首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
Nematode assemblages were investigated (in terms of size spectra, sex ratio, Shannon diversity, trophic structure and diversity, rarefaction statistics, maturity index, taxonomic diversity and taxonomic distinctness) at bathyal and hadal depths (from 1050 to 7800 m) in the deepest trench of the South Pacific Ocean: the Trench of Atacama. This area, characterised by very high concentrations of nutritionally-rich organic matter also at 7800-m depth, displayed characteristics typical of eutrophic systems and revealed high nematode densities (>6000 ind. 10 cm−2). Nematode assemblages from the Atacama Trench displayed a different composition than at bathyal depths. At bathyal depths 95 genera and 119 species were found (Comesomatidae, Cyatholaimidae, Microlaimidae, Desmodoridae and Xyalidae being dominant), whereas in the Atacama Trench only 29 genera and 37 species were encountered (dominated by Monhysteridae, Chromadoridae, Microlaimidae, Oxystominidae and Xyalidae). The genus Monhystera (24.4%) strongly dominated at hadal depths and Neochromadora, and Trileptium were observed only in the Atacama Trench, but not at bathyal depths. A reduction of the mean nematode size (by ca. 67%) was observed between bathyal and hadal depths. Since food availability was not a limiting factor in the Atacama Trench sediments, other causes are likely to be responsible for the reduction of nematode species richness and body size. The presence of a restricted number of families and genera in the Atacama Trench might indicate that hadal sediments limited nematode colonisation. Most of the genera reaching very high densities in Trench sediments (e.g., Monhystera) are opportunistic and were responsible for the significant decrease of the maturity index. The dominance of opportunists, which are known to be characterised by small sizes, might have contributed to the reduced nematode size at hadal depths. Shannon diversity and species richness decreased in hadal water depth and this pattern was more evident at genus than at species level. Epistrate feeders dominated and increased their relevance, determining a reduction of the index of trophic diversity at hadal depths. According to trophic diversity, taxonomic diversity and distinctness also decreased with depth. All diversity indices from the Atacama Slope and Trench were lower than in other equally deep areas world wide (e.g. Puerto Rico Trench). We suggest that such reduction was related to the high nutrient loading observed in this system (up to two orders of magnitude higher than in typical oligotrophic deep-sea sediments).  相似文献   

2.
The Atacama trench, the deepest ecosystem of the southern Pacific Ocean (ca. 8000 m depth) was investigated during the Atacama Trench International Expedition. Sediments, collected at three bathyal stations (1040–1355 m depth) and at a hadal site (7800 m) were analyzed for organic matter quantity and biochemical composition (in terms of phytopigments, proteins, carbohydrates and lipids), bacterial abundance, biomass and carbon production and extracellular enzymatic activities. Functional chlorophyll-a (18.0±0.10 mg m−2), phytodetritus (322.2 mg m−2) and labile organic carbon (16.9±4.3 g C m−2) deposited on surface sediments at hadal depth (7800 m) reached concentrations similar to those encountered in highly productive shallow coastal areas. High values of bacterial C production and aminopeptidase activity were also measured (at in situ temperature and 1 atm). The chemical analyses of the Atacama hadal sediments indicate that this trench behaves as a deep oceanic trap for organic material. We hypothesize that, despite the extreme physical conditions, benthic microbial processes might be accelerated as a result of the organic enrichment.  相似文献   

3.
The abundance and biomass of metazoan meiofauna and their relationships with environmental factors [chloroplastic pigment equivalents (CPE) and sediment characteristics] were studied quantitatively around and within the Kuril Trench (560-7090 m) and the Ryukyu Trench (1290-7150 m), which are located in eutrophic and oligotrophic regions, respectively, of the western North Pacific. Faunal abundance and biomass, as well as the CPE content of sediments, were considerably higher in the Kuril region than in the Ryukyu region. In both cases, CPE tended to decrease with water depth, but relatively high values were found in the deepest areas, suggesting that organic matter has accumulated in both trenches. Meiofaunal abundance and biomass were lower than expected from sediment CPE values at hadal stations below 6000 m. Differences in the density and biomass of meiofauna between these two trenches appeared to reflect differences in overall ocean productivity above them. When the analysis was restricted to each region, however, no association was found between the abundance and biomass of meiofauna and food availability. Furthermore, the factors regulating the bathymetric patterns in these meiofaunal parameters appeared to differ between the two trenches.  相似文献   

