributions.  相似文献   

6.
Nearshore marine environments are influenced by an array of variables that can either be land-derived or of marine origin, and nearshore phytoplankton communities may differ in their taxonomic composition and biomass in response to such variables. The KwaZulu-Natal Bight (hereafter referred to as ‘the bight’) is an oligo-mesotrophic, nearshore oceanic environment, that is influenced by both terrestrial run-off and upwelling. A microphytoplankton survey of the bight conducted over several stations and depths and two seasons was conducted in order to ascertain species composition, abundance and biomass. Microphytoplankton abundance was generally low (a maximum of 180 000 cells l–1 was recorded) but differed considerably between sites and seasons. A total of 99 taxa of mainly Bacillariophyceae and some Dinophyceae, Prymnesiophyceae and Cyanophyceae were identified in the present study. In the central bight, higher abundance and biomass were measured in February (wet season), which may be a possible consequence of terrestrial nutrient inputs. In the northern and southern bight we measured higher abundance and biomass in August (dry season). Upwelling was not detected during the study, but an influence of terrestrial nutrient sources was detected at the coastal stations. Turbid conditions were specific to the site near the Thukela River mouth and possibly influenced abundance, biomass and species composition at this site. Historic data on microphytoplankton composition are scarce, but comparisons with surveys from the 1960s reveal that around 60% of the common diatoms recorded then also occurred in the present study. Small taxa [20–200 µm] dominated the microphytoplankton community. Community composition was fairly uniform throughout the bight in both seasons, dominated in general by Chaetoceros species, and on occasion co-dominated by Thalassionema nitzschioides and Dactyliosolen fragilissimus.  相似文献   

7.
Ship-based acoustic Doppler current profiler (S-ADCP) technology, used in survey mode, has enabled near- synoptic views of the in situ 3-D current field in the KwaZulu-Natal (KZN) Bight to be elucidated for the first time. Data acquired by the research vessels RS Africana and RS Algoa in June 2005, September 2007, March 2009 and July 2010 are presented. Each S-ADCP dataset showed similar circulation characteristics whereby the continental slope and outer shelf of the KZN Bight were strongly influenced by the south-westward flowing Agulhas Current. This was particularly evident in the extreme north between Cape St Lucia and Richards Bay where the shelf is narrowest and velocities exceeded 200 cm s?1. The widening of the bight to the south moves the Agulhas Current further from the coast, resulting in a diminishing velocity gradient on the outer shelf which terminates around the midshelf axis. The southern region of the bight was mostly influenced by the Durban cyclonic eddy (Durban Eddy), and in June 2005 and September 2007, by a cyclonic ‘swirl’ that occupied the entire southern half of the KZN Bight, the latter identified by a combination of S-ADCP-, satellite-derived SST- and ocean colour data. Satellite data showed low-chlorophyll offshore water to move into this swirl and northwards along the inner- and midshelf, reaching the Thukela River. Inner-shelf circulation north of the Thukela River was weak (<20 cm s?1) and highly variable. Satellite-tracked surface drogues deployed in the Durban Eddy found their way into the northward coastal current in the KZN Bight, with velocities exceeding 90 cm s?1 at times. The drogues also highlighted the strong influence of wind, especially in the northern bight between Durnford Point and Cape St Lucia, with residence times on the shelf exceeding 14 days, suggesting this region to be of biological importance particularly for recruitment.  相似文献   

8.
Zooplankton biomass and distribution in the KwaZulu-Natal Bight were investigated in relation to environmental parameters during summer (January–February 2010) and winter (July–August 2010). Mean zooplankton biomass was significantly higher in winter (17.1 mg dry weight [DW] m–3) than in summer (9.5 mg DW m?3). In summer, total biomass was evenly distributed within the central bight, low off the Thukela River mouth and peaked near Durban. In winter, highest biomass was found offshore between Richards Bay and Cape St Lucia. Zooplankton biomass in each size class was significantly, negatively related to sea surface temperature and integrated nitrate, but positively related to surface chlorophyll a and dissolved oxygen. Zooplankton biomass was significantly related to bottom depth, with greatest total biomass located inshore (<50 m). Distribution across the shelf varied with zooplankton size. Seasonal differences in copepod size composition suggest that a smaller, younger community occupied the cool, chlorophyll-rich waters offshore from the St Lucia upwelling cell in winter, and a larger, older community occurred within the relatively warm and chlorophyll-poor central bight in summer. Nutrient enrichment from quasi-permanent upwelling off Durban and Richards Bay appears to have a greater influence on zooplankton biomass and distribution in the bight than the strongly seasonal nutrient input from the Thukela River.  相似文献   

