首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 462 毫秒
1.
The European Water Framework Directive (WFD) establishes a framework for the protection and improvement of estuarine (transitional) and coastal waters, attempting to achieve good water status by 2015; this includes, within the assessment, biological and chemical elements. The European Commission has proposed a list of priority dangerous substances (including metals such as Cd, Hg, Ni and Pb), with the corresponding list of environmental quality standards (EQS), to assess chemical status, but only for waters. In this contribution, a long-term (1995–2007) dataset of transitional and coastal water and sediment trace elements concentrations, from the Basque Country (northern Spain), has been used to investigate the response of these systems to water treatment programmes. Moreover, the approach proposed in the WFD, for assessing water chemical status (the ‘one out, all out’ approach), is compared with the integration of water and sediment data, into a unique assessment. For this exercise, background levels are used as reference conditions, identifying the boundary between high and good chemical status. EQS are used as the boundary between good and moderate chemical status. This contribution reveals that the first approach can lead to misclassification, with the second approach representing the pattern shown by the long-term data trends. Finally, the management implications, using each approach are discussed.  相似文献   

2.
Excessive mobilization and delivery of fine sediments to water bodies has detrimental impacts on those biotic elements used for waterbody status classification, including macroinvertebrates, fish and macrophytes. The relationship between fine sediment and diatoms is a reciprocal one, with diatoms influencing the production and retention of fine sediments, as well as being impacted by fine sediment derived from the catchment. Diatoms can increase the retention of fine sediments in benthic environments as a result of various mechanisms, including shear stress modification, surface adhesion and bed clogging. Enhanced retention of fines can have important implications for the transfer and fate of sediment‐associated nutrients and contaminants. Excessive fine sediment loadings impact diatom assemblages via shading, burial and scouring. Indirect impacts of increased fine sediment stress can result from changes in habitat availability, herbivory or predator changes, which cascade down the food chain. Indices based on the relative abundance of motile species have been proposed for using diatoms to assess waterbody status. However, disentangling the potential confounding impacts of alternative environmental stressors on these simplistic indices remains a significant challenge. Coupling sediment pressure models, capable of predicting the potential impact of mitigation, with meaningful diatom‐based indices, remains a challenge for catchment planning for sediment abatement and the attainment of improved, or protection of, ecological status. Existing targets for sediment management in river catchments are largely based on relationships between sediment stress and impacts on fish, but these thresholds have been widely criticized. There remains a need to develop generic modelling toolkits coupling sediment stress and impacts on a range of biological quality elements to support a weight‐of‐evidence approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Groundwater bores act as traps. Net samplers are regularly used for sampling this type of trap for fauna. To enable direct comparisons of faunal communities in groundwater bores and stream sediments, stream sediment tubes were built similar to groundwater bores and were sampled with net samplers for fauna. These stream sediment tubes consisted of a tube anchored in the stream sediment, also called interstitial space. To test the efficacy of this trap method in stream sediments, it was compared to another type of trap, Hahn's trap. Faunal communities sampled by a net in the stream sediment tubes did not differ hugely from fauna in Hahn's trap samples. Physical and chemical factors of sampled water in both the stream sediment tubes, the surrounding interstitial sediments and the second type of traps, Hahn's traps, showed that water in both the tubes and Hahn's traps was closely related to interstitial water. The net sampler is inexpensive and easy to handle. It is suggested that sampling stream tubes with nets may be an appropriate method for long‐term monitoring studies.  相似文献   

4.
太湖沉积物中镉的赋存形态及其与河蚬体内富集的关系   总被引:1,自引:0,他引:1  
通过实验室模拟的方法,将河蚬暴露于镉(Cd)污染太湖沉积物中,研究河蚬软体组织中Cd富集量及其水环境中Cd的分布规律.同时采用薄膜扩散梯度技术(DGT)和BCR形态分析法分别测定沉积物中Cd的有效形态和释放规律.以获得三种方法预测沉积物基准方法的适用性.结果表明,随着加标浓度增大,DGT和BCR测得Cd浓度值增高,上覆...  相似文献   