4.
Abstract. Quantitative information on the vertical distribution of meiofaunal abundances and biomass were obtained from samples collected at 3 bathyal stations in the Eastern Mediterranean Sea located at the same depth but characterized by different food supply. Vertical distribution patterns of nieiofauna were investigated in relation to the biochemical composition of the sediment organic matter (proteins, carbohydrates, and lipids) and compared to benthic bacterial standing stocks. No significant relationship between bacteria and meiofauna was found, whereas a significant relationship between protein and lipid concentrations and total meiofauna density was observed. These data suggest that labile organic matter. considered as material readily aVdihbk to benthic consumers, may be an important factor regulating meiofaunal abundance and vertical distribution in deep-sea sediments.  相似文献   

5.
Quantitative information on the abundance and biomass of metazoan meiofauna was obtained from samples collected at 15 deep-sea stations in the Eastern Mediterranean Sea (533–2400m). Meiofaunal abundance was compared to bacterial biomass and other environmental factors such as the total sedimentary organic matter content, the concentrations of the main biochemical classes of organic compounds (i.e. proteins, carbohydrates and lipids) and to ATP. To estimate the sedimentation potential of primary organic matter, sediment bound chloroplastic pigment equivalents (CPE) were assayed. Meiofaunal density was very low ranging from 4 ind.10cm−2 (Station A4, 1658m depth) to 290 ind.10cm−2 (Station A12, 636m depth). Nematodes were the numerically dominant taxon (68% of total meiofauna) and were usually confined to the top 6cm of the sediments. Total meiofaunal biomass ranged from 2.78μgC 10cm−2 (Station A4) to 598.34μgC 10cm−2 (Station 15A). There was a significant decrease in the density of metazoan meiofauna with water depth. Bacterial biomass largely dominated the total biomass (as the sum of bacterial and meiofaunal biomass) with an average of 73.2% and accounted for 35.8% of the living biomass (as ATP carbon) whereas meiofaunal biomass accounted only for 6.56%. Bacterial biomass was significantly related to the DNA concentrations of the sediment. A significant correlation between ATP concentration and CPE content was also found. No correlations were found between meiofauna, ATP and CPE, or between meiofauna and bacterial parameters. The significant relationship between meiofaunal density and the ratio of labile organic matter/total organic matter indicates that deep-sea meiofauna inhabiting an extremely oligotrophic environment (such as the Eastern Mediterranean) may be more nutritionally dependent upon the quality than on the quantity of sedimentary organic matter.  相似文献   

6.
In order to identify environmental factors driving the distribution and functioning of deep-sea fauna and the spatial scales of interactions, we carried out a multiple-scale investigation in the Mediterranean basin in which we compared two bathyal plains, located at the same depth (ca. 3000 m), but characterised by contrasting trophic conditions. We investigated meiofaunal abundance, biomass, community structure and biodiversity (expressed as richness of taxa) in relation to sediment characteristics, downward fluxes and food availability in the sediment. Samples were collected at all spatial scales (from small to macroscale) in two seasons. Our results indicated that deep-sea systems with different trophic conditions displayed different responses to the distribution of available energy and its spatio-temporal variability in the sediment. The analysis at a macroscale (>1000 km) indicated that meiofauna were controlled primarily by the trophic inputs to the deep-sea system. Spatial variability of meiofaunal parameters at a mesoscale (>50 km) was highest in the eastern Mediterranean and lowest in the western Mediterranean. Such differences are the consequence of the unpredictable inputs of organic matter in the oligotrophic eastern Mediterranean versus a more homogeneous distribution of food inputs in the mesotrophic western Mediterranean. At a smaller scale (local scale 7 km), in the western Mediterranean, the distribution of meiofaunal parameters was highly homogeneous, reflecting the homogeneous distribution of the food availability in the sediment. Our results indicated that the highly variable input and distribution of food sources in the deep eastern Mediterranean did not provide any “insurance” for the sustainability of the deep-sea faunal assemblages in the long term, thus leading to an uncoupling between resource availability and distribution of organisms. We conclude that the influence of energy availability on the deep-sea faunal distributions change at different spatial scales and that the analysis of spatial variability at mesoscales is crucial for understanding the relationships between deep-sea benthic fauna and environmental drivers.  相似文献   

