首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
本文对采自南设得兰群岛的乔治王岛、纳尔逊岛、利文斯顿岛、欺骗岛和南极半岛的火山岩和火山灰进行了岩石化学和Sr、Nd同位素分析,Ar-Ar和K-Ar年龄测定。研究表明,南设得兰群岛火山岩属于玄武岩-安山岩-英安岩岩石组合,安们的Sr、Nd同位素比值非常接近,^87Sr/^86Sr比值普遍比较低,为0.703297-0.703507;^143Nd/^144Nd比值普遍比较高,为0.512835-0.513779,二者呈负相关,εNd-^87Sr/^86Sr相关图显示岩浆来源于亏损地幔。火山岩形成时代集中于96Ma、91Ma、78Ma、60Ma和35Ma等时段。35Ma之后,火山活动长时间消沉,直到晚中新世和第四纪才时有发生;这一漫长的历史时期,正是南极大陆冰盖逐渐形成之时。是气候变冷抑制了火山活动?还是火山活动的减弱和停止导致气候变冷?尚待进一步研究;但冷期火山活动减弱或停止,暧期火山活动活跃和增强,这一对应关系是存在的。火山作用的时空分布及岩石地球化学特征暗示,南设得兰群岛处于一个岛弧的地质环境,早期群岛基本上与南极半岛连在一起,在德雷克板块的俯冲下,群岛逐渐与半岛分离,形成布兰斯菲尔德海峡(裂谷),在弧后扩张和裂谷作用下产生新的火山活动。  相似文献   

2.
东南极威尔克斯地-阿德利地陆缘是研究南极洲-澳大利亚晚白垩世裂解过程的关键部位,然而该地区的地质情况研究程度较低,特别是在构造-沉积演化方面。基于横穿威尔克斯地-阿德利地大陆边缘多道地震剖面的解释,对该地区的构造变形及沉积特征进行了研究。在地震剖面上识别出区域性的两大不整合面,分别是土伦阶不整合面(tur)和始新世不整合面(eoc)。两大不整合面将研究区层序划分为三大构造层序:裂谷层序S3,后裂谷层序S2、S1。裂谷层序主要为裂谷期的火山碎屑岩,后裂谷层序多为半深海浊流沉积物如淤泥、黏土等。地震剖面解释发现,研究区不同部位构造变形及沉积特征差异显著,威尔克斯地西部S3较少发育,只在陆坡坡脚向深海盆地过渡的局部区域发育,而发育了厚层的S2、S1;威尔克斯地东部发育了厚层的S3,且S3内部普遍发育高角度正断层。阿德利地发育了一明显的裂谷地块——"阿德利地裂谷地块",其为裂谷作用下从大陆边缘裂离至深海区的海底高原,在其陆缘一侧可能发育了大型的控制断陷的正断层。威尔克斯地-阿德利地陆缘构造变形的差异可能是由于南极洲-澳大利亚板块裂解过程中发生逆时针旋转,导致陆缘裂谷作用强度不均所形成。威尔克斯地-阿德利地陆缘在洋-陆过渡带(Continent-Ocean Transition,COT)内发育了岩浆成因的基底凸脊,这些凸脊可能是在早期裂谷作用时,在地壳减薄最强烈处地幔物质上涌并遇水蛇纹石化的结果,并且导致了COT内的磁异常。  相似文献   

