首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compositions and fluxes of amino acids and major chloropigments were measured in the central equatorial Pacific Ocean as part of the US JGOFS EqPac program. Fluxes decreased by several orders of magnitude, from 400 to 0.03 mg amino acid m−2 d−1 and from 9 mg to 0.0004 μg chloropigment m−2 d−1, between production in the surface waters and accumulation at the sea floor. Most rapid losses were in surface waters and at the sediment interface. Losses from the mid-water column were as great as those in surface waters or at the sediment interface, but occurred over a much greater depth range. Export flux estimates based on floating sediment traps were higher near the equator and decreased poleward, similar to primary production.Little meridional difference was apparent in composition of either amino acids or pigments in exported material over the 24° of latitude sampled in spite of the large (factor of 5–6) difference in fluxes. However, pigment composition changed dramatically with depth in the water column, and considerable diagenesis occurred before particles reached the sediment. Pigment compositions suggest that suspended particles were more degraded in the northern than in the southern hemisphere, possibly due to differences in food chain structure. Compositional changes in amino acids occurred in the water column, but were most noticeable at the sediment–seawater interface. Increases in the relative proportions of aspartic acid and glycine with depth were more consistent with preferential preservation within the particulate matrix than with any inherent stability of these compounds to heterotrophic consumption. The contribution of amino acids and pigments to total organic carbon clearly shows that selective degradation of organic matter occurs with depth; this is not evident from total organic carbon data alone. Amino acids contributed about a quarter of the total organic carbon (OC) in surface waters and 16% of the OC in sediment; pigments decreased from 1% of total OC in surface waters to <0.001% in sediments. Decreases in the contribution of amino acids to total organic carbon may be due to transformation into uncharacterizeable material as well as to respiration.  相似文献   

2.
We investigated a year-long (September 1992 to August 1993) time series of total mass, calcium carbonate, organic carbon, opal, and alkenone fluxes in sinking particles collected with sediment traps moored at 1770 and 4220 m in the central equatorial Pacific. The total mass fluxes varied from 14.7 to 68.7 mg/m2/day at 1770 m, with greater fluxes in October–November and February–April, and from 14.6 to 50.4 mg/m2/day with peak fluxes during October–November at 4220 m. High flux in the spring season shown at 1770 m was not indicated at 4220 m; instead, a slight increase was shown during a broad period from March to June. The calcium carbonate fluxes varied from 10.8 to 49.1 mg/m2/day with higher fluxes in October–November and March–April at 1770 m, and from 8.9 to 37.0 mg/m2/day with a higher flux in October–November at 4220 m. The organic carbon fluxes varied from 0.36 to 5.91 mg/m2/day, with higher fluxes in October–November and March–April at 1770 m, and from 0.72 to 2.58 mg/m2/day at 4220 m. The annual mean organic carbon flux was 1.84 and 1.28 mg/m2/day at 1770 and at 4220 m, respectively. These values were less than half of those reported for the EqPac sediment trap experiment. The opal fluxes varied from 0.55 to 4.4 mg/m2/day at 1770 m and from 1.23 to 2.95 mg/m2/day at 4220 m. Alkenone fluxes varied significantly from 0.05 to 0.84 μg/m2/day, with high values in November, February–March, and June at 1770 m. For the 4220 m trap, these values ranged from 0.05 to 0.25 μg/m2/day, with slightly higher fluxes in April–May and June–July, which followed periods of high alkenone fluxes observed in February–April and June–July, respectively, at 1770 m depth. These values were remarkably low compared with those reported by the previous studies at other sites. U37K′ values were constantly high >0.95 throughout the collection period. However, relatively low U37K′ values (0.92 and 0.93) were occasionally observed during February to March. Estimated alkenone temperatures from those U37K′ values were about 27–29°C and consistent with the observed temperature of the upper layer at ca.100 m depth. The seasonal change of the U37K′ values could be affected by not only water temperature but also the relative amount of ‘warm’ and ‘cold’ types of alkenone producer in the central equatorial Pacific.  相似文献   