9.
Data obtained during the Agulhas Retroflection cruise of the Knorr in November/December 1983 suggested the presence of an oxygen-depleted water layer at the boundary of the Agulhas Current/Return Current system. An analysis of historical data shows that such a layer is present off the edge of the Agulhas Bank during much of the year and may be found off the West Coast as far north as 32°S during summer. The origins, temporal and spatial variations and hydrography of this low-oxygen water mass are described, and its influence on the biology of the Western Cape upwelling region is discussed. It is considered that the presence of this low-oxygen water mass can be used to show penetration of Agulhas water into the South-East Atlantic.  相似文献   

10.
Mesoscale circulation features have been shown to play an important role in the cross-frontal mixing of upwelling cells, their frontal morphology and in their interaction with oceanic water masses. With three years of detailed thermal infra-red satellite information on the South-East Atlantic upwelling system available, it proved possible to present a preliminary study of four prevalent frontal features intrinsic to the short-term behaviour of upwelling in this area. Upwelling filaments are shown to extend between 50 and 600 km seawards of the main front and are found, as are upwelling plumes, predominantly off the recognized major upwelling cells. Frontal eddies have a range of diameters and are found distributed over the full area of upwelling and on both sides of the main upwelling front. Warm filaments of Agulhas Current origin are advected preferentially along the western border of the Agulhas Bank and follow closely the front of the southernmost upwelling cells, where they may play a catalytic role in the creation of frontal turbulence.  相似文献   

11.
Cape anchovy Engraulis encrasicolus spawners in the southern Benguela showed an eastward shift in their distribution on the Agulhas Bank that occurred abruptly in 1996 and has since persisted. We assessed whether this shift was environmentally mediated by examining sea surface temperature data from different regions of the Agulhas Bank, which showed that in 1996 the inner shelf of the Agulhas Bank to the east of Cape Agulhas abruptly became 0.5°C colder than in previous years and has since remained that way. In addition, signals, coherent with the 1996 shift recorded in sea surface temperatures, were also found in atmospheric surface pressure and zonal wind data for that region; interannual coastal SST variability is also shown to be correlated with zonal wind-stress forcing. As a result, increased wind-induced coastal upwelling east of Cape Agulhas is proposed as the main driver of the observed cooling in the coastal region. The synchrony between the environmental and biological signals suggests that the eastward shift in anchovy spawner distribution was environmentally mediated and arose from a change in environmental forcing that altered the relative favourability for spawning between regions to the west and east of Cape Agulhas. The results highlight how a relatively minor change in environmental conditions can lead to a drastic spatial reorganisation of the life history of one species in an ecosystem.  相似文献   

12.
A total of 2 077 records of approximately 49 000 small cetaceans, including dedicated and incidental sightings and specimens, was analysed to define distribution patterns of the 28 species found within southern African waters. Distribution analyses reveal distinct component patterns, including cosmopolitan (found in all waters) and pelagic cosmopolitan (found in all pelagic waters) components, tropical, subtropical and warm temperate components of the Agulhas Current system, an Agulhas Bank component, a South and East Coast inshore component, and West Coast neritic and pelagic components. While the offshore distribution appears to be determined by water depth, possibly through distribution of the principal prey, longshore distribution appears to be determined by water temperature. The high diversity of small cetacean species found within the relatively small study region results from the wide range of zoogeographic components present. These components arise from the wide range of water temperature resulting from the warm Agulhas Current and the upwelling Benguela system.  相似文献   