3.
东南极威尔克斯地-阿德利地陆缘是研究南极洲-澳大利亚晚白垩世裂解过程的关键部位,然而该地区的地质情况研究程度较低,特别是在构造-沉积演化方面。基于横穿威尔克斯地-阿德利地大陆边缘多道地震剖面的解释,对该地区的构造变形及沉积特征进行了研究。在地震剖面上识别出区域性的两大不整合面,分别是土伦阶不整合面(tur)和始新世不整合面(eoc)。两大不整合面将研究区层序划分为三大构造层序:裂谷层序S3,后裂谷层序S2、S1。裂谷层序主要为裂谷期的火山碎屑岩,后裂谷层序多为半深海浊流沉积物如淤泥、黏土等。地震剖面解释发现,研究区不同部位构造变形及沉积特征差异显著,威尔克斯地西部S3较少发育,只在陆坡坡脚向深海盆地过渡的局部区域发育,而发育了厚层的S2、S1;威尔克斯地东部发育了厚层的S3,且S3内部普遍发育高角度正断层。阿德利地发育了一明显的裂谷地块——"阿德利地裂谷地块",其为裂谷作用下从大陆边缘裂离至深海区的海底高原,在其陆缘一侧可能发育了大型的控制断陷的正断层。威尔克斯地-阿德利地陆缘构造变形的差异可能是由于南极洲-澳大利亚板块裂解过程中发生逆时针旋转,导致陆缘裂谷作用强度不均所形成。威尔克斯地-阿德利地陆缘在洋-陆过渡带(Continent-Ocean Transition,COT)内发育了岩浆成因的基底凸脊,这些凸脊可能是在早期裂谷作用时,在地壳减薄最强烈处地幔物质上涌并遇水蛇纹石化的结果,并且导致了COT内的磁异常。  相似文献   

4.
在构造和气候的综合作用下,本区在早第三纪成为一个大型裂谷湖盆,并在沙四、沙三和沙一期因受古太平洋海泛影响而具有"近海"湖盆的特征,其演变经历了初始形成-强烈扩张-晚期扩张-收缩干涸四个阶段,构成一个完整的湖侵-湖退旋回和湖泊早期形成-中期扩张-晚期收缩三个亚旋回。  相似文献   

5.
滇西思茅盆地位于澜沧江断裂带和金沙江—红河断裂带之间,呈北西—南东向带状展布,在构造上处于冈瓦纳与欧亚两大构造域的过渡地带,其形成发展与古特提斯的演化、印度板块的向北漂移和俯冲消亡关系十分密切。通过对思茅盆地西缘早白垩世的沉积物分析表明,滇西思茅盆地西缘早白垩世的沉积环境主要为河湖相,沉积物源为盆地西侧的澜沧江造山带。结合构造背景,认为盆地的形成经历了碰撞后裂谷阶段、陆内坳陷阶段、复合型前陆盆地阶段和走滑拉分盆地四个阶段。  相似文献   

6.
大陆漂移学说最初由奥特利乌斯(Abraham Ortelius)在1596年提出,后来德国科学家阿尔弗雷德·魏格纳在1912年加以阐述,中文中“大陆漂移说”、“大陆漂移假说”均指同一概念.这个大胆的学说一直被学界忽视,直至1960年代海洋扩张说出现,令大陆漂移说得以发展,后来更阐述为板块构造理论.主要内容为远古时代的地球只有一块“泛古陆”或称盘古大陆的庞大陆地,被称为“泛大洋”的水域包围,大约于2亿年以前“泛大陆”开始破裂,到距今约二、三百万年以前,漂移的大陆形成现在的七大洲和五大洋的基本地貌. 值得一提的是大陆漂移学说与板块构造学说有些不同,前者假设推动力是潮汐,后者假想推动力是由于地幔出现对流,拖动板块.  相似文献   

7.
苏联学者认为,大洋的起源与地壳的形成有关。地壳的形成是以地球最初的增温为条件,而这种增温是由于地球内部放射性元素裂变的结果。因此,便发生了最初的物质状态的变化,从而导致地壳的形成。根据维诺格拉多瓦的理论,玄武岩成份的易熔阶段最能形成原始地壳。地幔形成基岩,这是组成玄武岩地壳成份的易熔化合物经过分离后而形成的残余产物。各种气体和易熔物质上升到地表,便开始产生了水圈和大气圈。  相似文献   