3.
4.
The distribution of dissolved iron and its chemical speciation (organic complexation and redox speciation) were studied in the northeastern Atlantic Ocean along 23°W between 37 and 42°N at depths between 0 and 2000 m, and in the upper-water column (upper 200 m) at two stations further east at 45°N10°W and 40°N17°W in the early spring of 1998. The iron speciation data are here combined with phytoplankton data to suggest cyanobacteria as a possible source for the iron binding ligands. The organic Fe-binding ligand concentrations were greater than that of dissolved iron by a factor of 1.5–5, thus maintaining iron in solution at levels well above it solubility. The water column distribution of the organic ligand indicates in-situ production of organic ligands by the plankton (consisting mainly of the cyanobacteria Synechococcus sp.) in the euphotic layer and a remineralisation from sinking biogenic particles in deeper waters. Fe(II) concentrations varied from below the detection limit (<0.1 nM) up to 0.55 nM but represented only a minor fraction of 0% to occasionally 35% of the dissolved iron throughout the water column. The water column distribution of the Fe(II) suggests biologically mediated production in the deep waters and photochemical production in the euphotic layer. Although there was no evidence of iron limitation in these waters, the aeolian iron input probably contributed to a shift in the phytoplankton assemblage towards increased Synechococcus growth.  相似文献   

5.
To gain new insights into the variability of particulate organic carbon (POC) fluxes and to better understand the factors controlling the POC/234Th ratios in suspended and sinking particulate matter, we investigated the relationships between POC/234Th ratios and biochemical composition (uronic acids, URA; total carbohydrates, TCHO; acid polysaccharides, APS; and POC) of suspended and sinking matter from the Gulf of Mexico in 2005 and 2006. Our data show that URA/POC in sediment traps (STs), APS/POC in the suspended particles, and turnover times of particulate 234Th in the water column and those of bacteria in STs inside eddies usually increased with depth, whereas particulate POC/234Th (10–50 μm) and the sediment-trap parameters (POC flux, POC/234Th ratio, bacterial biomass, and bacterial production) decreased with depth. However, this trend was not the case for most biological parameters (e.g., phytoplankton and bacterial biomass) or for the other parameters at the edges of eddies or at coastal-upwelling sites.In general, the following relationships were observed: 1) 234Th/POC ratios in STs were correlated with APS flux, and these ratios in the 10–50 μm suspended particles also correlated with URA/POC ratios; 2) neither URA fluxes nor URA/POC ratios were significantly related to bacterial biomass; 3) the sum of two uronic acids (G2, glucuronic, and galacturonic acid, which composed most of the URA pool) was positively related to bacterial biomass; and 4) the POC/234Th ratios in intermediate-sized particles (10–50 μm) were close to those in sinking particles but much lower than those in > 50 μm particles. The results indicate that acid polysaccharides, though a minor fraction (~ 1%) of the organic carbon, act more likely as proxy compound classes that might contain the more refractory 234Th-binding biopolymer, rather than acting as the original 234Th “scavenger” compound. Moreover, these acid polysaccharides, which might first be produced by phytoplankton and then modified by bacteria, also influence the on-and-off “piggy-back” processes of organic matter and 234Th, thus causing additional variability of the POC/234Th in particles of different sizes.  相似文献   

6.
We investigated the impact of sediment reworking fauna and hydrodynamics on mobilization and transport of organic matter and fine particles in marine sediments. Experiments were conducted in an annular flume using lugworms (Arenicola marina) as model organisms. The impact of lugworms on sediment characteristics and particle transport was followed through time in sediments experimentally enriched with fine particles (< 63 μm) and organic matter. Parallel experiments were run at low and high water current velocity (11 and 25 cm s 1) to evaluate the importance of sediment erosion at the sediment–water interface. There was no impact of fauna on sediment composition and particle transport at current velocity below the sediment erosion threshold. At current velocity above the erosion threshold, sediment reworking by lugworms resulted in dramatic particle transport (12 kg dry matter m 2) to an adjacent particle trap within 56 days. The transported matter was enriched 6–8 times in fine particles and organic matter when compared to the initial sediment. This study suggests that sediment reworking fauna is an important controlling factor for the particle composition of marine sediments. A. marina mediated sediment reworking greatly increases the sediment volume exposed to hydrodynamic forcing at the sediment–water interface, and through sediment resuspension control the content of fine particles and organic matter in the entire reworked sediment layer (> 20 cm depth).  相似文献   

