首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, experiments have been carried out with a focus to reduce the volume requirement of solvent by mixing with imidazolium based ionic liquids (ILs) for the solvent extraction of phenol, p‐chlorophenol, 2,4‐dichlorophenol, 2,4,6‐trichlorophenol, and pentachlorophenol from aqueous solutions. The effect of aqueous phase pH (2–12), agitation speed (100–450 rpm), solute concentration in feed (2–50 mg/L), temperature (303–333 K), treat ratio (1–11), and 1‐butyl‐3‐methyl imidazolium tetrafluoroborate [Bmim]+[BF4]? volume in tributyl phosphate (TBP; 0–0.7% v/v) on extraction of phenols has been studied and optimized. Parameters like strip phase pH (3–13) and stripping agent concentration (0.001–0.009 N) have also been studied for stripping of phenols from solvent phase. It has been found that 0.5% v/v of ionic liquid [Bmim]+[BF4]? in solvent TBP extracts more than 97.5% of phenol and chlorophenols from aqueous solutions with a treat ratio (aqueous to solvent phase ratio) of 5. Transport mechanism for extraction and stripping of phenol and chlorophenols using ionic liquid [Bmim]+[BF4]? has been discussed. The results show that by appropriate selection of extraction and stripping conditions, it is possible to remove nearly all phenols with a treat ratio of 5.  相似文献   

2.
Sedimentary pigments are useful proxy indicators of phytoplankton biomass, community structure, primary productivity and human influence in lacustrine and oceanic ecosystems. Pigments are relatively labile due to their complex chemical structures, which makes the extraction and analysis of sedimentary pigments challenging. In addition, it is important to select appropriate methods to study sedimentary pigments in regions which lack previous investigations. In this study, we adopted the L_9(3~4) orthogonal design to develop methods of extraction and HPLC(high performance liquid chromatography) analysis of sedimentary pigments at two lakes on the Tibetan Plateau: meromictic lake-Dagze Co and dimictic lake-Jiang Co. The orthogonal design comprises 9 combinations of various parameters for extraction and HPLC analysis. The results show that the type and volume of solvent are the most important factors for pigment extraction, and the mobile phase and column selection are the most important for HPLC analysis. For the study sites, we found that the best methods to extract sedimentary pigments are as follows: the use of a mixture of acetone:methanol:water(80:15:5, v:v:v) as the extraction solvent; solvent/sample ratio of 10 m L/g; sonication for 30 s and standing extraction for 6 h. The best methods for HPLC analysis are as follows: Zorbax Eclipse plus C8 column with mobile phase A, methanol:acetonitrile:0.25 M aqueous pyridine(50:25:25, v:v:v) and mobile phase B, methanol: acetonitrile: acetone(20:60:20, v:v:v); p H of mobile phase A adjusted to 6 with acetic acid; and HPLC column temperature maintained at 40°C. The study provides an experimental basis for future investigations of past changes in primary productivity and the response of lake ecosystems to climate change and human activities on the Tibetan Plateau.  相似文献   

3.
The effect of anaerobic co‐digestion of vegetable market waste and sewage sludge was studied extensively. The effects of co‐digestion were compared with the separate digestion of vegetable market waste and sewage sludge. The batch studies were carried out using three bench scale reactors having 1.5 L working volume. The cumulative biogas production shows that the organic waste available from the vegetable waste contains easily biodegradable organic matter compared with the sewage sludge. First order reaction kinetics is maintained throughout the methanation fermentation. The reductions in volatile solids (VS) in the three reactors were in the range of 63–65 %. The specific gas production for vegetable waste was higher (0.75 L biogas/g VSin and 1.17 L biogas/g VSdes) than for the sewage sludge (0.43 L biogas/g VSin and 0.68 L biogas/g VSdes). Consequently, the specific gas production for the co‐digestion of the mixture of vegetable waste and sewage sludge (0.68 L biogas/g VSin and 1.04 L biogas/g VSdes) was considerably higher than for the sewage sludge only. Batch kinetics of anaerobic digestion is useful in predicting the performance of digesters and for the design of appropriate digesters.  相似文献   