7.
Metazoan meiofaunal abundance, total biomass, nematode size and the richness of taxa were investigated along bathymetric gradients (from the shelf break down to ca. 5000-m depth) in six submarine canyons and on five adjacent open slopes of three deep-sea regions. The investigated areas were distributed along >2500 km, on the Portuguese to the Catalan and South Adriatic margins. The Portuguese and Catalan margins displayed the highest abundances, biomass and richness of taxa, while the lowest values were observed in the Central Mediterranean Sea. The comparison between canyons and the nearby open slopes showed the lack of significant differences in terms of meiofaunal abundance and biomass at any sampling depth. In most canyons and on most slopes, meiofaunal variables did not display consistent bathymetric patterns. Conversely, we found that the different topographic features were apparently responsible for significant differences in the abundance and distribution of the rare meiofaunal taxa (i.e. taxa accounting for <1% of total meiofaunal abundance). Several taxa belonging to the temporary meiofauna, such as larvae/juveniles of Priapulida, Holothuroidea, Ascidiacea and Cnidaria, were encountered exclusively on open slopes, while others (including the Tanaidacea and Echinodea larvae) were found exclusively in canyons sediments. Results reported here indicate that, at large spatial scales, differences in deep-sea meiofaunal abundance and biomass are not only controlled by the available food sources, but also by the region or habitat specific topographic features, which apparently play a key role in the distribution of rare benthic taxa.  相似文献   

8.
Meiobenthos were sampled from 17 stations in the abyssal deep-sea system of the central Pacific centered around 14°N, 130°W at depths 4960–5154m, during the Nixo 47 R/V Jean Charcot cruise. Meiofaunal density range from 45–89 ind. 10cm2. Predominant taxa are nematodes (84–100%) and copepods (0–10%). Rotifera, Polychaeta, and Acarina also occur. Nematodes are uniformly distributed spatially with 45 species or so; Monhysteridae is the dominant taxon, and Syringolaimus sp. (Ironidae) co-occurs faithfully. Low biomass (0.4–70.6μg 10cm2) are attributed to supposed dwarfism of metazoan meiofauna and very high proportion (60–80%) of juveniles and pre-adult forms. The majority of protozoans and metazoans are detritus- or deposit-feeders; in addition symbiotic associations, coprophagy and gardening activities are frequent. In such an oligotrophic environment, low food supply may limit meiofaunal abundance, biomass and maturation, and to a lesser extent species richness.  相似文献   