8.
中国渤海、黄海全为大陆架浅海,黄海南部与东海大陆架连在一起,东海的东部有一条深海槽,称为冲绳海槽。它南北长1000千米,东西宽150千米,最深处2700多米。东海大陆坡就是从东海大陆架到冲绳海槽的大斜坡,高差可达2500米。原来,东海大陆架也是一个巨大的盆地,深有4000米,盆地的边缘是一列海底山岭,这道海底山岭阻挡了中国大陆上河流带来的泥沙,把这4000米深的盆地填平成浅海,而山岭的向海一侧是冲绳海槽,海底在开裂,有火山物质从地下深处喷上来,海槽开裂扩大,朝着大洋演化。历史上已有足够的证据证明,东海大陆架边缘的钓鱼岛等岛屿自古以来就…  相似文献   

9.
在内蒙古白云鄂博—满都拉地区1:25万区调基础上,经过对岗脑包超基性岩进行较为系统的岩石学、岩石化学、地球化学等研究,其岩石化学和稀土配分图解标志为经历了部分熔融的地幔残余。认为岗脑包超基性岩可能是寒武—奥陶纪洋壳的标志,系奥陶纪闪长岩携带折返的洋壳碎片,形成时代为早寒武纪,是古蒙古洋板块向北侧宝音图微陆块俯冲之后,西伯利亚板块与华北板块进一步发生陆—陆碰撞的过程中所形成的。  相似文献   

10.
陇山群为一套角闪岩相中深变质岩系,岩石组合主要包括长英质片麻岩、斜长角闪岩、富铝质片麻岩和大理岩。本文对陇山群中斜长角闪岩进行了LA-ICP-MS锆石U-Pb测年和锆石Hf同位素分析,定年结果为444±9.3Ma(晚奥陶世),代表了斜长角闪岩的形成年龄。锆石Hf同位素分析结果显示正的εHf(t)值(3.46~8.94),揭示其物质源区应该来自于地幔物质。二阶段模式年龄介于855Ma~1203Ma之间,明显大于其形成年龄,表明斜长角闪岩源区应该受到过地壳物质的混染或来源于富集地幔。锆石颗粒中内部没有发现古老继承锆石,二阶段模式年龄也较为集中,源区受过地壳物质的混染可能性较小。因此,我们认为陇山群斜长角闪岩源区应为富集地幔,是加里东期大陆扩张的产物。  相似文献   

11.
Stratigraphic data from petroleum wells and seismic reflection analysis reveal two distinct episodes of subsidence in the southern New Caledonia Trough and deep‐water Taranaki Basin. Tectonic subsidence of ~2.5 km was related to Cretaceous rift faulting and post‐rift thermal subsidence, and ~1.5 km of anomalous passive tectonic subsidence occurred during Cenozoic time. Pure‐shear stretching by factors of up to 2 is estimated for the first phase of subsidence from the exponential decay of post‐rift subsidence. The second subsidence event occured ~40 Ma after rifting ceased, and was not associated with faulting in the upper crust. Eocene subsidence patterns indicate northward tilting of the basin, followed by rapid regional subsidence during the Oligocene and Early Miocene. The resulting basin is 300–500 km wide and over 2000 km long, includes part of Taranaki Basin, and is not easily explained by any classic model of lithosphere deformation or cooling. The spatial scale of the basin, paucity of Cenozoic crustal faulting, and magnitudes of subsidence suggest a regional process that acted from below, probably originating within the upper mantle. This process was likely associated with inception of nearby Australia‐Pacific plate convergence, which ultimately formed the Tonga‐Kermadec subduction zone. Our study demonstrates that shallow‐water environments persisted for longer and their associated sedimentary sequences are hence thicker than would be predicted by any rift basin model that produces such large values of subsidence and an equivalent water depth. We suggest that convective processes within the upper mantle can influence the sedimentary facies distribution and thermal architecture of deep‐water basins, and that not all deep‐water basins are simply the evolved products of the same processes that produce shallow‐water sedimentary basins. This may be particularly true during the inception of subduction zones, and we suggest the term ‘prearc’ basin to describe this tectonic setting.  相似文献   