4.
T. H. Brikowski 《水文研究》2015,29(7):1746-1756
Adaptation and mitigation efforts related to global trends in climate and water scarcity must often be implemented at the local, single‐catchment scale. A key requirement is understanding the impact of local climate and watershed characteristics coupled with these regional trends. For surface water, determination of multi‐parameter runoff elasticities is a promising tool for achieving such understanding, as explored here for two surface‐water dependent basins in Texas. The first basin is the water supply for Dallas‐Ft. Worth (DFW), and exhibits relatively high precipitation elasticity (proportional change in runoff to change in precipitation) εP = 2.64, and temperature elasticity εT = ? 0.41. Standard precipitation–temperature elasticity diagrams exhibit unusual concave contours of runoff change, indicating influence of additional parameters, which can be isolated using multi‐parameter approaches. The most influential local parameter in DFW is unexpected reduced runoff fraction in cooler wetter years. Those years exhibit increased summer (JJA) precipitation fraction, but predominant cracking soils in DFW minimize JJA runoff, yielding negative . A comparative basin near Houston shows positive , reflecting the local impact of tropical cyclones and lesser abundance of cracking soils. Both basins exhibit positive elasticity to 1‐year previous precipitation (e.g. DFW εP ? 1 = 1.24), reflecting the influence of soil moisture storage. Only DFW exhibits negative elasticity to 2‐year previous precipitation (εP ? 2 = ? 0.65), reflecting multi‐year influence of vegetation growth and increased evapotranspiration. Using these elasticities, analysis of historical multi‐decadal climate departures for DFW indicates the 80% decrease in runoff during the 1950–1957 drought of record was primarily caused by reduced precipitation. Runoff 56% above‐normal during an unprecedented 1986–1998 wet period was primarily caused by increased precipitation. Since 2000, despite precipitation slightly above normal, runoff has decreased 20%, primarily in response to ~ 1°C warming. Future precipitation droughts superimposed on this new drier normal are likely to be much more severe than historical experience would indicate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Nonaqueous phase liquid (NAPL)‐impacted lower permeability layers in heterogeneous media are difficult to fully remediate and can act as persistent sources of groundwater contamination through diffusive emissions to transmissive aquifer zones. This work investigated the benefits of partial remediation involving treatment focused near the high‐low permeability interface, with the performance metric being emissions reduction. A sequential base‐activated persulfate (S2O8 2?) delivery treatment strategy was studied in this work, involving 13–14 d deliveries of 10% w/w sodium persulfate (Na2S2O8) and 14–28 d deliveries of 19 g/L sodium hydroxide (NaOH). Treatment and control experiments were conducted in 1.2‐m wide × 1.2‐m tall × 5‐cm thick physical model tanks containing two soil layers differing in hydraulic conductivity by three orders of magnitude. The top 10 cm of the lower permeability layers contained 7400–7800 mg‐NAPL/kg‐soil; the NAPL was comprised of benzene, toluene, ethylbenzene, p‐xylene, o‐xylene, n‐propylbenzene, and 1,3,5‐trimethylbenzene (TMB) mixed in octane. Approximately 0.1 g‐Na2S2O8 was delivered per cm2‐interface area over 13–14 d. The S2O8 2? and SO4 2? concentration profiles suggest higher oxidant reaction rates when NaOH is delivered prior to, rather than after Na2S2O8. After 264 d and two treatments, hydrocarbon emissions from the NAPL source were reduced by 60% to 73% compared to a no‐treatment control tank. The incremental benefit of the second treatment was only about 10% of the effect of the first treatment.  相似文献   

6.
A multi‐element ion‐pair extraction method was described for the preconcentration of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), and Zn(II) ions in environmental samples prior to their determinations by flame atomic absorption spectrometry (FAAS). As an ion‐pair ligand 2‐(4‐methoxybenzoyl)‐N′‐benzylidene‐3‐(4‐methoxyphenyl)‐3‐oxo‐N‐phenyl‐propono hydrazide (MBMP) was used. Some analytical parameters such as pH of sample solution, amount of MBMP, shaking time, sample volume, and type of counter ion were investigated to establish optimum experimental conditions. No interferences due to major components and some metal ions of the samples were observed. The detection limits of the proposed method were found in the range of 0.33–0.9 µg L?1 for the analyte ions. Recoveries were found to be higher than 95% and the relative standard deviation (RSD) was less than 4%. The accuracy of the procedure was estimated by analyzing the two certified reference materials, LGC6019 river water and RTC‐CRM044 soil. The developed method was applied to several matrices such as water, hair, and food samples.  相似文献   

