首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Oceanologica Acta》1999,22(3):249-263
Mean conditions, seasonal, and ENSO-related (El Niño Southern Oscillation) variability in the vicinity of Wallis, Futuna, and Samoa islands (13°–15° S, 180°–170° W) over the 1973–1995 period are analysed for wind pseudo-stress, satellite-derived and in situ precipitation, sea surface temperature (SST) and salinity (SSS), sea level, and 0–450 m temperature and geostrophic current. The mean local conditions reflect the presence of the large scale features such as the western Pacific warm pool, the South Pacific Convergence Zone (SPCZ), and the South Pacific anticyclonic gyre. The seasonal changes are closely related to the meridional migrations of the SPCZ, which passes twice a year over the region of study. During the warm phase of ENSO (El Niño), we generally observe saltier-than-average SSS (of the order of 0.4), consistent with a rainfall deficit (0.4 m yr−1), a hint of colder-than-average surface temperature is also identified in subsurface (0.3°C), a weak tendency for westward geostrophic current anomalies (2 cm s−1 at the surface), a sea level decrease (5–10 cm), together with easterly (5 m2s−2) and well marked southerly (10 m2s−2) wind pseudo-stress anomalies. Anomalies of similar magnitude, but of opposite sign, are detected during the cold phase of ENSO (La Niña). While these ENSO-related changes apply prior to the 1990s, they were not observed during the 1991–1994 period, which appears atypical.  相似文献   

2.
This paper presents the first data on the vertical distribution of chlorophyll and nutrients in the upper layers of the southern southwestern Atlantic and interprets it in relation to frontal systems and the general hydrographic features. The survey covered quasi-synoptically the area between 30 and 62°S, at the beginning of the austral summers of three consecutive years (1993 through 1995). Our results show a rather consistent oceanographic structure, with similar patterns of chlorophyll and nutrient distributions with latitude. Outstanding features present throughout the three seasons are two zones of high phytoplankton production, where chlorophyll concentrations of >1 μg/l seem to occur frequently. The first is the upper euphotic zone of the Brazil–Malvinas Confluence Zone between approximately 36 and 50°S. The second is centered on subsurface layers of the Antarctic Surface Water south of the Polar Front as far as 62°S. The rest of the area covered shows low chlorophyll concentrations (<0.4 μg/l), due either to nutrient limitation in the oligotrophic subtropical waters of the Brazil Current or to excessive turbulence and upper-layer instability in the energetic Malvinas Current. The occurrence of a permanent meander around 38°S coincided with the cyclonic retroflexion of the Malvinas Current, causing upwelling of deep water. The ecological implications of this eddy-induced upwelling are discussed.  相似文献   

3.
The morphological characteristics of the segmentation of the Central Indian Ridge (CIR) from the Indian Ocean Triple Junction (25°30S) to the Egeria Transform Fault system (20°30S) are analyzed. The compilation of Sea Beam data from R/VSonne cruises SO43 and SO52, and R/VCharcot cruises Rodriguez 1 and 2 provides an almost continuous bathymetric coverage of a 450-km-long section of the ridge axis. The bathymetric data are combined with a GLORIA side-scan sonar swath to visualize the fabric of the ridge and complement the coverage in some areas. This section of the CIR has a full spreading rate of about 50 mm yr–1, increasing slightly from north to south. The morphology of the CIR is generally similar to that of a slow-spreading center, despite an intermediate spreading rate at these latitudes. The axis is marked by an axial valley 5–35 km wide and 500–1800 m deep, sometimes exhibiting a 100–600 m-high neovolcanic ridge. It is offset by only one 40km offset transform fault (at 22°40S), and by nine second-order discontinuities, with offsets varying from 4 to 21 km, separating segments 28 to 85 km long. The bathymetry analysis and an empirical orthogonal function analysis performed on across-axis profiles reveal morphologic variations in the axis and the second-order discontinuities. The ridge axis deepens and the relief across the axial valley increases from north to south. The discontinuities observed south of 22°S all have morphologies similar to those of the slow-spreading Mid-Atlantic Ridge. North of 22°S, two discontinuities have map geometries that have not been observed previously on slow-spreading ridges. The axial valleys overlap, and their tips curve toward the adjacent segment. The overlap distance is 2 to 4 times greater than the offset. Based on these characteristics, these discontinuities resemble overlapping spreading centers (OSCs) described on the fast-spreading EPR. The evolution of one such discontinuity appears to decapitate a nearby segment, as observed for the evolution of some OSCs on the EPR. These morphological variations of the CIR axis may be explained by an increase in the crustal thickness in the north of the study area relative to the Triple Junction area. Variations in crustal thickness could be related to a broad bathymetric anomaly centered at 19°S, 65°E, which probably reflects the effect of the nearby Réunion hotspot, or an anomaly in the composition of the mantle beneath the ridge near 19°S. Other explanations for the morphological variations include the termination of the CIR at the Rodriguez Triple Junction or the kinematic evolution of the triple junction and its resultant lengthening of the CIR. These latter effects are more likely to account for the axial morphology near the Triple Junction than for the long-wavelength morphological variation.  相似文献   