7.
Dissolved organic carbon (DOC) distributions along two Atlantic Meridional Transects conducted in 2005 in the region between 47°N and 34°S showed clear latitudinal patterns. The DOC concentrations in the epipelagic zone (0–100 m) were the highest (70–90 µM) in tropical and subtropical waters with stable mixed layers, and lowest (50–55 µM) at the poleward extremities of the transects due to deep convective mixing supplying low DOC waters to the surface. A decrease in DOC occurred with depth, and lowest DOC concentrations (41–45 µM) in the 100–300 m depth range were observed in the equatorial region due to upwelling of low DOC waters. A strong relationship between DOC and AOU was observed in the σt 26–26.5 isopycnal layer which underlies the euphotic zone and outcrops at the poleward extremities of the North and South Atlantic Subtropical Gyres (NASG and SASG) in the region ventilating the thermocline waters. Our observations reveal significant north–south variability in the DOC–AOU relationship. The gradient of the relationship suggests that 52% of the AOU in the σt 26–26.5 density range was driven by DOC degradation in the NASG and 36% in the SASG, with the remainder due to the remineralisation of sinking particulate material. We assess possible causes for the greater contribution of DOC remineralisation in the NASG compared to the SASG.  相似文献   

8.
Previous studies measuring biogenic silica production in the Sargasso Sea, all conducted when no phytoplankton bloom was in progress, have reported a mean rate of 0.4 mmol Si m?2 d?1 and maximum rate of 0.9 mmol Si m?2 d?1, the lowest rates yet recorded in any ocean habitat. During February/March of 2004 and 2005 we studied the effects of late-winter storms prior to seasonal stratification on the production rate, standing stock and vertical export of biogenic silica in the Sargasso Sea. In 2004, alternating storm and stratification events provided pulsed input of nutrients to the euphotic zone. In contrast, nearly constant storm conditions in 2005 caused the mixed layer to deepen to ~350 m toward the end of the cruise. Biogenic silica production rates in the upper 140 m were statistically indistinguishable between years, averaging ~1.0 mmol Si m?2 d?1. In early March 2004, a storm event entrained nutrients into the euphotic zone and, upon stabilization, vertically integrated biogenic silica in the upper 140 m nearly doubled in 2 days. Within 4 days, 75–100% of the accumulated biogenic silica was exported, sustaining a flux to 200 m of ~0.5 mmol Si m?2 d?1 (4× greater than export measured during February and March in the mid-1990s). In 2005, destabilization without stratification increased biogenic silica flux at 200 m up to two-fold above previously measured export in late winter, with little or no increase in water-column biogenic silica. Despite comprising <5% of total chlorophyll, diatoms accounted for an estimated 25–50% of the nitrate uptake in the upper 140 m and 35–97% of the particulate organic nitrogen export from the upper 200 m during both cruise periods. These previously unobserved brief episodes of diatom production and export in response to late-winter storms increase the estimated production and export of diatom-derived material in the Sargasso Sea in late winter by >150%, and increase estimated annual biogenic silica production in this region by ~8%.  相似文献   

9.
Mass, carbon, and nitrogen fluxes and carbon and nitrogen compositions were determined for particulate samples from plankton net tows, shallow floating sediment traps, intermediate and deep moored sediment traps, and sediment cores collected along 140°W in the central equatorial Pacific Ocean during the US JGOFS EqPac program. Mass, particulate organic carbon (POC), and particulate inorganic carbon (PIC) fluxes measured by the floating sediment traps during the Survey I (El Niño) and Survey II (non-El Niño) cruises follow essentially the same pattern as primary production: high near the equator and decreasing poleward. POC fluxes caught in free-floating traps were compared with alternative estimates of export fluxes, including 234Th models, new production, and other sediment trap studies, resulting in widely differing estimates. Applying 234Th corrections to the trap-based fluxes yielded more consistent results relative to primary production and new production. Despite factors of five differences in measured fluxes between different trap types, POC : 234Th ratios of trap material were generally within a factor of two and provided a robust means of converting modeled 234Th export fluxes to POC export fluxes. All measured fluxes decrease with depth. Trap compositional data suggest that mineral “ballasting” may be a prerequisite for POC settling. POC remineralization is most pronounced in the epipelagic zone and at the sediment–water interface, with two orders of magnitude loss at each level. Despite seawater supersaturation with respect to calcium carbonate in the upper ocean, 80% of PIC is dissolved in the epipelagic zone. Given the time-scale differences of processes throughout the water column, the contrasting environments, and the fact that only 0.01% of primary production is buried, sedimentary organic carbon accumulation rates along the transect are remarkably well correlated to primary production in the overlying surface waters. POC to particulate total nitrogen (PTN) ratios for all samples are close to Redfield values, indicating that POC and PTN are non-selectively remineralized. This constancy is somewhat surprising given conventional wisdom and previous equatorial Pacific results suggesting that particulate nitrogen is lost preferentially to organic carbon.  相似文献   