5.
Contaminated sediments deposited within urban water bodies commonly exert a significant negative effect on overlying water quality. However, our understanding of the processes operating within such anthropogenic sediments is currently poor. This paper describes the nature of the sediment and early diagenetic reactions in a highly polluted major urban water body (the Salford Quays of the Manchester Ship Canal) that has undergone remediation focused on the water column. The style of sedimentation within Salford Quays has been significantly changed as a result of remediation of the water column. Pre‐remediation sediments are composed of a range of natural detrital grains, predominantly quartz and clay, and anthropogenic detrital material dominated by industrial furnace‐derived metal‐rich slag grains. Post‐remediation sediments are composed of predominantly autochthonous material, including siliceous algal remains and clays. At the top of the pre‐remediation sediments and immediately beneath the post‐remediation sediments is a layer significantly enriched in furnace‐derived slag grains, input into the basin as a result of site clearance prior to water‐column remediation. These grains contain a high level of metals, resulting in a significantly enhanced metal concentration in the sediments at this depth. Porewater analysis reveals the importance of both bacterial organic matter oxidation reactions and the dissolution of industrial grains upon the mobility of nutrient and chemical species within Salford Quays. Minor release of iron and manganese at shallow depths is likely to be taking place as a result of bacterial Fe(III) and Mn(IV) reduction. Petrographic analysis reveals that the abundant authigenic mineral within the sediment is manganese‐rich vivianite, and thus Fe(II) and Mn(II) released by bacterial reactions may be being taken up through the precipitation of this mineral. Significant porewater peaks in iron, manganese and silicon deeper in the sediment column are most probably the result of dissolution of furnace‐derived grains in the sediments. These species have subsequently diffused into porewater above and below the metal‐enriched layer. This study illustrates that the remediation of water quality in anthropogenic water bodies can significantly impact upon the physical and chemical nature of sedimentation. Additionally, it also highlights how diagenetic processes in sediments derived from anthropogenic grains can be markedly different from those in sediments derived from natural detrital material. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Most streams draining to the Mediterranean basin are temporary. As a result of their hydrological regime, temporary streams are affected by drying and rewetting periods. Drying can alter in-stream nitrogen (N) availability and reduce N processing rates and subsequent retention after re-wetting. We sought to determine if hydrologic drying modifies reach-scale sediment chemical properties and constrains the response of N processing to rewetting. We compared different abiotic characteristics of sediments and nitrification and denitrification rates between a perennial and intermittent reach in the same stream over a wet period, when surface water flowed in both reaches, and a dry period, when the intermittent reach dried up. We analyzed N processing rates by incubating sediments with stream water, thereby simulating a rewetting when sediments from the intermittent reach were dry. We found that drying increased the sediment nitrate (NO3 ?) content. Conversely, drying did not reduce the recovery of N processing rates to pre-dry levels after simulated flooding conditions. Our results suggest that dry reaches may act as a potential NO3 ? source by releasing downstream NO3 ? pulses after stream flow recovery. Given the European Water Framework Directive requirements to assess stream ecological status, these N pulses following rewetting should be considered when designing management plans in temporary streams. Our study highlights the rapid response of in-stream N processing to rewetting period following a drought. This high resilience to process N should be seen as a vital ecosystem service provided by temporary streams despite annual dry periods.  相似文献   

7.
Sediment samples collected from large harbours and public slipways on the island of Malta have been analysed for geochemically important metals (Al, Ca, Fe, Mn) and contaminant metals (As, Cd, Co, Cr, Cu, Ni, Pb, Sn, Zn) following fractionation (<63 μm) and digestion in aqua regia. Absolute and Al-normalised concentrations of contaminant metals exhibited relatively little dispersion both among different samples from the same location and between samples from different locations, notable exceptions including lower concentrations of Cr and Sn on the slipways than in the harbours. Sources of contaminant metals are attributed to diffuse and specific waste inputs from urban surroundings and boating and shipping activities. Overall, concentrations are similar to those reported for other large harbours in urban settings where equivalent sample fractionation-digestion has been performed. Relative to various sediment quality guidelines, Pb is predicted to exert the greatest threat to the marine environment of Malta.  相似文献   