4.
We have developed a 3D model for the carbon cycle and air–sea flux of CO2 in the Greenland Sea that consists of three submodels for hydrodynamics, carbon chemistry and plankton ecology. The hydrodynamical model, based on the primitive Navier–Stokes equations, simulates the physical environment that is used for the chemical and biological models. The chemical model calculates the pCO2 as a function of the total inorganic carbon, alkalinity, temperature and salinity. The ecological model has eight state variables and simulates the transformation of CO2 into organic carbon, vertical transport, and the respiration processes that convert the organic carbon back into inorganic form. The model gives an average annual primary production of 68 g C m−2 y−1, of which 44.7 g C m−2 y−1 is new production. In the eastern part of the Greenland Sea, the average annual new production is above 50 g C m−2 y−1. Simulated, annual flux of CO2 from the atmosphere is 53 g C m−2 y−1, which sums up to 0.026 Gt for the whole Greenland Sea. Of this, 9 g C m−2 y−1 is exported by sinking particles, 6 g C m−2 y−1 by migrating zooplankton (mainly Calanus hyperboreus), and 38 g C m−2 y−1 by advection.  相似文献   

5.
The North Sea Basin has been subsiding during the Quaternary and contains hundreds of metres of fill. Seismic surveys (170 000 km2) provide new evidence on Early Quaternary sedimentation, from about 2.75 Ma to around the Brunhes-Matuyama boundary (0.78 Ma). We present an informal seismic stratigraphy for the Early Quaternary of the North Sea, and calculate sediment volumes for major units. Early Quaternary sediment thickness is > 1000 m in the northern basin and >700 m in the central basin (total about 40 000 km3). Northern North Sea basin-fill comprises several clinoform units, prograding westward over 60 000 km2. Architecture of the central basin also comprises clinoforms, building from the southeast. To the west, an acoustically layered and mounded unit (Unit Z) was deposited. Remaining accommodation space was filled with fine-grained sediments of two Central Basin units. Above these units, an Upper Regional Unconformity-equivalent (URU) records a conformable surface with flat-lying units that indicate stronger direct glacial influence than on the sediments below. On the North Sea Plateau north of 59°N, the Upper Regional Unconformity (URU) is defined by a shift from westward to eastward dipping seismic reflectors, recording a major change in sedimentation, with the Shetland Platform becoming a significant source. A model of Early Quaternary sediment delivery to the North Sea shows sources from the Scandinavian ice sheet and major European rivers. Clinoforms prograding west in the northern North Sea Basin, representing glacigenic debris flows, indicate an ice sheet on the western Scandinavian margin. In the central basin, sediments are generally fine-grained, suggesting a distal fluvial or glacifluvial origin from European rivers. Ploughmarks also demonstrate that icebergs, derived from an ice sheet to the north, drifted into the central North Sea Basin. By contrast, sediments and glacial landforms above the URU provide evidence for the later presence of a grounded ice sheet.  相似文献   

