首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scintillation of radio signals passing through the solar corona is considered. An expression describing the dynamic spectrum of these scintillations on the basis of multibeam propagation of radio waves is derived. Properties of the analytically calculated spectrum are shown to coincide with zebra-structure properties of solar radio bursts. It is determined that the time profile of the scintillations caused by multibeam propagation may appear as impulses of emission or absorption or may have a sawtooth form. It is concluded that assuming specific emission source features is not the only way to explain the zebra structure, since the effect of multibeam propagation of radio waves through the solar corona and interplanetary space yields a simple explanation of the phenomenon discussed.  相似文献   

2.
Three-dimensional (3D) tomographic analysis of extreme ultraviolet (EUV) images is used to place empirical constraints on the corona’s temperature and density structure. The input data are images taken by the EUVI instrument on STEREO A and B spacecraft for Carrington Rotation 2069 (16 April to 13 May 2008). While the reconstructions are global, we demonstrate the capabilities of this method by examining specific structures in detail. Of particular importance are the results for coronal cavities and the surrounding helmet streamers, which our method allows to be analyzed without projection effects for the first time. During this rotation, both the northern and southern hemispheres exhibited stable polar crown filaments with overlying EUV cavities. These filaments and cavities were too low-lying to be well observed in white-light coronagraphs. Furthermore, due to projection effects, these cavities were not clearly discernible above the limb in EUV images, thus tomography offers the only option to study their plasma properties quantitatively. It is shown that, when compared to the surrounding helmet material, these cavities have lower densities (about 30%, on average) and broader local differential emission measures that are shifted to higher temperatures than the surrounding streamer plasma.  相似文献   

3.
The electron distribution functions from the solar corona to the solar wind are determined in this paper by considering the effects of the external forces, of Coulomb collisions and of the wave – particle resonant interactions in the plasma wave turbulence. The electrons are assumed to be interacting with right-handed polarized waves in the whistler regime. The acceleration of electrons in the solar wind seems to be mainly due to the electrostatic potential. Wave turbulence determines the electron pitch-angle diffusion and some characteristics of the velocity distribution function (VDF) such as suprathermal tails. The role of parallel whistlers can also be extended to small altitudes in the solar wind (the acceleration region of the outer corona), where they may explain the energization and the presence of suprathermal electrons.  相似文献   

4.
5.
Cross-spectral analysis of ULF wave measurements recorded at ground magnetometer stations closely spaced in latitude allows accurate determinations of magnetospheric field line resonance (FLR) frequencies. This is a useful tool for remote sensing temporal and spatial variations of the magnetospheric plasma mass density. The spatial configuration of the South European GeoMagnetic Array (SEGMA, 1.56 <  L <  1.89) offers the possibility to perform such studies at low latitudes allowing to monitor the dynamical coupling between the ionosphere and the inner plasmasphere. As an example of this capability we present the results of a cross-correlation analysis between FLR frequencies and solar EUV irradiance (as monitored by the 10.7-cm solar radio flux F10.7) suggesting that changes in the inner plasmasphere density follow the short-term (27-day) variations of the solar irradiance with a time delay of 1–2 days. As an additional example we present the results of a comparative analysis of FLR measurements, ionospheric vertical soundings and vertical TEC measurements during the development of a geomagnetic storm.  相似文献   

6.
In the equatorial plasmasphere, plasma waves are frequently observed. To improve our understanding of the mechanism generating plasma waves from instabilities, a comparison of observations, linear growth-rate calculations, and simulation results is presented. To start the numerical experiments from realistic initial plasma conditions, we use the initial parameters inferred from observational data obtained around the plasma-wave generation region by the Akebono satellite. The linear growth rates of waves of different modes are calculated under resonance conditions, and compared with simulation results and observations. By employing numerical experiments by a particle code, we first show that upper hybrid-, Z-, and whistler-mode waves are excited through instabilities driven by a ring-type velocity distribution. The simulation results suggest a possibility that energetic electrons with energies of some tens of keV confined around the geomagnetic equator are responsible for the observed enhancements of Z- and whistler-mode waves. While the comparison between linear growth-rate calculations and observations shows the different tendency of wave amplitude of Z-mode and whistler-mode waves, the wave amplitude of these wave modes in the simulation results is consistent with the observation.  相似文献   