10.
An extended time series of particle fluxes at 3800 m was recorded using automated sediment traps moored at Ocean Station Papa (OSP, 50°N, 145°W) in the northeast Pacific Ocean for more than a decade (1982–1993). Time-series observations at 200 and 1000 m, and short-term measurements using surface-tethered free-drifting sediment traps also were made intermittently. We present data for fluxes of total mass (dry weight), particulate organic carbon (POC), particulate organic nitrogen (PON), biogenic Si (BSi), and particulate inorganic carbon (PIC) in calcium carbonate. Mean monthly fluxes at 3800 m showed distinct seasonality with an annual minimum during winter months (December–March), and maximum during summer and fall (April–November). Fluxes of total mass, POC, PIC and BSi showed 4-, 10-, 7- and 5-fold increases between extreme months, respectively. Mean monthly fluxes of PIC often showed two plateaus, one in May–August dominated by <63 μm particles and one in October–November, which was mainly >63 μm particles. Dominant components of the mass flux throughout the year were CaCO3 and opal in equal amounts. The mean annual fluxes at 3800 m were 32±9 g dry weight g m−2 yr−1, 1.1±0.5 g POC m−2 yr−1, 0.15±0.07 g PON m−2 yr−1, 5.9±2.0 g BSi m−2 yr−1 and 1.7±0.6 g PIC m−2 yr−1. These biogenic fluxes clearly decreased with depth, and increased during “warm” years (1983 and 1987) of the El Niño, Southern Oscillation cycle (ENSO). Enhancement of annual mass flux rates to 3800 m was 49% in 1983 and 36% in 1987 above the decadal average, and was especially rich in biogenic Si. Biological events allowed estimates of sinking rates of detritus that range from 175 to 300 m d−1, and demonstrate that, during periods of high productivity, particles sink quickly to deep ocean with less loss of organic components. Average POC flux into the deep ocean approximated the “canonical” 1% of the surface primary production.  相似文献   

11.
Phytoplankton and bacterial abundance, size-fractionated phytoplankton chlorophyll-a (Chl-a) and production together with bacterial production, microbial oxygen production and respiration rates were measured along a transect that crossed the Equatorial Atlantic Ocean (10°N–10°S) in September 2000, as part of the Atlantic Meridional Transect 11 (AMT 11) cruise. From 2°N to 5°S, the equatorial divergence resulted in a shallowing of the pycnocline and the presence of relatively high nitrate (>1 μM) concentrations in surface waters. In contrast, a typical tropical structure (TTS) was found near the ends of the transect. Photic zone integrated 14C primary production ranged from ∼200 mg C m−2 d−1 in the TTS region to ∼1300 mg C m−2 d−1 in the equatorial divergence area. In spite of the relatively high primary production rates measured in the equatorial upwelling region, only a moderate rise in phytoplankton biomass was observed as compared to nearby nutrient-depleted areas (22 vs. 18 mg Chl-a m−2, respectively). Picophytoplankton were the main contributors (>60%) to both Chl-a biomass and primary production throughout the region. The equatorial upwelling did not alter the phytoplankton size structure typically found in the tropical open ocean, which suggests a strong top-down control of primary producers by zooplankton. However, the impact of nutrient supply on net microbial community metabolism, integrated over the euphotic layer, was evidenced by an average net microbial community production within the equatorial divergence (1130 mg C m−2 d−1) three-fold larger than net production measured in the TTS region (370 mg C m−2 d−1). The entire region under study showed net autotrophic community metabolism, since respiration accounted on average for 51% of gross primary production integrated over the euphotic layer.  相似文献   