13.
The existence and strength of the annual KwaZulu-Natal (KZN) sardine run has long been a conundrum to fishers and scientists alike ― particularly that the sardine Sardinops sagax migrate along the narrow Transkei shelf against the powerful, warm Agulhas Current. However, examination of ship-borne acoustic Doppler current profiler (S–ADCP) data collected during two research surveys in 2005 indicated that northward-flowing coastal countercurrents exist at times between the Agulhas Bank and the KZN Bight, near Port Alfred, East London, Port St Johns and Durban. The countercurrent near Port Alfred extended as far east as the Keiskamma River, within an upwelling zone known to exist there. An ADCP mooring at a depth of 32 m off Port Alfred indicated that the countercurrent typically lasted a few days, but at times remained in the same direction for as long as 10 days. Velocities ranged between 20 and 60 cm s?1 with maximum values of ~80 cm s?1. The S–ADCP data also highlighted the existence of cyclonic flow in the Port St Johns–Waterfall Bluff coastal inset, with a northward coastal current similarly ranging in velocity between 20 and 60 cm s?1. CTD data indicated that this was associated with shelf-edge upwelling, with surface temperatures 2–4 °C cooler than the adjacent core temperature (24–26 °C) of the Agulhas Current. Vertical profiles of the S–ADCP data showed that the countercurrent, about 7 km wide, extends down the slope to at least 600 m, where it appeared to link with the deep Agulhas Undercurrent at 800 m. S–ADCP and sea surface temperature (SST) satellite data confirmed the existence of the semi-permanent, lee-trapped, cyclonic eddy off Durban, associated with a well-defined northward coastal current between Park Rynie and Balito Bay. Analysis of three months (May–July 2005) of satellite SST and ocean colour data showed the shoreward core-boundary of the Agulhas Current (24 °C isotherm) to commonly be close to the coast along the KZN south coast, as well as between the Kei and Mbhashe rivers on the Transkei shelf. The Port St Johns–Waterfall Bluff cyclonic eddy was also frequently visible in these satellite data. Transient cyclonic eddies, which spanned 150–200 km of shelf, appeared to move downstream in the shoreward boundary of the Agulhas Current at a frequency of about once a month. These seemed to be break-away Durban eddies. Data collected by ADCP moorings deployed off Port Edward in 2005 showed that these break-away eddies and the well-known Natal Pulse are associated with temporary northward countercurrents on the shelf, which can last up to six days. It is proposed that these countercurrents off Port Alfred, East London and Port St Johns assist sardine to swim northwards along the Transkei shelf against the Agulhas Current, but that their progress north of Waterfall Bluff is dependent on the arrival of a transient, southward-moving, break-away Durban cyclonic eddy, which apparently sheds every 4–6 weeks, or on the generation of a Natal Pulse. This passage control mechanism has been coined the ‘Waterfall Bluff gateway’ hypothesis. The sardine run survey in June–July 2005 was undertaken in the absence of a cyclonic eddy on the KZN south coast, i.e. when the ‘gate’ was closed.  相似文献   

14.
The KwaZulu-Natal Bight is a shallow indentation of the eastern seaboard of South Africa, characterised by a narrow (45 km wide) extension of the continental shelf, with a shelf break at about 100 m. It has a complex hydrography: the waters of the bight are derived from the fast-flowing, southward-trending Agulhas Current, which is fed mostly by the tropical and subtropical surface waters of the South-West Indian Ocean subgyre, which are generally oligotrophic in nature, notably depleted in reduced nitrogen and phosphate except at river mouths and during periodic upwelling of deeper nutrient-rich water. Despite this, the bight is believed to be relatively productive, and it is suggested that efficient nutrient recycling by prokaryotes may sustain primary productivity efficiently, even in the absence of new nutrient inputs. Here we have measured bacterial numbers, biomass and heterotrophic productivity during summer and winter in conjunction with phytoplankton standing stock and factors that influence it. Bacterial distribution closely matched phytoplankton distribution in surface waters, and was highest close to the coast. Bacterial standing stocks were similar to those of oligotrophic systems elsewhere (0.5–5.0 × 105 cells ml–1; 1 × 10–8 to 1.25 × 10–7 g C ml–1) and increased in association with the development of phytoplankton blooms offshore and with inputs of allochthonous material by rivers at the coast. Heterotrophic productivity in summer was lowest in the far south and north of the bight (0.5 × 10–10 g C ml–1 h–1) but higher close to the shore, over shallow banks, and in association with increased phytoplankton abundance over the midshelf (1.0–3.5 × 10–9 g C ml–1 h–1). There were marked seasonal differences with lower bacterial standing stocks (5 × 104 to 2 × 105 cells ml–1; 4–5 × 10–9 to 1–2 × 10–8 g C ml–1) and very low bacterial productivity (4 × 10–11 to 1 × 10–10 g C ml–1 h–1) in winter, probably resulting from lowered rates of primary productivity and dissolved organic matter release as well as reduced riverine allochthonous inputs during the winter drought.  相似文献   

15.
The composition and distribution of macrobenthic communities was investigated in three areas in the KwaZulu- Natal Bight, a section of shelf off the east coast of South Africa. Areas were pre-selected on the basis of three known oceanographic features, posited to deliver land- or Agulhas Current-derived nutrients onto the shelf and to drive ecosystem functioning in this region. Replicate sediment samples were collected with a 0.2 m2 van Veen grab, during two surveys (A, B) corresponding with normal periods of high and low rainfall, respectively. A subset of the full station array was selected across the shelf in an arrangement of increasing depths (inner-, mid- and outer shelf) through each feature area to investigate the spatial distribution and feeding modes of macrobenthic taxa. The two periods showed some differences in abundance and numbers of macrobenthic taxa, but were not statistically different. Total macrobenthic abundance from Survey A was 20 215 individuals from 642 taxa, decreasing to 18 000 individuals from 503 taxa during Survey B. Polychaeta and Crustacea were the dominant taxa sampled; abundance of the latter was attributed largely to a proliferation of Paguristes sp.1 at inner-shelf samples in the midbight (Thukela) region during Survey B. Similarity classification distinguished seven sample groups reflecting differences in feature areas and shelf positions under investigation. The Thukela River midshelf community supported the highest macrobenthic abundance, while the midshelf off the southern bight (Durban region) was most species rich. Findings were attributed to the habitat complexity of the midshelf which includes a palaeo-dune cordon at the 60 m isobath. Functionally, the community was dominated by interface- and deposit-feeding fauna, emphasising the importance of trophic plasticity in an environmentally variable and heterogeneous shelf environment.  相似文献   