12.
The first detailed deep seismic refraction study in the Bransfield Strait, West Antarctica, using sensitive OBSs (ocean bottom seismographs) was carried out successfully during the Antarctic summer of 1990/1991. The experiment focused on the deep crustal structure beneath the axis of the Bransfield Rift. Seismic profile DSS-20 was located exactly in the Bransfield Trough, which is suspected to be a young rift system. Along the profile, five OBSs were deployed at spacings of 50-70 km. 51 shots were fired along the 310 km profile. This paper gives the first presentation of the results. A detailed model of the crustal structure was obtained by modelling the observed traveltimes and amplitudes using a 2-D ray-tracing technique. The uppermost (sedimentary?) cover, with velocities of 2.0-5.5 km s−1, reaches a depth of up to 8 km. Below this, a complex with velocities of 6.4-6.8 km s−1 is observed. The presence of a high-velocity body, with V p= 7.3-7.7 km s−1, was detected in the 14-32 km depth range in the central part of the profile. These inhomogeneities can be interpreted as a stage of back-arc spreading and stretching of the continental crust, coinciding with the Deception-Bridgeman volcanic line. Velocities of 8.1 km s−1, characteristic of the Moho, are observed along the profile at a depth of 30-32 km.  相似文献   

13.
The Valencia Trough is a rift formed during the late Oligocene – early Miocene opening of the western Mediterranean Sea. In this paper, we focus on the crustal structure and on the deep structure of the basin which is hard to delineate because of the widespread volcanism that conceals part of the basement. This work is the result of the study of a dense network of seismic profiling surveys and exploratory wells made in the region. The structure of the deep basement reveals the importance of transfer fracture zones which represent steps in the deepening of the basin. The thinning of the crust follows the basement deepening and we find the same partitioning of structural blocks at the crustal level. Transfer faults also represent limits in the thinning of the crust and each compartment thus delineated has a different thinning and different extensional ratios. Such a discrepancy between the thinning of the upper crust and the thinning of the lower crust may be common in many other rift zones, but is seldom as well imaged as in this study of the Valencia Trough. The transfer zones are related to extensional processes but a simple shear opening is envisaged to explain the discrepancies between thinning and extension and the asymmetry of the margins. The more efficient thinning in the lower crust can be explained by a thermal anomaly in accordance with the recent evolution of the trough. The steady thinning of the margins is discussed in terms of a marginal basin in a compressional context.  相似文献   

14.
文章导出了南半球ΔT表达式,测区约位于63°S,故异常以正值为主,负异常在其南侧。以化极、匹配滤波等方法处理数据得深浅源异常。深源异常自北向南以正负相间的三个条带状异常分别对应着南设得兰群岛、布兰斯菲尔德海峡和南极半岛,浅源异常则对应着海峡南北缘的两条断裂。深部异常认为是磁性基底隆拗所致,因太平洋板块对南设得兰群岛的俯冲,那里深部基性成分多,故北部的深浅源异常幅值皆比南部的高。据浅源异常还识别出了与海峡延伸方向垂直的断裂,结合地貌、岩浆岩年龄及地震波速分布,进一步认为南极半岛地区可能发生过西向漂移。  相似文献   