7.
Transport and retention of Escherichia coli through the mixture of quartz, Al‐coated and Fe‐coated sands was examined using column experiments to investigate the effect of geochemical heterogeneity on bacteria transport. The first set of the experiments was performed in quartz, Al‐coated and Fe‐coated sand mixtures (coated sand: 0, 5, 10, 25, 50, 100%) to examine the influence of positively‐charged sand grains on bacteria transport. The second experiments were carried out to observe the impact of pH (range 6·74–8·21) on bacteria transport in the mixture of quartz 50% and Fe‐coated sand 50%. The third experiments were conducted to analyse the effect of ionic strength (0, 50, 100, 200 mM) on bacteria transport in the mixture of quartz 50% and Al‐coated sand 50%. The first experiments show that bacterial mass recoveries were in the range of 3·6–43·4%, decreasing nonlinearly as the content of Al‐ and Fe‐coated sands increased. In the second experiments, the bacterial mass recoveries were in the range of 35·5–79·2%, increasing linearly as the solution pH increased. In the third experiments, the mass recovery was 3·4% at 0 mM. As the ionic strength increased to 50mM, the mass recovery decreased to 0%. When the ionic strength increased further to 100 and 200 mM, no bacterial mass was recovered as in the case of 50 mM. It indicates that in the mixed medium of quartz 50% and Al‐coated sand 50% both positive (increment of bacterial adhesion) and negative (decrement) effects of ionic strength may be counterbalanced, minimizing the impact of ionic strength on the bacterial adhesion. This study helps to understand the role of metal oxides and solution chemistry in the transport of bacteria in geochemically heterogeneous media Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
A cloud point extraction procedure is presented for the preconcentration and simultaneous determination of Ag+ and Pd2+ in various samples. After complexation with 2‐((2‐((1H‐benzo[d]imidazole‐2‐yl)methoxy)phenoxy)methyl)‐1H‐benzo[d]imidazol (BIMPI), which was used as a new chelating agent, analyte ions were quantitatively extracted to a phase rich in Triton X‐114 following centrifugation, and determination was carried out by flame atomic absorption spectrometry (FAAS). Under the optimum experimental conditions (i. e., pH = 7.0, 15.0·10–5 mol/L BIMPI and 0.036% (w/v) Triton X‐114), calibration graphs were linear in the range of 28.0–430.0 μg/L and 57.0–720.0 μg/L with detection limits of 10.0 and 25.0 μg/L for Ag+ and Pd2+, respectively. The enrichment factors were 35.0 and 28.0 for Ag+ and Pd2+, respectively. The method has been successfully applied to evaluate these metals in some real samples, including waste water, soil and hydrogenation catalyst samples.  相似文献   

9.
In this study, 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy‐calix[4]arene ( 3 ) has been prepared by the treatment of calix[4]arene with a secondary amine (4‐benzylpiperidine) and formaldehyde by means of Mannich reaction. The prepared Mannich base ( 3 ) has been grafted onto [3‐(2,3‐epoxypropoxy)‐propyl]‐trimethoxysilane‐modified Fe3O4 magnetite nanoparticles (EPPTMS‐MN) in order to obtain 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy calix[4]arene‐grafted EPPTMS‐MN (BP‐calix[4]arene‐grafted Fe3O4). All new compounds were characterized by a combination of FTIR and 1H‐NMR analyses. The morphology of the magnetic nanoparticles was examined by transmission electron microscopy. Moreover, the studies regarding the removal of arsenate and dichromate ions from the aqueous solutions were also carried out by using 5,17‐bis‐[(4‐benzylpiperidine)methyl]‐25,26,27,28‐tetrahydroxy‐calix[4]arene in liquid–liquid extraction and BP‐calix[4]arene‐grafted Fe3O4 ( 4 ) in solid–liquid extraction experiments. The extraction results indicated that 3 is protonated at proton‐switchable binding sites in acidic conditions. Hence, facilitating binding of arsenate and dichromate is resulted from both electrostatic interactions and hydrogen bonding. To understand the selectivity of 3 , the retention of dichromate anions in the presence of Cl, NO, and SO anions at pH 1.5 was also examined.  相似文献   