6.
The latitudinal pattern of species richness of free-living marine nematodes from exposed sandy beaches along the coast of Chile between 18 and 42° S was examined. Unlike many other examinations of latitudinal gradients, this study is not based on data mined from the literature, but on samples collected specifically to examine these themes. Five replicate quantitative 50 cm3 samples of sediment were taken from the zone of retention of 66 exposed sandy beaches. The free-living nematode fauna was identified and quantified to species level. The data were then examine using ordinary least squares and simultaneous autoregressive model (SARerr) regression methods, examining the associations between species richness and latitude, coastline complexity, and sea surface temperature, primary productivity of the adjacent coastal waters and mean latitudinal range size. The species richness of free-living marine nematodes from exposed sandy beaches along the coast of Chile decreased with increasing latitude and was strongly associated with mean annual sea surface temperature. Mean latitudinal range size increased with increasing latitude, supporting Rapoport’s rule, and decreased with increasing species richness. The results suggest that the nematode fauna of exposed sandy beaches is derived from a low latitude fauna that has dispersed to higher latitudes, but that many species may be physiologically constrained, by temperature, from dispersing further south.  相似文献   

7.
In order to examine latitudinal distribution and seasonal change of the surface oceanic fCO2, we analyzed the data obtained in the North Pacific along 175°E during the NOPACCS cruises in spring and summer of 1992–1996. Except for around the equator where the fCO2 was significantly affected by the upwelling of deep water, the latitudinal distribution of fCO2 showed distinctive seasonal variation. In the spring, the fCO2 decreased and then increased going southward with the minimum value of about 300 µatm around 35°N, while in the summer, the fCO2 displayed high variability, showing minimum and maximum values at latitudes of around 44° and 35°N, respectively. It was also found that the fCO2 was well correlated with the SST, but the relationship between the two was different for different hydrographic regions. In the subpolar gyre, the frontal regions between the Water-Mass Front and the Kuroshio bifurcation front, and between the Kuroshio bifurcation front and the Kuroshio Extension current, SST, DIC and TA influenced the seasonal fCO2 change through seasonally-dependent biological activities and vertical mixing and stratification of seawater. In the central subtropical gyre and the North Equatorial current, the seasonal fCO2 change was found to be produced basically by changes in SST and DIC. The summertime oceanic fCO2 generally increased with time over the period covered by this study, but the increased rate was clearly higher than those expected from other measurements in the western North Pacific.  相似文献   

8.
《Ocean & Coastal Management》1999,42(2-4):143-154
Chile has a very diverse and variable coastal zone, with a series of phenomena that occur unexpectedly and which demand great flexibility from the management models that are implemented. The oceanographic characteristics have provided Chile’s coastal zone with important pelagic fisheries in the country’s north and center and benthonic fisheries in the south. They have also led to the explosive growth of aquaculture in the last ten years, mostly in the canals zone. In the northern and central regions, megaprojects have dominated coastal zone investments and are about to go into the far north. Also a sustained popùlation increase in central and southern coastal areas is expected as a consequence of the saturation of big cities and development in road, transport and communications.The incorporation of Chile into trade blocks such as APEC, NAFTA, and MERCOSUR together with some recently signed bilateral trade treaties will undoubtedly give a push to the port activity. The construction of different corridors throughout the country that will provide access to the Pacific for some regions in Brazil, Paraguay, Bolivia and Argentina will have a similar effect.Alterations in the quality of the environment (Pollution), threats to the coastal zone’s diversity (exhausted resources) and conflicts among users are mentioned among the principal problems affecting coastal zone urging for an integrated management approach for this critical and sensitive area.A coastal zone management plan for Chile, more than creating new regulations, many of which already exist, should be able to set up effective mechanisms among the different sectors involved in the use of the coastal zone, generate mechanisms to resolve differences, provide adequate scientific and technical information for decision making and establish simple and realistic mechanisms for education and citizen participation. The National Management Plan should be essentially FOCUSED, REGIONALIZED, INTEGRATED AND INFORMED. In fact, the basic idea promoted by Fundación Chile and the Navy’s Maritime Territory National Board would be to generate a system supported by one or two central coordinating institutions articulated with regional institutions, which would carry out the above-mentioned objectives. The greatest benefit of a Plan like this one is that Chile’s coastal zone and its resources can be used sustainably with the appropriate mechanisms, but in an informed and integrated way and respect regional and local peculiarities. Some of the major features of this approach are presented and discussed here.  相似文献   