7.
Given recent observational results of interchange reconnection processes in the solar corona and the theoretical development of the S-Web model for the slow solar wind, we extend the analysis of the 3D MHD simulation of interchange reconnection by Edmondson et al. (Astrophys. J. 707, 1427, 2009). Specifically, we analyze the consequences of the dynamic streamer-belt jump that corresponds to flux opening by interchange reconnection. Information about the magnetic field restructuring by interchange reconnection is carried throughout the system by Alfvén waves propagating away from the reconnection region, distributing the shear and twist imparted by the driving flows, including shedding the injected stress-energy and accumulated magnetic helicity along newly open fieldlines. We quantify the properties of the reconnection-generated wave activity in the simulation. There is a localized high-frequency component associated with the current sheet/reconnection site and an extended low-frequency component associated with the large-scale torsional Alfvén wave generated from the interchange reconnection field restructuring. The characteristic wavelengths of the torsional Alfvén wave reflect the spatial size of the energized bipolar flux region. Lastly, we discuss avenues of future research by modeling these interchange reconnection-driven waves and investigating their observational signatures.  相似文献   

8.
A simulation based on a pseudo-spectral method has been performed in order to study particle acceleration. A model for the acceleration of charged particles by field localization is developed for the low-\(\upbeta\) plasma. For this purpose, a fractional diffusion approach has been employed. The nonlinear interaction between a 3D inertial Alfvén wave and a slow magnetosonic wave has been examined, and the dynamical equations of these two waves in the presence of ponderomotive nonlinearity have been solved numerically. The nonlinear evolution of the inertial Alfvén wave in the presence of slow magnetosonic wave undergoes a filamentation instability and results in field intensity localization. The results obtained show the localization and power spectrum of inertial Alfvén wave due to nonlinear coupling. The scaling obtained after the first break point of the magnetic power spectrum has been used to calculate the formation of the thermal tail of energetic particles in the solar corona.  相似文献   

9.
We analyze five events of the interaction of coronal mass ejections (CMEs) with the remote coronal rays located up to 90° away from the CME as observed by the SOHO/LASCO C2 coronagraph. Using sequences of SOHO/LASCO C2 images, we estimate the kink propagation in the coronal rays during their interaction with the corresponding CMEs ranging from 180 to 920 km s−1 within the interval of radial distances from 3 R to 6 R . We conclude that all studied events do not correspond to the expected pattern of shock wave propagation in the corona. Coronal ray deflection can be interpreted as the influence of the magnetic field of a moving flux rope within the CME. The motion of a large-scale flux rope away from the Sun creates changes in the structure of surrounding field lines, which are similar to the kink propagation along coronal rays. The retardation of the potential should be taken into account since the flux rope moves at a high speed, comparable with the Alfvén speed.  相似文献   

10.
11.
12.
C. Beck 《Solar physics》2010,264(1):57-70
I report observations of unusually strong photospheric and chromospheric velocity oscillations in and near the leading sunspot of NOAA 10781 on 3 July 2005. I investigate an impinging wave as a possible origin of the velocity pattern and the changes of the wave after the passage through the magnetic fields of the sunspot.  相似文献   