10.
Determination of Atrazine, Terbutylazine and their Deethyl- and Hydroxymetabolites in Soil by SFE and HPLC/UV-DAD The supercritical fluid extraction (SFE) (CO2 and CH3OH as modifier) of the herbicides atrazine and terbutylazine as well as their deethyl- and hydroxymetabolites from soil was investigated. The analytes were determined after extraction by HPLC/UV-DAD using a C18 column. The limits of detection of the chromatographic step were between 0.01 μg/mL and 0.07 μg/mL, the relative standard deviations between 0.8% and 1.4%. With the aid of a control chart, the stability of the chromatographic system was evaluated. For extraction, soil was spiked with 5 μg/g for each component. For SFE, CO2 and methanol as modifier were used, and a pressure program was applied. Beside SFE, Soxhlet extraction with methanol and a solid-liquid extraction with acetone/water by shaking were carried out. For chlorine-containing triazines, the recovery rates were comparable for all extraction methods. The following recovery rates for SFE were obtained: deethylterbutylazine 77.4%, terbutylazine 80.2%, deethylatrazine 87.4%, atrazine 92.6%. However, the recovery rates for the hydroxymetabolites (4.1% for hydroxyatrazine, 21% for hydroxyterbutylazine) were not satisfying compared with the “classical” methods of extraction (above 50%). The limits of detection for the total process (SFE and HPLC/UV-DAD) estimated by the signal to noise ratio amounted 0.08 μg/g soil for chlorine-containing derivates, for hydroxyatrazine 2…3 μg/g, and for hydroxyterbutylazine 0.8 μ/g.  相似文献   

11.
Research interest in speciation of arsenic stems from its species dependent behavior in the environment and in living organisms. The complexity of the matrix to be analyzed and low concentrations of target arsenic species that may be labile or difficult to chromatogram, indicate that a suitable pre‐treatment methodology is required. This study investigated the usefulness of chelation solvent extraction – high performance liquid chromatography (CSE‐HPLC) for the speciation of arsenic in water. It involved reacting arsenic with the chelant known for its affinity towards arsenic, followed by extraction, separation, and identification of the arsenic‐chelant‐arsenic complex. Arsenic species having different physicochemical properties were investigated. Species, such as, As2O3, As3O5, KH2AsO4, Na2HAsO4, and NaAsO2 were detected as a group of closely eluted peaks with different retention times and spectral properties, whereas, the organic arsenic species CH3Na2AsO3, o‐arsanilic acid, roxarson and triphenyl arsine separated quite well on the EnviroseP‐CM HPLC column. Key method parameters, such as, type of HPLC column, composition of mobile phase and organic solvents affecting peak resolution and sensitivity were optimized. Real environmental matrices contaminated with arsenic were analyzed under varying wavelengths (λmax = 190, 210, 220, 234, 244, and 282 nm), with good precision. Different arsenic species were detected in these samples with excellent background and signal‐to‐noise ratios demonstrating the robustness of the method. The detection limit, reproducibility, selectivity, accuracy, and dynamic range of the calibration curves were evaluated.  相似文献   

12.
A novel, simple, fast, and efficient ionic liquid‐based dispersive liquid–liquid extraction (IL‐DLLE) has been applied to extract and remove Congo Red (CR; a carcinogenic textile dye) from aqueous solutions. In this methodology a binary solution, containing the extraction solvent (1‐hexyl‐3‐methylimmidazolium bis(trifluormethylsulfonyl) imid) and a suitable disperser solvent, was rapidly injected into the water sample containing CR dye. Therewith, a cloudy solution was formed, and most of the dye molecules were extracted into fine IL droplets and removed from aqueous phase. The effects of pH, type, and amount of IL, initial concentration of the dye, type and volume of the dispersant, and concentrations of salt on the extraction of the dye were studied. Experimental surveys were also accomplished for recovery of the IL by applying a reverse dispersive liquid–liquid extraction using acidic stripping solutions.  相似文献   

13.
In this study the occurrence of diclofenac and sub‐products in effluent emerging from the University Hospital at the Federal University of Santa Maria was investigated. One metabolite was identified and, in aqueous solution, three degradation products. The quantification was conducted by means of HPLC‐DAD, and the determination of metabolite and degradation products by LC–ESI–MS/MS–QTrap. For the HPLC‐DAD method, a 70:30 mixture of methanol/sodium phosphate was used in isocratic mode. For the LC–ESI–MS/MS–QTrap determinations, a mobile phase, where phase A was an ammonium acetate solution 5 × 10?3 mol L?1, and phase B was methanol (5 × 10?3 mol L?1)/ammonium acetate (9:1, v/v), on gradient mode. The LDs for the HPLC and LC–MS/MS methods, respectively, were 2.5 and 0.02 µg L?1, the LQs, 8.3 and 0.05 µg L?1, and the linear range from 10 up to 2000 µg L?1 and 0.05 up to 10 µg L?1. As expected, the LC–ESI–MS/MS–QTrap method was more sensitive and less laborious. The metabolite 4′‐hydroxy‐diclofenac was identified. Photolysis was used for the degradation studies and three products of diclofenac were identified (m/z of 214, 286 and 303) in aqueous solution. These results notwithstanding, no degradation products of diclofenac were found in the hospital effluent.  相似文献   