9.
pH and alkalinity measurements from a coastal upwelling area located near 30°S (Coquimbo, Chile), are used to describe the short-term variations of CO2 air–sea exchanges over a period of one week in summer 1996. A 180 km ocean–coastal transect, together with two almost-synoptic grid surveys off Coquimbo covering approximate 2500 km2 each, showed that during and immediately after a 4 day long southwesterly wind event (24–28 January) a large area of cold surface water (≈14°C), highly supersaturated in CO2 (fCO2 up to 900 μatm), was located near the coast. Three days after the end of the event, the second grid survey showed that in most of the study area the surface temperature and pH had increased significantly (by 1–3°C and 0.05–0.2, respectively), and that the surface water was no longer supersaturated in CO2. The CO2-supersaturated water observed in the first grid survey was identified as upwelled subsurface equatorial water, a water mass with its core at about 200 m depth: the depth from which the water upwells is a major determinant of the surface water fCO2. Integrated C fluxes within a 20 km wide coastal strip (1900 km2) indicate a strong outgassing of CO2 from the ocean under upwelling conditions (Grid 1; 121 t C day-1), while the net C exchange was directed to the ocean during the relaxation period (Grid 2; 19 t C day-1). Estimates of CO2 fluxes in upwelling areas based on surface water fCO2 measurements must therefore take into account these short-term variations: reliance on longer-term averages and interpolation will lead to erroneous results.  相似文献   

10.
Swath MR1 data from the remnant Colville and active Kermadec arc margins, south of 33°30 S (SW Pacific), record the structural morphology and evolution of the rifted, and now separate portions, of the proto-Colville–Kermadec arc flanking the actively widening southern Havre Trough back-arc basin associated with Pacific-Australian plate convergence. Both the remnant Colville and active Kermadec arc margins comprise opposing, asymmetric, partially basement exposed, segmented ridges. Differences in morphology between the two ridges are, however, observed. The single, near linear, border fault system, with relief of 1000 m, along the western edge of the Kermadec margin is interpreted to be the exposed fault escarpment of a major, west-dipping, detachment fault. In contrast, two major zig-zag border fault systems along the eastern edge of the Colville Ridge, bounding a back-tilted ridge flank terrace, are interpreted as major antithetic faults between the remnant arc and back-arc region. This contrast in structural morphology coincides with, respectively, lesser and greater degrees of both active tectonism and channel-canyon erosion, on the remnant Colville and active Kermadec margins. These differences are interpreted to reflect the progressive trenchward collapse and associated greater rift flank uplift and incisive erosion of the Kermadec foot-wall contrasting with the non-collapse and relatively lesser rift flank uplift and ridge erosion of the Colville hanging-wall. The data provide further constraints on the early evolution of the Havre Trough in particular, and back-arc basins in general.  相似文献   

11.
Abundance, vertical distribution and stage composition of Calanus finmarchicus was analysed for a period of four and half years, 1971–1975, based on data collected at weather station India in the North Atlantic (59°N, 19°W). The passage of the Great Salinity Anomaly in the area was reflected by a decrease in the salinity from 1973 to 1975. Calanus finmarchicus arrives at the surface by the end of March and stays in the upper 50 m, but with a stage segregation in the vertical distribution, until the descent periods at the end of May–June and in August–September. During this period two or three cohorts develop, apparently in close relation with the phytoplankton pulses. Abundance is highly variable, with maximum values ranging from 8770 ind m−2 in 1974 to 56,541 ind m−2 in 1973. There was no clear effect of the Great Salinity Anomaly, the maximum abundance occurring the year the Great Salinity Anomaly arrived, 1973, and the minimum values occurring the next year, 1974, when the effect of the Great Salinity Anomaly was well established. However, the structure of the population seems to have been affected during the Great Salinity Anomaly. Possible interactions between phytoplankton blooms, the Great Salinity Anomaly and C. finmarchicus population dynamics are discussed.  相似文献   