12.
Mesopelagic zooplankton may meet their nutritional and metabolic requirements in a number of ways including consumption of sinking particles, carnivory, and vertical migration. How these feeding modes change with depth or location, however, is poorly known. We analyzed fatty acid (FA) profiles to characterize zooplankton diet and large particle (>51 μm) composition in the mesopelagic zone (base of euphotic zone ?1000 m) at two contrasting time-series sites in the subarctic (station K2) and subtropical (station ALOHA) Pacific Ocean. Total FA concentration was 15.5 times higher in zooplankton tissue at K2, largely due to FA storage by seasonal vertical migrators such as Neocalanus and Eucalanus. FA biomarkers specific to herbivory implied a higher plant-derived food source at mesotrophic K2 than at oligotrophic ALOHA. Zooplankton FA biomarkers specific to dinoflagellates and diatoms indicated that diatoms, and to a lesser extent, dinoflagellates were important food sources at K2. At ALOHA, dinoflagellate FAs were more prominent. Bacteria-specific FA biomarkers in zooplankton tissue were used as an indicator of particle feeding, and peaks were recorded at depths where known particle feeders were present at ALOHA (e.g., ostracods at 100–300 m). In contrast, depth profiles of bacterial FA were relatively constant with depth at K2. Diatom, dinoflagellate, and bacterial biomarkers were found in similar proportions in both zooplankton and particles with depth at both locations, providing additional evidence that mesopelagic zooplankton consume sinking particles. Carnivory indices were higher and increased significantly with depth at ALOHA, and exhibited distinct peaks at K2, representing an increase in dependence on other zooplankton for food in deep waters. Our results indicate that feeding ecology changes with depth as well as by location. These changes in zooplankton feeding ecology from the surface through the mesopelagic zone, and between contrasting environments, have important consequences for the quality and quantity of organic material available to deeper pelagic and benthic food webs, and for organic matter sequestration.  相似文献   

13.
This overview compares and contrasts trends in the magnitude of the downward Particulate Organic Carbon (POC) flux with observations on the vertical profiles of biogeochemical parameters in the NE subarctic Pacific. Samples were collected at Ocean Station Papa (OSP, 50°N, 145°W), between 18–22 May 1996, on pelagic stocks/rate processes, biogenic particle fluxes (drifting sediment traps, 100–1000 m), and vertical profiles of biogeochemical parameters from MULVFS (Multiple Unit Large Volume Filtration System) pumps (0–1000 m). Evidence from thorium disequilibria, along with observations on the relative partitioning of particles between the 1–53 μm and >53 μm classes in the 50 m mixed layer, indicate that there was little particle aggregation within the mixed layer, in contrast to the 50–100 m depth stratum where particle aggregation predominated. Vertical profiles of thorium/uranium also provided evidence of particle decomposition occuring at depths ca. 150 m; heterotrophic bacteria and mesozooplankton were likely responsible for most of this POC utilisation. A water column carbon balance indicated that the POC lost from sinking particles was the predominant source of carbon for bacteria, but was insufficient to meet their demands over the upper 1000 m. While, the vertical gradients of most parameters were greatest just below the mixed layer, there was evidence of sub-surface increases in microbial viability/growth rates at depths of 200–600 m. The C:N ratios of particles intercepted by free-drifting and deep-moored traps increased only slightly with depth, suggesting rapid sedimentation even though this region is dominated by small cells/grazers, and the upper water column is characterised by long particle residence times (>15 d), a fast turnover of POC (2 d) and a low but constant downward POC flux.  相似文献   