14.
A start‐up study for biohydrogen production from palm oil mill effluent (POME) is carried out in a pilot‐scale up‐flow anaerobic sludge blanket fixed‐film reactor (UASFF). A substrate with a chemical oxygen demand (COD) of 30 g L?1 is used, starting with molasses solution for 30 days and followed by a 10% v/v increment of POME/molasses ratio. At 100% POME, a hydrogen content of 80%, hydrogen production rate of 36 L H2 per day, and maximum COD removal of 48.7% are achieved. Bio‐kinetic coefficients of Monod, first‐order, Grau second‐order, and Stover‐Kincannon kinetic models are calculated to describe the performance of the system. The steady‐state data with 100% POME shows that Monod and Stover‐Kincannon models with bio‐kinetic coefficients of half‐velocity constant (Ks) of 6000 mg COD L?1, microbial decay rate (Kd) of 0.0015 per day, growth yield constant (Y) of 0.786 mg volatile suspended solids (VSS)/mg COD, specific biomass growth rate (μmax) of 0.568 per day, and substrate consumption rate of (Umax) 3.98 g/L day could be considered as superior models with correlation coefficients (R2) of 0.918 and 0.989, respectively, compared to first‐order and Grau's second‐order models with coefficients of K1 1.08 per day, R2 0.739, and K2s 1.69 per day, a = 7.0 per day, b = 0.847.  相似文献   

15.
To investigate the characteristics of the anisotropic stratum, a multi‐azimuth seismic refraction technique is proposed in this study since the travel time anomaly of the refraction wave induced by this anisotropic stratum will be large for a far offset receiver. To simplify the problem, a two‐layer (isotropy–horizontal transverse isotropy) model is considered. A new travel time equation of the refracted P‐wave propagation in this two‐layer model is derived, which is the function of the phase and group velocities of the horizontal transverse isotropic stratum. In addition, the measured refraction wave velocity in the physical model experiment is the group velocity. The isotropic intercept time equation of a refraction wave can be directly used to estimate the thickness of the top (isotropic) layer of the two‐layer model because the contrast between the phase and group velocities of the horizontal transverse isotropic medium is seldom greater than 10% in the Earth. If the contrast between the phase and group velocities of an anisotropic medium is small, the approximated travel time equation of a refraction wave is obtained. This equation is only dependent on the group velocity of the horizontal transverse isotropic stratum. The elastic constants A11, A13, and A33 and the Thomsen anisotropic parameter ε of the horizontal transverse isotropic stratum can be estimated using this multi‐azimuth seismic refraction technique. Furthermore, under a condition of weak anisotropy, the Thomsen anisotropic parameter δ of the horizontal transverse isotropic stratum can be estimated by this technique as well.  相似文献   

16.
In view of water pollutants becoming more complex, both anionic and cationic pollutants need to be removed. The multi‐pollutants simultaneous removal is paid more and more attention. Hence, development composite materials for treatment complex wastewater are the aim of this study. In this research, iron–nickel nanoparticles deposited onto aluminum oxide (α‐Al2O3) and carbon nanotubes (CNTs) to form nanocomposite materials Fe–Ni/Al2O3 and Fe–Ni/CNTs, respectively, were used as adsorbents. The adsorption capacities of Fe–Ni/Al2O3 and Fe–Ni/CNTs for AO7, HSeO, and Pb2+ were observed to be 5.46, 8.28, 27.02, and 25.6 mg/g, 15.29 and 17.12 mg/g, separately. The composite materials with negative charges were superior in adsorption of anionic pollutants. Using orthogonal experimental design and analysis of variance to co‐treat dye AO7, HSeO and Pb2+ in aqueous solutions, seven testing factors were included: (1) adsorbent types, (2) amount of iron, (3) solution pHs, (4) AO7 concentrations, (5) Pb2+ concentrations, (6) HSeO concentrations and (7) reaction time. The experimental results showed that the removal of complex pollutants AO7, HSeO, and Pb2+ on Fe–Ni/CNTs could reach up to 90% in the optimal treatment conditions. When using Fe–Ni/CNTs as the adsorbent, the sorption isothermals were well fitted in the Freundlich isotherm, and R2 could reach up to 0.98.  相似文献   