13.
1.5D Vlasov – Maxwell simulations are employed to model electromagnetic emission generation in a fully self-consistent plasma kinetic model for the first time in the context of solar physics. The simulations mimic the plasma emission mechanism and Larmor-drift instability in a plasma thread that connects the Sun to Earth with the spatial scales compressed appropriately. The effects of spatial density gradients on the generation of electromagnetic radiation are investigated. It is shown that a 1.5D inhomogeneous plasma with a uniform background magnetic field directed transverse to the density gradient is aperiodically unstable to the Larmor-drift instability. The latter results in a novel effect of generation of electromagnetic emission at plasma frequency. The generated perturbations consist of two parts: i) non-escaping (trapped) Langmuir type oscillations, which are localised in the regions of density inhomogeneity, and are highly filamentary, with the period of appearance of the filaments close to electron plasma frequency in the dense regions; and ii) escaping electromagnetic radiation with phase speeds close to the speed of light. When the density gradient is removed (i.e. when plasma becomes stable to the Larmor-drift instability) and a low density super-thermal, hot beam is injected along the domain, in the direction perpendicular to the magnetic field, the plasma emission mechanism generates non-escaping Langmuir type oscillations, which in turn generate escaping electromagnetic radiation. It is found that in the spatial location where the beam is injected, standing waves, oscillating at the plasma frequency, are excited. These can be used to interpret the horizontal strips (the narrow-band line emission) observed in some dynamical spectra. Predictions of quasilinear theory are: i) the electron free streaming and ii) the long relaxation time of the beam, in accord with the analytic expressions. These are corroborated via direct, fully-kinetic simulation. Finally, the interplay of the Larmor-drift instability and plasma emission mechanism is studied by considering a dense electron beam in the Larmor-drift unstable (inhomogeneous) plasma. The latter case enables one to study the deviations from the quasilinear theory.  相似文献   

14.
We present a case study of the 13 July 2004 solar event, in which disturbances caused by eruption of a filament from an active region embraced a quarter of the visible solar surface. Remarkable are the absorption phenomena observed in the SOHO/EIT 304 Å channel, which were also visible in the EIT 195 Å channel, in the Hα line, and even in total radio flux records. Coronal and Moreton waves were also observed. Multispectral data allowed reconstructing an overall picture of the event. An explosive filament eruption and related impulsive flare produced a CME and blast shock, both of which decelerated and propagated independently. Coronal and Moreton waves were kinematically close and both decelerated in accordance with an expected motion of a coronal blast shock. The CME did not resemble a classical three-component structure, probably because some part of the ejected mass fell back onto the Sun. Quantitative evaluations from different observations provide close estimates of the falling mass, ~3×1015?g, which is close to the estimated mass of the CME. The falling material was responsible for the observed large-scale absorption phenomena, in particular, shallow widespread moving dimmings observed at 195 Å. By contrast, deep quasi-stationary dimmings observed in this band near the eruption center were due to plasma density decrease in coronal structures.  相似文献   

15.
The partially ionized local interstellar medium, before interacting with the heliospheric plasma on the upwind side, most probably undergoes an outer bow shock. After conversion into a sub-magnetosonic plasma flow, it then passes around the heliopause. While the ionized component at the bow shock undergoes abrupt changes of its dynamical properties, the neutral component first continues to flow downstream of the shock with its unperturbed properties. Consequently, the two fluids immediately after the bow shock passage are out of dynamical and thermodynamical equilibrium. Neutral atoms move with a higher bulk velocity and are cooler than the ions. Due to intensive local charge-exchange couplings between neutral atoms and protons these different properties tend to mix each other via momentum and energy exchanges. It turns out that the charge exchange period is shorter than the relaxation period. Hence the distribution functions cannot relax rapidly enough to their highest-entropy forms, i.e. shifted Maxwellians. Here we study the transport processes of newly injected ions in velocity space considering their quasi-linear and non-linear interactions with the ambient MHD turbulence in the plasma interface region. For that purpose we study the turbulence levels in the helio-sheath plasma region. We calculate the expected deviations from equilibrium distributions of ionic and atomic species in the outer heliospheric interface. It clearly turns out from these studies that non-relaxated non-equilibrium distribution functions have to be expected both for O-/H-ions and atoms in this region. This has inherent implications for the diagnostics of interstellar parameters, deduced from observations made further inwards from the interface region.  相似文献   