8.
Cemeteries are understudied integral components to urban watersheds, which provide ecosystem services but can also export nutrients, trace elements, and other contaminants to nearby water bodies. In this study, we focus on Meadowbrook Creek, an urban headwater stream in Syracuse, New York (USA), which has shown significant nitrate contributions from a local cemetery. We collected biweekly surface water samples over the course of 1 year from 2022 to 2023 for analysis of major and trace elemental concentrations including Na, Ca, Mg, K, F, Cl, sulfate, and nitrate. Here, we aim to assess the impact of various human infrastructures on urban stream water quality with a particular focus on the cemetery and nitrate. A comparison between the new dataset in this study and previously reported water chemistry data in Meadowbrook in 2012 suggests a decade-long impact of road salting and the cemetery on water quality particularly with respect to Na, Cl, and nitrate. Sulfate, Mg, Ca, and K are likely mainly geogenic. Stable nitrogen isotope data, the usage of concrete or steel vaults in the cemetery in the past 50 years, and the lack of correlation between nitrate and fluoride concentrations in stream water argue against burial decay products being a major source of nitrate to the stream. Instead, other nitrate sources that exist in the cemetery such as, fertilizer, decaying plant material, and wastewater, are more viable dominant nitrate sources. In addition, nitrate loading calculations indicate that the groundwater-connected reach, including the cemetery, acts as an annual net sink for nitrate despite the seasonally varying sink-source patterns.  相似文献   

9.
1 INTRODUCTION Alluvial streams generally have permeable bed sediments that can admit significant pore water flows. Steady flow of surface water over bed roughness features such as sand waves or pools and riffles can then drive water flow into and out of the shallow subsurface. This is often termed hyporheic exchange, and the subsurface region where mixing between stream and ground waters occurs is the hyporheic zone (Hynes, 1983). The hyporheic zone has been shown to be a critical com…  相似文献   

10.
Data on the microelement composition of bottom sediment and water samples from Lake Dautkul for recent years are presented. Concentrations of more than 30 chemical elements are determined using instrumental neutron-activation analysis. This allowed the authors to reveal the regularities in the distribution and accumulation of chemical elements in water and bottom sediments. It is shown that bottom sediments exhibit a cumulative effect and prolonged activity, which adversely affect the aquatic medium and can serve an indicator of anthropogenic impact on the area under consideration.  相似文献   

11.
Heavy metal polluted sites are bearing an acute hazardous risk for the groundwater, but also a potential one. While the acute risk can be assessed directly via seepage water measurements, determination of the potential risk is much more complex. It results from the sum of all reactions that are capable to mobilize heavy metals under worst case environ-mental conditions. Using a fourfold sequential extraction (SE4) such a worst case was simulated for four soils highly contaminated with Pb, Zn, and Cu. The resulting potential mobilizable amounts ϕpm have been compared with those derived from 6 single extractions. By means of variance analyses, it is shown that ϕpm of lead can be represented by a single extraction with NH2OH. In contrary, ϕpm of zinc can be represented using the pHstat test or an extraction with aqua regia, while ϕpm of copper can be represented only by aqua regia extraction. The water-soluble amounts deriving from the DEV-S4 test do not correlate with the potential mobilizable amounts of any metal. Therefore, an assessment of contaminated sites should include an aqua regia extraction additionally to the seepage water analysis.  相似文献   

12.
Between 1990 and 1995 a series of bed sediment, suspended sediment and fresh floodplain samples were collected within the Seine River Basin, in France, to evaluate variations in trace element geochemistry. Average background trace element levels for the basin were determined from the collection and subsequent analyses of bed sediment samples from small rural watersheds and from a prehistoric (5000 BP) site in Paris. Concentrations are relatively low, and similar to those observed for fine‐grained bed sediments from unaffected areas in the United States and Canada. However, the concentrations are somewhat higher than the reference levels presently adopted by French water authorities for areas north of the Seine Basin, which have similar bedrock lithologies. Downstream trace element variations were monitored in 1994 and 1995 using fresh surficial floodplain samples that were collected either as dried deposits a few days after peak discharge, or immediately after peak discharge (under ≤30 cm of water). Chemical comparisons between fresh floodplain deposits, and actual suspended sediments collected during flood events, indicate that, with some caveats, the former can be used as surrogates for the latter. The floodplain sediment chemical data indicate that within the Seine Basin, from the relatively unaffected headwaters through heavily affected urban streams, trace element concentrations vary by as much as three orders of magnitude. These trace element changes appear to be the result of both increases in population as well as concomitant increases in industrial activity. (This article is a US government work and is in the public domain in the United States.)  相似文献   