9.
In order to study temporal variations of the genetic material in the continental shelf and deep-sea sediments of the extremely oligotrophic Cretan Sea, samples were collected on seasonal basis from August 1994 to September 1995, with a multiple corer, at seven stations (from 40 to 1540 m depth). Surface sediments (0–1 cm) were sub-sampled and analyzed for nucleic acid content (DNA, RNA) and bacterial density. DNA concentrations in the sediments were high (on annual average, 25.0 μg g-1) and declined with increasing water depth, ranging from 3.5 to 55.2 μg g-1. DNA concentrations displayed wide temporal changes also at bathyal depths confirming the recent view of the large variability of the deep-sea environments. Also RNA concentrations decreased with increasing water depth (range: 0.4–29.9 μg g-1). The ratio of RNA to DNA did not show a clear spatial pattern but was characterized by significant changes between sampling periods. DNA concentrations were significantly correlated with protein and phytopigment concentrations in the sediment, indicating a possible relationship with the inputs of primary organic matter from the photic layer. Bacterial densities were generally high (range: 0.9–4.6×108 cells g-1) compared to other deep-sea environments and decreased with increasing water depth. Estimates of the bacterial contribution to the sedimentary genetic material indicated that bacterial-DNA accounted, on annual average, for a small fraction of the total DNA pool (4.3%) but that bacterial-RNA represented a significant fraction of the total sedimentary RNA (26%). Bacterial contribution to nucleic acids increased, even though irregularly, with increasing depth. In deep-sea sediments, changes in RNA concentrations appear to be largely dependent upon bacterial dynamics. Estimates of the overall living contribution to the DNA pools (i.e. microbial plus meiofaunal DNA) indicated that the large majority (about 90%) of the DNA in continental and deep-sea sediments of the eastern Mediterranean was detrital. The non-living DNA pools reach extremely high concentrations up to 0.41 g DNA m-2 cm-1. Thus, especially in deep benthic habitats, characterized by low inputs of labile organic compounds, detrital DNA could represent a suitable and high quality food source or a significant reservoir of nucleic acid precursors for benthic metabolism.  相似文献   

10.
Quantitative samples of sediments and macrobenthos were collected with a spade corer to reveal the relationships between macrobenthos communities and bottom environments. Twenty-five stations were established along a transect in the lower sublittoral and bathyal zones between the depths of 120 m and 2,600 m off Sanriku, the northeastern coast of the Japanese mainland, Northwestern Pacific.These stations were clustered into two groups on the basis of the principal component analysis of environmental factors and topographic features of the study area. The clustering of stations corresponded to that based on polychaete species composition.The biomass of macrobenthos followed two different patterns in two oceanographic environments; the first trend is found from the shelf to the seaward margin of the deep-sea terrace where macrobenthos biomass did not depend on depth, and the second trend on the lower continental slope, where biomass decreased exponentially with depth as Rowe's formula predicted. The density of macrobenthos showed a simple exponential decrease with depth over the two ecological zones. The data of stable carbon isotope ratio of organic matter in the sediments and topographic features suggested that the pattern of the biomass of macrobenthos corresponded with two different modes of food supply to the deep-sea bottom communities,i.e., vertical transport of the surface products and horizontal transport of food materials.  相似文献   

11.
为了分析雅浦海沟中底栖生物群落的食物来源和营养级,本研究分析了雅浦海沟真光层中浮游植物和浮游动物、海底沉积物和巨型底栖生物(海绵、海参、海蛇尾、海星、海葵和钩虾)中的碳、氮稳定同位素组成。研究发现雅浦海沟真光层中的浮游植物和浮游动物δ13C值[(-22.8±0.4)‰和(-21.8±0.8)‰]和δ15N值[(5.4±0.4)‰和(6.8±0.2)‰]与巨型底栖生物的δ13C值(-20.1‰~-16.8‰)和δ15N值(11.9‰~17.9‰)的差异超过了一个营养级,表明作为底栖生物的初始食物来源的浮游植物和浮游动物在向下输送的过程中经历了食物链传递和细菌的降解。巨型底栖生物的δ15N和δ13C值之间无显著的相关性,此外不同物种之间营养级也存在明显差异,表现为海绵的营养级相对较高(3.4~4.7),海参(3.3~3.6)、海蛇尾(3.4~3.5)和海星(3.2~3.7)的营养级较为接近,钩虾(2.9~3.3)和海葵(3.1)的营养级则相对略低,反映了底栖生物不同物种之间食物来源的多样化。  相似文献   