14.
15.
Thermocline ventilation rates for the subtropical North Pacific are determined using a 1-dimensional (meridional) along-isopycnal advective–diffusive model tuned to chlorofluorocarbon (CFC) concentrations measured along 152°W in 1991 during WOCE P16. Mean southward advection rates in the subtropics range from 1.03 to 0.56 cm s-1 between σθ=25.5 and 26.6. Model-derived ventilation times for the subtropical gyre increase from about 10 to 27 years for that isopycnal range. Oxygen utilization rates (OURs) determined using the advective-diffusive model decrease with depth from 6.6 to 3.2 μmol kg-1 yr-1 between σθ=25.5 and 26.6. Extrapolation of the OUR versus depth trend to the base of the euphotic zone with the 1/Z power function of Martin et al. (1987) and integration from 500 to 100 m depth implies a carbon export rate from the overlying euphotic zone of 2.2±0.5 moles C m-2 yr-1 at 30°N, 152°W. Analysis of the WOCE radiocarbon and salinity distributions indicates that zonal and cross-isopycnal transport terms would have to be considered in modeling these tracers in the subtropical North Pacific.  相似文献   

16.
Recent hydrographic measurements within the eastern South Pacific (1999–2001) were combined with vertically high-resolution data from the World Ocean Circulation Experiment, high-resolution profiles and bottle casts from the World Ocean Database 2001, and the World Ocean Atlas 2001 in order to evaluate the vertical and horizontal extension of the oxygen minimum zone (<20 μmol kg−1). These new calculations estimate the total area and volume of the oxygen minimum zone to be 9.82±3.60×106 km2 and 2.18±0.66×106 km3, respectively. The oxygen minimum zone is thickest (>600 m) off Peru between 5 and 13°S and to about 1000 km offshore. Its upper boundary is shallowest (<150 m) off Peru, shoaling towards the coast and extending well into the euphotic zone in some places. Offshore, the thickness and meridional extent of the oxygen minimum zone decrease until it finally vanishes at 140°W between 2° and 8°S. Moving southward along the coast of South America, the zonal extension of the oxygen minimum zone gradually diminishes from 3000 km (15°S) to 1200 km (20°S) and then to 25 km (30°S); only a thin band is detected at ∼37°S off Concepción, Chile. Simultaneously, the oxygen minimum zone's maximum thickness decreases from 300 m (20°S) to less than 50 m (south of 30°S). The spatial distribution of Ekman suction velocity and oxygen minimum zone thickness correlate well, especially in the core. Off Chile, the eastern South Pacific Intermediate Water mass introduces increased vertical stability into the upper water column, complicating ventilation of the oxygen minimum zone from above. In addition, oxygen-enriched Antarctic Intermediate Water clashes with the oxygen minimum zone at around 30°S, causing a pronounced sub-surface oxygen front. The new estimates of vertical and horizontal oxygen minimum zone distribution in the eastern South Pacific complement the global quantification of naturally hypoxic continental margins by Helly and Levin [2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research I 51, 1159–1168] and provide new baseline data useful for studies on the role of oxygen in the degradation of organic matter in the water column and the related implications for biogeochemical cycles. Coastal upwelling zones along the eastern Pacific combine with general circulation to provide a mechanism that allows renewal of upper Pacific Deep Water, the most oxygen-poor and oldest water mass of the world oceans.  相似文献   

17.
A time-series sediment trap was deployed from October 2007 to May 2011 in the western subtropical Pacific with the aim of understanding the seasonal and inter-annual variability on particle flux in response to El Niño-Southern Oscillation (ENSO) events. Total mass fluxes varied from 3.04 mg m−2 day−1 to 31.1 mg m−2 day−1, with high fluxes during February–April and low fluxes during other months. This seasonal variation was also characterized by a distinct change in the CaCO3 flux between the two periods. The marked increase in particle flux during February–April may be attributed to enhanced biological productivity in surface waters caused by strong wind-driven mixing in response to the western North Pacific monsoon system. The 2009/10 strong El Niño was accompanied by a significant reduction in particle flux, whereas the La Niña had no recognizable effect on particle flux in the subtropical Pacific. In particular, in the mature phase of the 2009/10 strong El Niño, the fluxes of organic carbon and biogenic silica decreased by 70–80% compared with those during the normal period, implying that the El Niño acted to suppress biological productivity in surface waters. The suppression of biological productivity during the 2009/10 strong El Niño is attributed to the decrease in precipitation due to the shift in the western Pacific warm pool. This finding is opposite that of other studies of the western equatorial Pacific, where El Niño events were observed to result in an increase in biological productivity and particle flux. The difference in particle flux between the western equatorial and subtropical Pacific is attributed to the regional differences in oceanic and atmospheric circulation systems generated by the strong El Niño.  相似文献   