13.
A comparison involving both field and laboratory trials was performed to evaluate the utility of two continuous-flow centrifuges and a tangential-flow filtration system for dewatering suspended sediments for subsequent trace element analysis. Although recovery efficiencies for the various devices differ, the analytical results from the separated suspended sediments indicate that any of the tested units can be used effectively and precisely for dewatering. Further, the three devices appear to concentrate and dewater suspended sediments in such a manner as to be equivalent to that which could be obtained by in-line filtration. Only the tangential-flow filtration system appears capable of providing both a dewatered sediment sample and a potentially usable effluent, which can be analysed for dissolved trace elements. The continuous-flow centrifuges can process whole water at an influent feed rate of 41 per minute; however, when suspended sediment concentrations are low (<30mg?1), when small volumes of whole water are to be processed (30 to 401), or when suspended sediment mean grain size is very fine (<10 μm), influent feed rates of 21 per minute may be more efficient. Tangential-flow filtration can be used to process samples at the rate of 11 per minute.  相似文献   

14.
Sequential extraction procedures are widely used to characterize the different operational fractions with different potential toxicity of metals in environmental solid samples. The present work describes the application of different analytical approaches for sequential extraction of aluminum to evaluate its mobility, availability, and persistent chemical forms in sediment samples of different fresh water ecosystems (lake, canal, and river). The conventional BCR three‐stage sequential extraction procedure (C‐BCR) was modified at each stage, by applying ultrasonic device (U‐BCR), in order to shorten the required shaking time of 16 h for each three steps (excluding the hydrogen peroxide digestion in step 3, which was not performed with ultrasonic bath), could be completed in 40, 50, and 45 min, respectively. The aluminum in all extracts were determination by atomic absorption spectrometry using nitrous oxide – acetylene flame. The accuracy of results obtained from C‐BCR and proposed U‐BCR was verified with literature reported values of certified sediment sample (BCR 701). The overall recoveries of aluminum obtained by proposed U‐BCR were found in the range of 96.7–113% of those values obtained with C‐BCR for all fractions. Use of ultrasonic device, provided a large saving in extraction time relative to conventional shaking. It was observed that major part of Al in real sediment samples (80–83% of total Al) were bound to residual fraction. The acid soluble fraction of aluminum extracted by 0.11 mol/L CH3COOH has good correlation with aluminum content in corresponding water samples of each ecosystem.  相似文献   

15.
The Water Framework Directive, under the European Legislation, requires that all European waters, should reach a good ecological status by 2015. To achieve this goal, a phytoplankton monitoring network with monthly water samplings was established to evaluate the ecological quality, in the coastal waters of the Community of Valencia, and the collected data have allowed us to study the efficiency of the monthly campaigns of the monitoring network. With the results obtained in this research, we have designed a new monitoring strategy for the coastal waters of Valencia that for certain water bodies can mean lower sampling frequency. The new monitoring policy provides results as reliable as the previous strategy and allows a precise ecological classification of water bodies at a lower cost. The methodologies we have developed can be used in other monitoring networks and are not limited by geographic location or by the type of water body.  相似文献   

16.
Five wetlands of temporary-shallow, temporary-deep and permanent-deep types, falling in the inland, channel or stream and riverine drainage basins were studied for their sediment, chemical and textural composition. The content of clay was maximum in the inland type as against the higher content of silt and sand at the channel and riverine sites, respectively. Among the various sediment fractions only the silt particles were distributed along depth gradients. Clay particles were positively correlated with the phosphorus content only, while the organic carbon content was correlated with the levels of calcium and nitrogen in the sediments. Calcium was also positively related to phosphorus, while correlations between all other elements were insignificant. It is concluded that the hydrolytic regime is the major factor determining the nature of wetland sediments.  相似文献   