15.
Seismic reflection profiles and well data are used to determine the Cenozoic stratigraphic and tectonic development of the northern margin of the South China Sea. In the Taiwan region, this margin evolved from a Palaeogene rift to a latest Miocene–Recent foreland basin. This evolution is related to the opening of the South China Sea and its subsequent partial closure by the Taiwan orogeny. Seismic data, together with the subsidence analysis of deep wells, show that during rifting (~58–37 Ma), lithospheric extension occurred simultaneously in discrete rift belts. These belts form a >200 km wide rift zone and are associated with a stretching factor, β, in the range ~1.4–1.6. By ~37 Ma, the focus of rifting shifted to the present‐day continent–ocean boundary off southern Taiwan, which led to continental rupture and initial seafloor spreading of the South China Sea at ~30 Ma. Intense rifting during the rift–drift transition (~37–30 Ma) may have induced a transient, small‐scale mantle convection beneath the rift. The coeval crustal uplift (Oligocene uplift) of the previously rifted margin, which led to erosion and development of the breakup unconformity, was most likely caused by the induced convection. Oligocene uplift was followed by rapid, early post‐breakup subsidence (~30–18 Ma) possibly as the inferred induced convection abated following initial seafloor spreading. Rapid subsidence of the inner margin is interpreted as thermally controlled subsidence, whereas rapid subsidence in the outer shelf of the outer margin was accompanied by fault activity during the interval ~30–21 Ma. This extension in the outer margin (β~1.5) is manifested in the Tainan Basin, which formed on top of the deeply eroded Mesozoic basement. During the interval ~21–12.5 Ma, the entire margin experienced broad thermal subsidence. It was not until ~12.5 Ma that rifting resumed, being especially active in the Tainan Basin (β~1.1). Rifting ceased at ~6.5 Ma due to the orogeny caused by the overthrusting of the Luzon volcanic arc. The Taiwan orogeny created a foreland basin by loading and flexing the underlying rifted margin. The foreland flexure inherited the mechanical and thermal properties of the underlying rifted margin, thereby dividing the basin into north and south segments. The north segment developed on a lithosphere where the major rift/thermal event occurred ~58–30 Ma, and this segment shows minor normal faulting related to lithospheric flexure. In contrast, the south segment developed on a lithosphere, which experienced two more recent rift/thermal events during ~30–21 and ~12.5–6.5 Ma. The basal foreland surface of the south segment is highly faulted, especially along the previous northern rifted flank, thereby creating a deeper foreland flexure that trends obliquely to the strike of the orogen.  相似文献   

16.
The Hikurangi Trough, off eastern New Zealand, is at the southern end of the Tonga–Kermadec–Hikurangi subduction system, which merges into a zone of intracontinental transform. The trough is mainly a turbidite-filled structural trench but includes an oblique-collision, foredeep basin. Its northern end has a sharp boundary with the deep, sediment-starved, Kermadec Trench. Swath-mapping, sampling and seismic surveys show modern sediment input is mainly via Kaikoura Canyon, which intercepts littoral drift at the southern, intracontinental apex of the trough, with minor input from seep gullies. Glacial age input was via many canyons and about an order of magnitude greater. Beyond a narrow, gravelly, intracontinental foredeep, the southern trench-basin is characterized by a channel meandering around the seaward edge of mainly Plio-Pleistocene, overbank deposits that reach 5 km in thickness. The aggrading channel has sandy turbidites, but low-backscatter, and long-wavelength bedforms indicating thick flows. Levées on both sides are capped by tangentially aligned mudwaves on the outsides of bends, indicating centrifugal overflow from heads of dense, fast-moving, autosuspension flows. The higher, left-bank levée also has levée-parallel mudwaves, indicating Coriolis and/or boundary currents effects on dilute flows or tail plumes. In the northern trough, basin-fill is generally less than 2 km thick and includes widespread overbank turbidites, a massive, blocky, avalanche deposit and an extensive, buried, debris flow deposit. A line of low seamounts on the subducting plate acts as a dam preventing modern turbidity currents from reaching the Kermadec Trench. Major margin collapse probably occurred in the wake of a large subducting seamount; this seamount and its wake debris flow probably dammed the trench from 2 Ma to 0.5 Ma. Before this, similar dams may have re-routed turbidity currents across the plateau.  相似文献   