12.
The orthogonal supersegment of the ultraslow-spreading Southwest Indian Ridge at 16°–25°E is characterized by significant along-axis variations of mantle potential temperature. A detailed analysis of multibeam bathymetry,gravity, and magnetic data were performed to investigate its variations in magma supply and crustal accretion process. The results revealed distinct across-axis variations of magma supply. Specifically, the regionally averaged crustal thickness reduced systematically from around 7 Ma to the present, indicating a regionally decreasing magma supply. The crustal structure is asymmetric in regional scale between the conjugate ridge flanks, with the faster-spreading southern flank showing thinner crust and greater degree of tectonic extension. Geodynamic models of mantle melting suggested that the observed variations in axial crustal thickness and major element geochemistry can be adequately explained by an eastward decrease in mantle potential temperature of about40°C beneath the ridge axis. In this work, a synthesized model was proposed to explain the axial variations of magma supply and ridge segmentation stabilities. The existence of large ridge-axis offsets may play important roles in controlling melt supply. Several large ridge-axis offsets in the eastern section(21°–25°E) caused sustained along-axis focusing of magma supply at the centers of eastern ridge segments, enabling quasi-stable segmentation. In contrast, the western section(16°–21°E), which lacks large ridge-axis offsets, is associated with unstable segmentation patterns.  相似文献   

13.
A 3D coupled biogeochemical–hydrodynamic model (MIRO-CO2&CO) is implemented in the English Channel (ECH) and the Southern Bight of the North Sea (SBNS) to estimate the present-day spatio-temporal distribution of air–sea CO2 fluxes, surface water partial pressure of CO2 (pCO2) and other components of the carbonate system (pH, saturation state of calcite (Ωca) and of aragonite (Ωar)), and the main drivers of their variability. Over the 1994–2004 period, air–sea CO2 fluxes show significant inter-annual variability, with oscillations between net annual CO2 sinks and sources. The inter-annual variability of air–sea CO2 fluxes simulated in the SBNS is controlled primarily by river loads and changes of biological activities (net autotrophy in spring and early summer, and net heterotrophy in winter and autumn), while in areas less influenced by river inputs such as the ECH, the inter-annual variations of air–sea CO2 fluxes are mainly due to changes in sea surface temperature and in near-surface wind strength and direction. In the ECH, the decrease of pH, of Ωca and of Ωar follows the one expected from the increase of atmospheric CO2 (ocean acidification), but the decrease of these quantities in the SBNS during the considered time period is faster than the one expected from ocean acidification alone. This seems to be related to a general pattern of decreasing nutrient river loads and net ecosystem production (NEP) in the SBNS. Annually, the combined effect of carbon and nutrient loads leads to an increase of the sink of CO2 in the ECH and the SBNS, but the impact of the river loads varies spatially and is stronger in river plumes and nearshore waters than in offshore waters. The impact of organic and inorganic carbon (C) inputs is mainly confined to the coast and generates a source of CO2 to the atmosphere and low pH, of Ωca and of Ωar values in estuarine plumes, while the impact of nutrient loads, highest than the effect of C inputs in coastal nearshore waters, also propagates offshore and, by stimulating primary production, drives a sink of atmospheric CO2 and higher values of pH, of Ωca and of Ωar.  相似文献   

14.
Astakhova  N. V.  Ivanov  V. V.  Aksentov  K. I. 《Oceanology》2021,61(5):701-713
Oceanology - Data on the structure and chemical and mineral composition of sericite–quartz schists of the southern slope of the Kashevarov Bank of the Sea of Okhotsk are presented. The...  相似文献   

15.
Ginzburg  A. I.  Kostianoy  A. G.  Serykh  I. V.  Lebedev  S. A. 《Oceanology》2021,61(6):745-756
Oceanology - To study the nature of climate change in the hydrometeorological parameters of the Black and Azov Seas—surface air temperature (SAT), sea surface temperature (SST), ice cover,...  相似文献   