16.
Meyer-Vernet  N.  Maksimovic  M.  Czechowski  A.  Mann  I.  Zouganelis  I.  Goetz  K.  Kaiser  M. L.  St. Cyr  O. C.  Bougeret  J.-L.  Bale  S. D. 《Solar physics》2009,256(1-2):463-474
Solar Physics - The STEREO wave instrument (S/WAVES) has detected a very large number of intense voltage pulses. We suggest that these events are produced by impact ionisation of nanoparticles...  相似文献   

17.
An estimate of the period of the rotation of the line of apsides of the double-star system Phe is obtained by representing the density function as a product of a normal Gaussian distribution and an associated Legendre polynomial .The asymptotic behaviour of this function coincides with the results obtained by Zeldovichet al. (1981).The period of motion of the line of apsides of Phe (about 63 years) obtained in this way comes close to the period determined by an empirical formula for of Batten (1973).  相似文献   

18.
P. S. Cally  M. Goossens 《Solar physics》2008,251(1-2):251-265
The efficacy of fast?–?slow MHD mode conversion in the surface layers of sunspots has been demonstrated over recent years using a number of modelling techniques, including ray theory, perturbation theory, differential eigensystem analysis, and direct numerical simulation. These show that significant energy may be transferred between the fast and slow modes in the neighbourhood of the equipartition layer where the Alfvén and sound speeds coincide. However, most of the models so far have been two dimensional. In three dimensions the Alfvén wave may couple to the magnetoacoustic waves with important implications for energy loss from helioseismic modes and for oscillations in the atmosphere above the spot. In this paper, we carry out a numerical “scattering experiment,” placing an acoustic driver 4 Mm below the solar surface and monitoring the acoustic and Alfvénic wave energy flux high in an isothermal atmosphere placed above it. These calculations indeed show that energy conversion to upward travelling Alfvén waves can be substantial, in many cases exceeding loss to slow (acoustic) waves. Typically, at penumbral magnetic field strengths, the strongest Alfvén fluxes are produced when the field is inclined 30°?–?40° from the vertical, with the vertical plane of wave propagation offset from the vertical plane containing field lines by some 60°?–?80°.  相似文献   

19.
Using high signal-to-noise ratio spectra of extrasolar planet-hosting stars, we obtained the atmospheric parameters, accurate metallicities and the differential abundance for 15 elements (C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Ni and Ba). In a search for possible signatures of metal-rich material accreting onto the parent stars, we found that , for a given element, there is no significant trend of increasing [X/H] with increasing condensation temperature Tc. In our sample of planet-harboring stars, the volatile and refractory elements behave similarly, and we can not confirm if there exists any significant dependence on the condensation temperature Tc.  相似文献   

20.
We present X-ray spectral analyses of the low-mass X-ray binary Cir X-1 dur- ing X-ray dips,using the Rossi X-ray Timing Explorer(RXTE)data.Each dip was divided into several segments,and the spectrum of each segment was fitted with a three-component blackbody model,in which the first two components are affected by partial covering and the third one is unaffected.A Gaussian emission line is also included in the spectral model to represent the Fe Kαline at~6.4 keV.The fitted temperatures of the two partially covered components are about 2 keV and 1 keV,while the uncovered component has a temperature of~0.5-0.6 keV.The equivalent blackbody emission radius of the hottest component is the smallest and that of the coolest component is the largest.During the dips the fluxes of the two hot components are linearly correlated,while that of the third component does not show any significant variation.The Fe line flux remains constant,within the errors,during the short dips.However,during the long dips the line flux varies significantly and is positively correlated with the fluxes of the two hot components.These results suggest:(1)that the tem- perature of the X-ray emitting region decreases with radius,(2)that the Fe Kαline emitting region is close to the hot continuum emitting region,and(3)that the size of the Fe line emit- ting region is larger than that of the obscuring matter causing the short dips but smaller than the region of that causing the long dips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号