17.
Ultra‐large rift basins, which may represent palaeo‐propagating rift tips ahead of continental rupture, provide an opportunity to study the processes that cause continental lithosphere thinning and rupture at an intermediate stage. One such rift basin is the Faroe‐Shetland Basin (FSB) on the north‐east Atlantic margin. To determine the mode and timing of thinning of the FSB, we have quantified apparent upper crustal β‐factors (stretching factors) from fault heaves and apparent whole‐lithosphere β‐factors by flexural backstripping and decompaction. These observations are compared with models of rift basin formation to determine the mode and timing of thinning of the FSB. We find that the Late Jurassic to Late Palaeocene (pre‐Atlantic) history of the FSB can be explained by a Jurassic to Cretaceous depth‐uniform lithosphere thinning event with a β‐factor of ~1.3 followed by a Late Palaeocene transient regional uplift of 450–550 m. However, post‐Palaeocene subsidence in the FSB of more than 1.9 km indicates that a Palaeocene rift with a β‐factor of more than 1.4 occurred, but there is only minor Palaeocene or post‐Palaeocene faulting (upper crustal β‐factors of less than 1.1). The subsidence is too localized within the FSB to be caused by a regional mantle anomaly. To resolve the β‐factor discrepancy, we propose that the lithospheric mantle and lower crust experienced a greater degree of thinning than the upper crust. Syn‐breakup volcanism within the FSB suggests that depth‐dependent thinning was synchronous with continental breakup at the adjacent Faroes and Møre margins. We suggest that depth‐dependent continental lithospheric thinning can result from small‐scale convection that thins the lithosphere along multiple offset axes prior to continental rupture, leaving a failed breakup basin once seafloor spreading begins. This study provides insight into the structure and formation of a generic global class of ultra‐large rift basins formed by failed continental breakup.  相似文献   

18.
The full extent of Mesozoic rift basins within interior Yemen has only recently been established. This work presents a detailed documentation of the stratigraph)., structure and basin development of the Marib-Shabwa and Sirr-Sayun basins, and the Jeza Trough. Yemen is located at the south-western margin of the Arabian Plate, which for most of its early geological history formed part of the northern passive margin of Gondwanaland. Mesozoic break up of the super-continent was associated with major rifting in the Late Jurassic (main phase) and Early Cretaceous. Orientation of the rift basins reflects an inheritance from deep-seated Precambrian structural trends which cross the Arabian Plate. The resultant structure of basement highs, tilted fault blocks, marginal terraces and central graben highs is illustrated in a series of detailed cross-sections. A comprehensive stratigraphic framework has also been established for the Jurassic and Cretaceous basin-fill, enabling thickness and facies variations to be analysed. This reveals a clear shift in the main period of fault-related, high sediment accumulation rates, both within and across the three interior basins of Yemen. In the western Marib-Shabwa Basin, the fill is dominantly Late Jurassic, whilst the eastern Shabwa Basin and Sirr-Sayun Basin exhibit a progressively increased, and younger, Early Cretaceous fill. The main period of fault-related sedimentation in the most easterly basin, the Jeza Trough, is wholly Cretaceous. Plate tectonic reconstructions of the area for this period have documented the separation and subsequent north-eastward movement of the Indian Plate, away- from Africa-Arabia. We believe this may have been the causal mechanism in the progressive eastward migration of rift activity in the Yemen.  相似文献   