16.
Sediment traps were deployed for almost 1 yr at two sites near 178°40′E in 1996–1997 on Chatham Rise (New Zealand). These sites were either side of the Subtropical Front (STF), which is a biologically productive zone, characterised by moderate atmospheric CO2 uptake. At each site, PARFLUX sediment traps (Mk 7G–21) were deployed at 300 and 1000 m in 1500 m water depth. At 42°42′S, north of the STF, approximately 80% of the integrated total mass, POC and biogenic silica flux at 300 m occurred in a 7-day pulse in austral mid-spring (1064, 141 and 6 mg m−2 d−1, respectively, in early October). This pulse was recorded a week later in the 1000 m trap, indicating a particle sinking rate of 100 m d−1. In contrast, at 44°37′S, south of the STF, the main flux of total mass and biogenic silica occurred 3 weeks later in late spring (289 and 3 mg m−2 d−1, respectively, in early November). Organic carbon, nitrogen and phosphorus fluxes were persistently high over spring at the southern site, although total POC flux integrated over 3 months was only 60 mg m−2 d−1. Thus, up to 2–3 times more material was exported north of the STF, compared with fluxes measured <200 km away to the south. As an integrated proportion of the annual total mass flux, however, more organic carbon was exported south of the STF (17% cf. 5–14%). Furthermore, organic material exported in spring from southern waters was labile and protein-rich (C : N — 8–16, C : P — 200–450, N : P — 13–36), compared to the more refractory, diatom-dominated material sinking out north of the STF in spring (C : N 9–22, C : P 50–230, N : P 5–19). These observations are consistent with anomalously high benthic biomass and diversity observed on south Chatham Rise. Resuspension and differential particle settling are probable causes for depth increases in particulate flux. Estimated particle source areas may be up to 120 km away due to high levels of mesoscale activity and mean flow in the STF region.  相似文献   

17.
A regional study of the continental margin between the Senja and Molloy-Spitsbergen fracture zones reveals that the transition from continental to oceanic crust occurs in a narrow zone beneath the outer shelf and uppermost slope. The postulated continent-ocean boundary appears to be fault-related consisting of sheared and rifted segments. The marginal structures are compatible with a plate tectonic model in which the southern Greenland Sea opened along a northeasterly propagating plate boundary in the Eocene, whereas the northern Greenland Sea started opening in the early Oligocene. The main structure at the margin is the Hornsund Fault Zone which probably reflects an old zone of weakness rejuvenated in the Tertiary, first by shear and later by extensional movements. In the early Tertiary local transpressional and transtensional components along the plate boundary are associated with the Spitsbergen Orogeny, emplacement of belts of high-density oceanic crust and tectonism in the western Barents Sea. A complex volcanic rifted margin characterized by the Bjørnøya Marginal High links the predominantly sheared margin segments on either side. The main ridge-like segment of the Hovgaard Fracture Zone was originally part of the Spitsbergen margin. In a regional sense, the Hornsund Fault Zone demarcates the eastern boundary of the Tertiary sedimentary wedge which reaches a total thickness of more than 7 km. There appears to have been a considerable increase in deposition of sediments the last 5–6 my. Depocentres located seaward of the east-west fjord systems and submarine depressions indicate a relationship between late Cenozoic glaciations and high sedimentation rates.  相似文献   