18.
Sunken parcels of macroalgae and wood provide important oases of organic enrichment at the deep-sea floor, yet sediment community structure and succession around these habitat islands are poorly evaluated. We experimentally implanted 100-kg kelp falls and 200 kg wood falls at 1670 m depth in the Santa Cruz Basin to investigate (1) macrofaunal succession and (2) species overlap with nearby whale-fall and cold-seep communities over time scales of 0.25–5.5 yr. The abundance of infaunal macrobenthos was highly elevated after 0.25 and 0.5 yr near kelp parcels with decreased macrofaunal diversity and evenness within 0.5 m of the falls. Apparently opportunistic species (e.g., two new species of cumaceans) and sulfide tolerant microbial grazers (dorvilleid polychaetes) abounded after 0.25–0.5 yr. At wood falls, opportunistic cumaceans become abundant after 0.5 yr, but sulfide tolerant species only became abundant after 1.8–5.5 yr, in accordance with the much slower buildup of porewater sulfides at wood parcels compared with kelp falls. Species diversity decreased significantly over time in sediments adjacent to the wood parcels, most likely due to stress resulting from intense organic loading of nearby sediments (up to 20–30% organic carbon). Dorvilleid and ampharetid polychaetes were among the top-ranked fauna at wood parcels after 3.0–5.5 yr. Sediments around kelp and wood parcels provided low-intensity reducing conditions that sustain a limited chemoautrotrophically-based fauna. As a result, macrobenthic species overlap among kelp, wood, and other chemosynthetic habitats in the deep NE Pacific are primarily restricted to apparently sulfide tolerant species such as dorvilleid polychaetes, opportunistic cumaceans, and juvenile stages of chemosymbiont containing vesicomyid bivalves. We conclude that organically enriched sediments around wood falls may provide important habitat islands for the persistence and evolution of species dependent on organic- and sulfide-rich conditions at the deep-sea floor and contribute to β and γ diversity in deep-sea ecosystems.  相似文献   

19.
The vertical sinking flux of particulate Al, Fe, Pb, and Ba from the upper 250 m of the Labrador Sea has been estimated from measurements of 234Th/238U disequilibrium and the respective metal/234Th ratios in >53 μm size particles. 234Th-derived particulate metal fluxes include in situ scavenged metals, labile lithogenic metals, and metals derived from external input (e.g., atmospheric supply). In contrast to the POC/234Th ratio, particle size-fractionated (0.4–10 μm, 10–53 μm, and >53 μm) Al/234Th, Fe/234Th and Pb/234Th, and Ba/234Th ratios generally increase with depth and exhibit no systematic change with particle diameter. Sinking fluxes of particulate Al (2.47–22.3 μmol m−2 d−1), Fe (2.69–16.3 μmol m−2 d−1), Pb (2.85–70 nmol m−2 d−1), and Ba (0.13–2.1 μmol m−2 d−1) at 50 m (base of the euphotic zone) and 100 m (base of the mixed layer) are largely within the range of previous sediment trap results from other ocean basins. Estimates of the upper ocean residence time of Al (0.07–0.28 yr) and Pb (0.8–2.9 yr) are short compared to previously reported values. The settling rate of >53 μm particles calculated from the 234Th data ranges from 14 to 38 m d−1.  相似文献   

20.
Cu speciation was characterized at three stations in the sub arctic NW Pacific and Bering Sea using cathodic stripping voltammetry with the competing ligands benzoylacetone and salicylaldoxime. A single ligand model was fit to the titration data, yielding concentrations throughout the water column of ∼3–4 nM, and conditional stability constants ranging from 1012.7 to 1014.1, this range being partly due to the choice of competing ligand. Free Cu2+ in surface waters was 2–4×10−14 M, in close agreement with values reported by previous workers in the NE Pacific using anodic stripping voltammetry (ASV). However, those results showed that complexation by strong organic ligands becomes unimportant below 200–300 m, while our data indicated Cu is strongly complexed to depths as great as 3000 m. Free Cu2+ concentrations in surface waters reported here and in previous work are close to the threshold value where Cu can limit the acquisition of Fe by phytoplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号