19.
The southern South African continental margin documents a complex margin system that has undergone both continental rifting and transform processes in a manner that its present‐day architecture and geodynamic evolution can only be better understood through the application of a multidisciplinary and multi‐scale geo‐modelling procedure. In this study, we focus on the proximal section of the larger Bredasdorp sub‐basin (the westernmost of the five southern South African offshore Mesozoic sub‐basins), which is hereto referred as the Western Bredasdorp Basin. Integration of 1200 km of 2D seismic‐reflection profiles, well‐logs and cores yields a consistent 3D structural model of the Upper Jurassic‐Cenozoic sedimentary megasequence comprising six stratigraphic layers that represent the syn‐rift to post‐rift successions with geometric information and lithology‐depth‐dependent properties (porosities and densities). We subsequently applied a combined approach based on Airy's isostatic concept and 3D gravity modelling to predict the depth to the crust‐mantle boundary (Moho) as well as the density structure of the deep crust. The best‐fit 3D model with the measured gravity field is only achievable by considering a heterogeneous deep crustal domain, consisting of an uppermost less dense prerift meta‐sedimentary layer [ρ = 2600 kg m?3] with a series of structural domains. To reproduce the observed density variations for the Upper Cenomanian–Cenozoic sequence, our model predicts a cumulative eroded thickness of ca. 800–1200 m of Tertiary sediments, which may be related to the Late Miocene margin uplift. Analyses of the key features of the first crust‐scale 3D model of the basin, ranging from thickness distribution pattern, Moho shallowing trend, sub‐crustal thinning to shallow and deep crustal extensional regimes, suggest that basin initiation is typical of a mantle involvement deep‐seated pull‐apart setting that is associated with the development of the Agulhas‐Falkland dextral shear zone, and that the system is not in isostatic equilibrium at present day due to a mass excess in the eastern domain of the basin that may be linked to a compensating rise of the asthenospheric mantle during crustal extension. Further corroborating the strike‐slip setting is the variations of sedimentation rates through time. The estimated syn‐rift sedimentation rates are three to four times higher than the post‐rift sedimentation, thereby indicating that a rather fast and short‐lived subsidence during the syn‐rift phase is succeeded by a significantly poor passive margin development in the post‐rift phase. Moreover, the derived lithospheric stretching factors [β = 1.5–1.75] for the main basin axis do not conform to the weak post‐rift subsidence. This therefore suggests that a differential thinning of the crust and the mantle‐lithosphere typical for strike‐slip basins, rather than the classical uniform stretching model, may be applicable to the Western Bredasdorp Basin.  相似文献   

20.
《Basin Research》2018,30(Z1):269-288
A number of major controversies exist in the South China Sea, including the timing and pattern of seafloor spreading, the anomalous alternating strike‐slip movement on the Red River Fault, the existence of anomalous post‐rift subsidence and how major submarine canyons have developed. The Qiongdongnan Basin is located in the intersection of the northern South China Sea margin and the strike‐slip Red River fault zone. Analysing the subsidence of the Qiongdongnan Basin is critical in understanding these controversies. The basin‐wide unloaded tectonic subsidence is computed through 1D backstripping constrained by the reconstruction of palaeo‐water depths and the interpretation of dense seismic profiles and wells. Results show that discrete subsidence sags began to form in the central depression during the middle and late Eocene (45–31.5 Ma). Subsequently in the Oligocene (31.5–23 Ma), more faults with intense activity formed, leading to rapid extension with high subsidence (40–90 m Myr−1). This extension is also inferred to be affected by the sinistral movement of the offshore Red River Fault as new subsidence sags progressively formed adjacent to this structure. Evidence from faults, subsidence, magmatic intrusions and strata erosion suggests that the breakup unconformity formed at ca. 23 Ma, coeval with the initial seafloor spreading in the southwestern subbasin of the South China Sea, demonstrating that the breakup unconformity in the Qiongdongnan Basin is younger than that observed in the Pearl River Mouth Basin (ca. 32–28 Ma) and Taiwan region (ca. 39–33 Ma), which implies that the seafloor spreading in the South China Sea began diachronously from east to west. The post‐rift subsidence was extremely slow during the early and middle Miocene (16 m Myr−1, 23–11.6 Ma), probably caused by the transient dynamic support induced by mantle convection during seafloor spreading. Subsequently, rapid post‐rift subsidence occurred during the late Miocene (144 m Myr−1, 11.6–5.5 Ma) possibly as the dynamic support disappeared. The post‐rift subsidence slowed again from the Pliocene to the Quaternary (24 m Myr−1, 5.5–0 Ma), but a subsidence centre formed in the west with the maximum subsidence of ca. 450 m, which coincided with a basin with the sediment thickness exceeding 5500 m and is inferred to be caused by sediment‐induced ductile crust flow. Anomalous post‐rift subsidence in the Qiongdongnan Basin increased from ca. 300 m in the northwest to ca. 1200 m in the southeast, and the post‐rift vertical movement of the basement was probably the most important factor to facilitate the development of the central submarine canyon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号