18.
A widespread seamount province, the Rano Rahi Field, is located near the superfast spreading Southern East Pacific Rise (SEPR) between 15°–19° S. Particularly abundant volcanic edifices are found on Pacific Plate aged 0 to 6.5 Ma between 17°–19° S, an area greater than 100,000 km2. The numbers of seamounts and their volume are several times greater than those of a comparablysurveyed area near the Northern East Pacific Rise (NEPR), 8°–17° N. Most of the Rano Rahi seamounts belong to chains, which vary in length from 25 km to >240 km and which are very nearly collinear with the Pacific absolute and relative plate motion directions. Bends of 10°–15° occur along a few of the chains, and some adjacent chains converge or diverge slightly. Many seamount chains have fluctuations in volume along their length, and statistical tests suggest that some adjacent chains trade-off in volume. Several seamount chains split into two lines of volcanoes approaching the axis. In general, seamount chains composed of individual circular volcanoes are found near the axis; the chains consist of variably-overlapping edifices in the central part of the survey; to the west, volcanic ridges predominate. Near the SEPR, the volume of nearaxis seamount edifices is generally reduced near areas of deflated cross-sectional area of the axial ridge. Fresh lava flows, as imaged by sidescan sonar and sampled by dredging, exist around some seamounts throughout the entire survey area, in sharp contrast to the absence of fresh flows beyond 30 km from the NEPR. Also, the increases in seamount abundance and volume extend to much greater crustal ages than near the NEPR. Seamount magnetization analysis is also consistent with this wider zone of seamount growth, and it demonstrates the asynchronous formation of most of the seamount chains and volcanic ridges. The variety of observations of the SEPR seamounts suggests that a number of factors and mechanisms might bring about their formation, including the mantle upwelling associated with superfast spreading, off-axis mantle heterogeneities, miniplumes and local upwelling, and the vulnerability of the lithosphere to penetration by volumes of magma. In particular, we note the association of extensive, recent volcanism with intermediate wavelength gravity lineaments lows on crust aged 6 Ma. This suggests that the lineaments and some of the seamounts share a common cause which may be related to ridge-perpendicular asthenospheric convection and/or some manner of extension in the lithosphere.  相似文献   

19.
Sea-ice physical characteristics were investigated in the Arctic section of 143°-180°W during August and early September 2008. Ship-based observations show that both the sea-ice thickness and concentration recorded during southward navigation from 30 August to 6 September were remarkably less than those recorded during northward navigation from 3 to 30 August, especially at low latitudes. Accordingly, the marginal ice zone moved from about 74.0°N to about 79.5°N from mid-August to early September. Melt-pond coverage increased with increasing latitude, peaking at 84.4°N, where about 27% of ice was covered by melt ponds. Above this latitude, melt-pond coverage decreased evidently as the ice at high latitudes experienced a relatively short melt season and commenced its growth stage by the end of August. Regional mean ice thickness increased from 0.8 (±0.5) m at 75.0°N to 1.5 (±0.4) m at 85.0°N along the northward navigation while it decreased rapidly to 0.6 (±0.3) m at 78.0°N along the southward navigation. Because of relatively low ice concentration and thin ice in the investigated Arctic sector, both the short-term ice stations and ice camp could only be set up over multiyear sea ice. Observations of ice properties based on ice cores collected at the short-term ice stations and the ice camp show that all investigated floes were essentially isothermal with high temperature and porosity, and low density and salinity. Most ices had salinity below 2 and mean density of 800-860 kg/m~3 . Significant ice loss in the investigated Arctic sector during the last 15 a can be identified by comparison with the previous observations.  相似文献   

20.
Variations of water properties in surface and intermediate layers along 32°S in the southern Indian Ocean were examined using a 50-year (1960–2010) time series reproduced from historical hydrographic and Argo data by using optimum interpolation. Salinity in the 26.7–27.3σθ density layer decreased significantly over the whole section, at a maximum rate of 0.02 decade−1 at 26.8–26.9σθ, for the 50-year average. Three deoxygenating cores were identified east of 75°E, and the increasing rate of apparent oxygen utilization in the most prominent core (26.9–27.0σθ) exceeded 0.05 ml l−1 decade−1. The pycnostad core of Subantarctic Mode Water (SAMW) and the salinity minimum of Antarctic Intermediate Water shifted slightly toward the lighter layers. Comparisons with trans-Indian Ocean survey data from 1936 suggest that the tendencies found in the time series began before 1960. Interestingly, cores of many prominent trends were located just offshore of Australia at 26.7–27.0σθ, which is in the SAMW density range. Spectrum analysis revealed that two oscillation components with time scales of about 40 and 10 years were dominant in the subsurface layers. Our results are fairly consistent with, and thus support, the oceanic responses in the southern Indian Ocean to anthropogenic climate change predicted by model studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号