12.
A quantitative study of metazoan meiofauna was carried out on bathyal sediments (305, 562, 830 and 1210 m) along a transect within and beneath the oxygen minimum zone (OMZ) in the southeastern Pacific off Callao, Peru (12°S). Meiobenthos densities ranged from 1517 (upper slope, middle of OMZ) to 440–548 ind. 10 cm−2 (lower slope stations, beneath the OMZ). Nematodes were the numerically dominant meiofaunal taxon at every station, followed by copepods and nauplii. Increasing bottom-water oxygen concentration and decreasing organic matter availability downslope were correlated with observed changes in meiofaunal abundance. The 300-m site, located in the middle of the OMZ, differed significantly in meiofaunal abundance, dominance, and in vertical distribution pattern from the deeper sites. At 305 m, nematodes amounted to over 99% of total meiofauna; about 70% of nematodes were found in the 2–5 cm interval. At the deeper sites, about 50% were restricted to the top 1 cm. The importance of copepods and nauplii increased consistently with depth, reaching ∼12% of the total meiofauna at the deepest site. The observation of high nematode abundances at oxygen concentrations <0.02 ml l−1 supports the hypothesis that densities are enhanced by an indirect positive effect of low oxygen involving (a) reduction of predators and competitors and (b) preservation of organic matter leading to high food availability and quality. Food input and quality, represented here by chloroplastic pigment equivalents (CPE) and sedimentary labile organic compounds (protein, carbohydrates and lipids), were strongly, positively correlated with nematode abundance. By way of contrast, oxygen exhibited a strong negative correlation, overriding food availability, with abundance of other meiofauna such as copepods and nauplii. These taxa were absent at the 300-m site. The high correlation of labile organic matter (C-LOM, sum of carbon contents in lipids, proteins and carbohydrates) with CPE (Pearson's r=0.99, p<0.01) suggests that most of the sedimentary organic material sampled was of phytodetrital origin. The fraction of sediment organic carbon potentially available to benthic heterotrophs, measured as C-LOM/Total organic carbon, was on average 17% at all stations. Thus, a residual, refractory fraction, constitutes the major portion of organic matter at the studied bathyal sites.  相似文献   

13.
In order to assess the impact of deep-sea mining on the in situ benthic life, we measured the microbial standing stock and concentration of organic nutrients in the deep-sea sediments of the Central Indian Ocean Basin in the Indian pioneer area. Sediments were collected using box core and grab samples during September 1996. The total bacterial numbers ranged from 10 10 -10 11 cells per g -1 dry weight sediment. There was a marginal decrease in the number of bacteria from surface to 30 cm depth, though the subsurface section registered a higher number than did the surface. The highest numbers were encountered at depths of 4-8 cm. The retrievable number of bacteria were two orders less in comparison with the direct total counts of bacteria. An almost homogeneous distribution of bacteria, total organic carbon, living biomass, and lipids throughout the depth of cores indicates active microbial and benthic processes in the deep sea sediments. On the other hand, a uniform distribution of total counts of bacteria, carbohydrates, and total organic carbon in all the cores indicates their stable nature and suggests that they can serve as useful parameters for long-term monitoring of the area after the benthic disturbance. Further studies on temporal variability in this region would not only verify the observed norms of distribution of these variables but would also help to understand restabilization processes after the simulated benthic disturbance.  相似文献   

14.
深渊观测是开展深渊科学研究的前提。文章介绍了2020年7月"东方红3"船在马里亚纳海沟"挑战者深渊"附近完成的一次海洋调查。基于船载温盐深综合剖面测量系统获取的万米级剖面数据,分析全海深的温盐性质,并依据Thorpe尺度方法和细尺度参数化方法,进一步估算不同深度层的湍动能耗散率。结果表明:"挑战者深渊"的深层海水十分稳定, 3 000—5 000 dbar的温盐特征与下层绕极水相同;受弱层结背景下的内潮影响, 5 000—8 000 m的耗散率显著提升。本次调查获取的万米级水文剖面为马里亚纳海沟的深渊探索提供了数据方面的支撑。  相似文献   