17.
Chemical and mineralogical data are presented for a suite of 59 sediment samples collected from the P8 and Speedwell cave systems (and mineralogical data are presented for a further six surface sediments) in the Castleton karst catchment, Derbyshire, England. Sediments are grouped according to age and depositional environment and these groups show distinctive mineralogical and chemical characteristics. Clay mineralogy is effective at distinguishing different sediment sources for ancient and modern sediments which are derived from pre-Devensian tills and Devensian solifluction deposits, respectively. Major element chemistry reflects these differences in clay mineral content, while trace elements demonstrate the importance of abrasion of ore minerals in conduits in the aquifer which follow mineral veins, even under natural, pre-mining conditions. Clay minerals are confirmed as the host for uranium in uranium-rich ancient sediments. Consideration of organic carbon and hydrogen concentrations shows that plant material is the dominant source of organic material in the modern sediments. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Atlanta, Georgia (City of Atlanta, COA), is one of the most rapidly growing urban areas in the US. Beginning in 2003, the US Geological Survey established a long‐term water‐quantity/quality monitoring network for the COA. The results obtained during the first 2 years have provided insights into the requirements needed to determine the extent of urban impacts on water quality, especially in terms of estimating the annual fluxes of suspended sediment, trace/major elements, and nutrients. During 2004/2005, suspended sediment fluxes from the City of Atlanta (COA) amounted to about 150 000 t year?1; ≥ 94% of the transport occurred in conjunction with storm‐flow, which also accounted for ≥ 65% of the annual discharge. Typically, storm‐flow averaged ≤20% of the year. Normally, annual suspended sediment fluxes are determined by summing daily loads based on a single calculation step using mean‐daily discharge and a single rating curve‐derived suspended sediment concentration. Due to the small and ‘flashy’ nature of the COAs streams, this approach could produce underestimates ranging from 25% to 64%. Accurate estimates ( ± 15%) require calculation time‐steps as short as every 2–3 h. Based on annual median base‐flow/storm‐flow chemical concentrations, the annual fluxes of ≥ 75% of trace elements (e.g. Cu, Pb, Zn), major elements (e.g. Fe, Al), and total P occur in association with suspended sediment; in turn, ≥ 90% of the transport of these constituents occur in conjunction with storm‐flow. As such, base‐flow sediment‐associated and dissolved contributions represent relatively insignificant portions of the total annual load. An exception is total N, whose sediment‐associated fluxes range from 50% to 60%; even so, storm‐related transport typically exceeds 80%. Hence, in urban environments, non‐point‐sources appear to be the dominant contributors to the fluxes of these constituents. Published in 2007by John Wiley & Sons, Ltd.  相似文献   

19.
This study presents trace elements levels in surface and deep sediments of the Toulon bay (SE France) subjected to anthropogenic inputs (navy base, harbors, etc.). The studied elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) are defined as priority contaminants in aquatic systems. Fifty-five points scattered on the entire bay were sampled, allowing the determination of contaminants distribution with a high resolution. Several approaches were used to assess the degree of contamination and the potential toxicity of the Toulon bay sediments: comparison to the French legislation, surface-weighted average metal concentrations, enrichment factors (EF), geoaccumulation indices (Igeo), trace element stock calculation and comparison to sediment quality guidelines. A principal component analysis was performed to reveal common behavior of the studied contaminants. Results demonstrated the very high contamination of the small bay, especially in Hg (EF up to 1500), Cu, Pb and Zn, with export to the large bay further governed by hydrodynamics.  相似文献   

20.
Gradients in the sediment fauna comprising groundwater (GW) and hyporheic taxa were investigated in the sand/silt-bottomed Marbling Brook in Western Australia. The structure of sediment invertebrate assemblages from Marbling Brook sediments and the adjacent GW were studied at five sites over 1 year and hydrological interactions were characterized using a suite of abiotic factors. Although all five stream sites were upwelling, the sites differed in the degree of hydrological interactions between GW and surface water. Sediment fauna taxa abundances were not correlated with any of the abiotic factors investigated and did not change gradually with depth. Faunal assemblages in the stream sediments were distinct from faunal assemblages in alluvial GW. While water exchanged between alluvial GW and sediment water, as shown by abiotic factors, the distinct differences in faunal assemblages indicated an unpredicted complexity in the catchment with fundamentally different hydrogeological situations on the decimetre scale. Sampling in sandy sediments needs to take this small-scale variability into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号