17.
Sequential extraction procedures are widely used to characterize the different operational fractions with different potential toxicity of metals in environmental solid samples. The present work describes the application of different analytical approaches for sequential extraction of aluminum to evaluate its mobility, availability, and persistent chemical forms in sediment samples of different fresh water ecosystems (lake, canal, and river). The conventional BCR three‐stage sequential extraction procedure (C‐BCR) was modified at each stage, by applying ultrasonic device (U‐BCR), in order to shorten the required shaking time of 16 h for each three steps (excluding the hydrogen peroxide digestion in step 3, which was not performed with ultrasonic bath), could be completed in 40, 50, and 45 min, respectively. The aluminum in all extracts were determination by atomic absorption spectrometry using nitrous oxide – acetylene flame. The accuracy of results obtained from C‐BCR and proposed U‐BCR was verified with literature reported values of certified sediment sample (BCR 701). The overall recoveries of aluminum obtained by proposed U‐BCR were found in the range of 96.7–113% of those values obtained with C‐BCR for all fractions. Use of ultrasonic device, provided a large saving in extraction time relative to conventional shaking. It was observed that major part of Al in real sediment samples (80–83% of total Al) were bound to residual fraction. The acid soluble fraction of aluminum extracted by 0.11 mol/L CH3COOH has good correlation with aluminum content in corresponding water samples of each ecosystem.  相似文献   

18.
Utilization of cheap renewable carbon feedstock for polyhydroxyalkanoate (PHA) production not only brings down its production cost but also ensures sustainability. The scope of this study was to evaluate the potential of sap extracted from felled oil palm trunk (OPT) as a novel inexpensive renewable carbon source for PHA production. OPT sap was found to be nutritionally rich and contained various fermentable sugars (5.5% w/v) as its major constituent. Termite gut isolate, Bacillus megaterium MC1 grew profoundly in mineral medium with OPT sap as carbon source and a cell density of 10.9 g/L was attained after 16 h of cultivation in shake flask cultures. A maximum poly‐3‐hydroxybutyrate [P(3HB)] content (% cell dry weight; CDW) of 30 wt% and a P(3HB) concentration of 3.28 g/L was recorded. Additionally, OPT sap extracted from younger tree trunks with prolonged storage had higher sugar content (10.8% w/v) and, when used as a growth medium without the addition of any nutrients, supported bacterial growth comparable to commercially available media.  相似文献   

19.
A simple and reliable method for rapid and selective extraction and determination of trace levels of Ni2+ and Mn2+ was developed by ionic liquid (IL) based dispersive liquid–liquid microextraction coupled to flame atomic absorption spectrometry (FAAS) detection. The proposed method was successfully applied to the preconcentration and determination of nickel and manganese in soil, vegetable, and water samples. After preconcentration, the settled IL‐phase was dissolved in 100 µL of ethanol and aspirated into the FAAS using a home‐made microsample introduction system. Injection of 50 µL of each analyte into an air–acetylene flame provided very sensitive spike‐like and reproducible signals. Effective parameters such as pH, amount of IL, volume of the disperser solvent, concentration of the chelating agent, and effect of salt concentration were inspected by a (25‐1) fractional factorial design to identify the most important parameters and their interactions. Under optimum conditions, preconcentration of 10 mL sample solution permitted the detection of 0.93 µg L?1 Ni2+ and 0.52 µg L?1 Mn2+ with enrichment factors 77.2 and 82.6 for Ni2+ and Mn2+, respectively. The accuracy of the procedure was evaluated by analysis of a certified reference material (CRM TMDW‐500, drinking water).  相似文献   

20.
The aim of this research was to decompose isoproturon and adsorb its photoproducts by developing a carbon material from a juice industry waste. Carbon-TiO2 hybrid materials were obtained by impregnating carbonized guava seeds with TiO2 gels prepared from TiOSO4⋅xH2O and NH4OH using glycerol as a binder and thermally treating the materials at 500 °C. Raman studies confirmed the anatase phase of TiO2. SEM images showed isolated TiO2 agglomerates firmly attached to the carbon surface. The adsorption behavior of isoproturon on guava carbon was studied and yielded S-type adsorption isotherms. The photocatalytic activities of the prepared hybrid materials were monitored to study the kinetics and elimination process both of the herbicide and its photoproducts. The reaction was monitored by UV–Vis spectrophotometry, LC-DAD and LC-MS, enabling identification of some intermediate species. Among the photoproducts produced by carbon-TiO2 hybrid materials, amino-isopropylphenol was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号