15.
Microcosms were used to assess the impact of copper mine tailings disposal on the littoral meiofaunal assemblages of the Atacama region of northern Chile. The specific purpose was to establish a cause and effect relationship between the elevated copper concentrations and altered meiofaunal assemblages observed at the study sites. Meiofaunal assemblages were exposed to a series of copper concentrations to assess general toxicity, both densities and taxa diversities decreased with increasing copper. Natural coarse sediments were mixed with a tailings substitute to assess the physical impact of the tailings dumping on meiofaunal assemblages. Meiofaunal assemblage densities increased with increasing amounts of tailings substitute, entirely due to an increase in surface utilising foraminiferans. However, taxa diversities decreased as the interstitial spaces became blocked. Finally, the microcosms were used to conduct bioassays of sediments and seawaters from the impacted sites. The sediments from the impacted sites proved to be toxic resulting in reduced meiofaunal densities and taxa diversities. Seawater samples did not prove to be significantly toxic. The use of microcosms has allowed the effects of the physical and chemical components of tailings to be assessed individually, which was not possible in the field. Additionally, it allowed a cause and effect relationship to be established between elevated concentrations of porewater copper observed in the field and the reduced densities and taxa diversities of the meiofaunal assemblages observed at the same sites.  相似文献   

16.
The abundance and community structure of metazoan meiofauna were studied in deep-sea sediments from the north and south Aegean Sea (Eastern Mediterranean) in summer 1997 and spring 1998. The two areas varied in their surface primary productivity with the northern area being more productive. Meiofaunal densities displayed strong spatial variability while no temporal changes were observed. Total metazoan density ranged from 128 to 1251 ind./10 cm2, with significantly higher values in the north. Meiofaunal biomass ranged from 27 to 391 μgC/10 cm2 with higher values also in the north. At all stations nematodes dominated the community, comprising on average more than 91% of the total abundance. On a broad scale, meiofaunal densities displayed a positive correlation with food availability (sediment-bound chloroplastic pigments, carbohydrates and lipids); carbon mineralization (an indicator of organic matter turnover) was significantly higher in the northern Aegean, providing evidence of high organic-matter input and intense benthic-pelagic coupling. The spatial structure of the nematode community indicated that the two areas were similar in terms of their dominant genera (Halalaimus, Acantholaimus, and Thalassomonhystera).  相似文献   

17.
O. N. Zezina 《Oceanology》2008,48(6):832-836
Of particular interest in the vertical biological zoning of the continental slope in seas and oceans are the substantial differences in the composition, diversity, and abundance (biomass and production) of benthic faunal communities populating the upper and lower subzones of the bathyal zone. The upper bathyal subzone (down to depths of 1500 ± 500 m) resembles the neritic (shelf) one, while its lower subzone is characterized by both reduced diversity and biomass, being similar in its biological parameters to the near-slope abyssal zone (>3000 m). The study of the bottom contour currents and related sediments (contourites) made the geological prerequisites for such differences understandable. Based on a comparative analysis of the bionomical boundaries and core depths of the contour currents in the North Atlantic and Gulf of Alaska, a changing of trophic zones, as well as quantitative and production characteristics of benthic communities, are established. It is shown that the differences between the biological parameters of the upper and lower bathyal subzones (the benthic biomass, the feeding mode of invertebrates, the growth rate, and the maximal sizes of adult specimens) are related to geological agents such as roiling and redeposition of the sediments.  相似文献   