16.
Cape anchovy Engraulis encrasicolus adapted its reproductive strategies to the southern Benguela system by spawning over the Agulhas Bank, an area of low productivity that is located upstream of the predominant upwelling system. Frontal jet currents transport eggs and larvae toward the west coast of South Africa, where recruitment takes place. To characterise the recruitment dynamics of Cape anchovy ichthyoplankton, we used an individual-based model forced by a coupled hydrodynamic–biogeochemical model. The results show the importance of food (especially diatoms and copepods) dynamics on the spatial and temporal patterns of recruitment success, and also confirm the importance of the spawning area, timing and water depth on the recruitment success of Cape anchovy larvae.  相似文献   

17.
During February 2010, studies of primary production (PP) and physiology were conducted at five selected sites in the KwaZulu-Natal (KZN) Bight of the Agulhas ecosystem as part of a programme to elucidate the influence of major physical driving forces and nutrient inputs on the structure and functioning of biological communities. These sites were located in the vicinity of the Durban lee eddy, in the midshelf region of the central part of the bight, off the Thukela Mouth, and to the north and south of Richards Bay. At four of the sites, chlorophyll a ranged from 0.10 to 1.44?mg m–3 and integrated PP ranged between 0.35 and 2.58?g C m–2 d–1. The highest biomass and PP, which were comparable to those observed in a wind-driven upwelling system, were associated with a diatom community observed at the midshelf site, and varied between 0.26 and 4.27?mg m–3 and 7.22 and 9.89?g C m–2 d–1, respectively. Environmental conditions at each of the sites differed substantially and appeared to be influential in initiating and controlling the development and distribution of phytoplankton biomass and production. Phytoplankton adaptation to variable environmental conditions was characterised by a decreased light-limited slope (αB) and increased rate of photosynthesis (Pm ) and light saturation (Ek) with elevated temperatures. The converse (increased αB and decreased Pm and Ek) was observed as irradiance levels declined. Generalised additive models indicated that irradiance, temperature and biomass were important variables influencing photosynthetic parameters and photosynthetic rates.  相似文献   

18.
Data on ocean temperature, currents, salinity and nutrients were obtained in an area off Algoa Bay on the south-east coast of South Africa during a ship's cruise in early November 1986. Satellite imagery provided information on the position of the Agulhas Current during the cruise period, while wind data were available from weather stations on the eastern and western sides of Algoa Bay. It is surmised that wind-forcing plays a major role in water circulation in the Bay and over the inshore continental shelf remote from the influence of the open ocean. The predominantly barotropic current flow, of the order of 0,5 m·s?1, was downwind and influenced by topographic features and coastline shape. The Agulhas Current influences the ocean structures by long-term (large episodic meanders) and short-term (upwelling forced by the Current, core upwelling in frontal eddies and warm frontal plumes at the surface) fluctuations. Temperature structures showed well mixed water in Algoa Bay and a strong thermocline over the continental shelf, and were typical of a western boundary current in the Agulhas Current itself. The presence of a thermocline at 30–50 m over the shelf prevented upward mixing of nutrients. The Current exerted a dominant effect on shelf waters north of Algoa Bay.  相似文献   

19.
20.
Using weekly sea surface height data, Agulhas rings from the period October 1992 to December 2006 are detected and tracked, from their formation dates and throughout the Cape Basin. While 102 of them formed at the Agulhas Current retroflection, their subsequent subdivisions and junctions led to 199 trajectories. The rings geographical probability of presence shows two maxima. One, related to numerous ring passages, lies in the submarine bight formed by the Erica seamount, the Schmitt-Ott seamount, and the northeastern tip of the Agulhas Ridge. The other one, to be ascribed to topographic blocking of the eddies, is southeast of the latter obstacle. On the basis of topographic effects three routes for Agulhas rings are distinguished, a Northern route for rings that enter the south-Atlantic northeast of the Erica seamount, a Central one for those passing westward between this seamount and the tip of the Agulhas Ridge, and a Southern one farther south. Despite its bathymetric obstacles, the central route is the dominant one, both in terms of percentage of eddy crossings at its definition segment, and in terms of conveyed volume transport. Specific behaviours of rings along each route are described, referring to observations in previous studies. Some rings from the Northern route interact with the flow regime of the South African continental slope. The southernmost trajectories of the Central route are thought to settle the location of the climatological Subtropical Front in that region. The rings of the Southern route experience important core property alteration as they transit through the subantarctic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号