18.
Deep-sea benthic communities and their structural and functional characteristics are regulated by surface water processes. Our study focused on the impact of changes in water depth and food supplies on small-sized metazoan bottom-fauna (meiobenthos) along a bathymetric transect (1200–5500 m) in the western Fram Strait. The samples were collected every summer season from 2005 to 2009 within the scope of the HAUSGARTEN monitoring program. In comparison to other polar regions, the large inflow of organic matter to the sea floor translates into relatively high meiofaunal densities in this region. Densities along the bathymetric gradient range from approximately 2400 ind. 10 cm-2 at 1200 m to approximately 300 ind. 10 cm-2 at 4000 m. Differences in meiofaunal distribution among sediment layers (i.e., vertical profile) were stronger than among stations (i.e., bathymetric gradient). At all the stations meiofaunal densities and number of taxa were the highest in the surface sediment layer (0–1 cm), and these decreased with increasing sediment depth (down to 4–5 cm). However, the shape of the decreasing pattern differed significantly among stations. Meiofaunal densities and taxonomic richness decreased gradually with increasing sediment depth at the shallower stations with higher food availability. At deeper stations, where the availability of organic matter is generally lower, meiofaunal densities decreased sharply to minor proportions at sediment depths already at 2–3 cm. Nematodes were the most abundant organisms (60–98%) in all the sediment layers. The environmental factors best correlated to the vertical patterns of the meiofaunal community were sediment-bound chloroplastic pigments that indicate phytodetrital matter.  相似文献   

19.
Bacterial abundance, biomass and cell size were studied in the oligotrophic sediments of the Cretan Sea (Eastern Mediterranean), in order to investigate their response to the seasonal varying organic matter (OM) inputs. Sediment samples were collected on a seasonal basis along a transect of seven stations (ranging from 40 to 1570 m depth) using a multiple-corer. Bacterial parameters were related to changes in chloroplastic pigment equivalents (CPE), the biochemical composition (proteins, lipids, carbohydrates) of the sedimentary organic matter and the OM flux measured at a fixed station over the deep basin (1570 m depth). The sediments of the Cretan Sea represent a nutrient depleted ecosystem characterised by a poor quality organic matter. All sedimentary organic compounds were found to vary seasonally, and changes were more evident on the continental shelf than in deeper sediments. Bacterial abundance and biomass in the sediments of the Cretan Sea (ranging from 1.02 to 4.59 × 108 cells g−1 equivalent to 8.7 and 38.7 μgC g−1) were quite high and their distribution appeared to be closely related to the input of fresh organic material. Bacterial abundance and biomass were sensitive to changes in nutrient availability, which also controls the average cell size and the frequency of dividing cells. Bacterial abundance increased up to 3-fold between August '94 and February '95 in response to the increased amount of sedimentary proteins and CPE, indicating that benthic bacteria were constrained more by changes in quality rather than the quantity of the sedimentary organic material. Bacterial responses to the food inputs were clearly detectable down to 10 cm depth. The distribution of labile organic compounds in the sediments appeared to influence the vertical patterns of bacterial abundance and biomass. Cell size decreased significantly with water depth. Bacterial abundance and biomass were characterised by clear seasonal changes in response to seasonal OM pulses. The strong coupling between protein flux and bacterial biomass together with the strong bacterial dominance over the total biomass suggest that the major part of the carbon flow was channelled through the bacteria and the benthic microbial loop.  相似文献   

20.
Metazoan meiofauna are ubiquitous in marine soft sediments and play a pivotal role in diagenesis of particulate organic matter. However, the relative importance of meiofauna to the function of deep-sea benthic boundary layer communities has not been resolved. Here, meiofauna biomass, respiration, and grazing on aerobic heterotrophic bacteria were estimated and compared to standing stocks and fluxes of other benthic components (e.g., bacteria and macrofauna). Biomass and respiration declined with depth. Highest biomass and respiration occurred in the proximity of the Mississippi River on the upper continental slope of the central Gulf of Mexico. Meiofauna required 7% of their biomass per day to meet their metabolic energy budget, compared to approximately 24% day−1 in shallow water. Respiration accounted for 8–22% of whole sediment community respiration (SCOC), reflecting the importance of meiofauna in diagenesis, deep-sea carbon budgets, and global biogeochemical cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号