首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A representative collection of Upper Cretaceous rocks of Georgia (530 samples from 24 sites) is used for the study of magnetic properties of the rocks and the determination of the paleodirection and paleointensity (H an) of the geomagnetic field. Titanomagnetites with Curie points of 200–350°C are shown to be carriers of natural remanent magnetization (NRM) preserving primary paleomagnetic information during heatings to 300–350°C. The characteristic NRM component of the samples is identified in the interval 120–350°C. The Thellier and Thellier-Coe methods are used for the determination of H an meeting modern requirements on the reliability of such results. New paleointensity determinations are obtained and virtual dipole magnetic moment (VDM) values are calculated for four sites whose stratigraphic age is the Upper Cretaceous (Cenomanian-Campanian). It is shown that, in the interval 99.6–70.6 Ma, the VDM value was two or more times smaller than the present value, which agrees with the majority of H an data available for this time period. According to our results, the H an value did not change at the boundary of the Cretaceous normal superchron.  相似文献   

2.
A representative collection of Cretaceous rocks of Mongolia is used for the study of the magnetic properties of the rocks and for determination of the paleodirections and paleointensities H anc of the geomagnetic field. The characteristic NRM component in the samples is recognized in the temperature interval from 200 to 620–660°C. The values of H anc are determined by the Thellier-Coe method with observance of all present-day requirements regarding the reliability of such kind of results. Comparison of data in the literature on paleointensity in the Cretaceous superchron and in the Miocene supports the hypothesis of the inverse correlation between the average intensity of the paleofield and the frequency of geomagnetic reversals. The increase in the average intensities is accompanied by an appreciable increase in the variance of the virtual dipole moment (VDM). We suggest that the visible increase in the average VDM value in the superchron is due to the greater variability of VDM in this period compared to the Miocene.  相似文献   

3.
The results of determining the paleointensity of the Siberian traps sampled from the Kotui sequence, Truba ravine, Onkuchak Suite, and dated to Permian-Triassic are presented. Most of the H anc values for separate lava flows are significantly lower than the values of the present geomagnetic field at the observation point (approximately 50 μT). This is consistent with the known conclusion that the intensity of the geomagnetic field at the Permian-Triassic boundary was lower by a factor of two to three lower than its present value. We carried out the comparative analysis of the behavior of H an and VDM for two trap sequences (Kotui (the Onkuchak Suite) and Norilsk) from the standpoint of the eruptive pulse hypothesis. In both sections, the average VDM values and their dispersion are similar. For comparison, similar analysis of the VDM behavior is conducted for the Brunhes epoch and Miocene in the interval of 5–10 Ma. It is hypothesized that during the three considered periods, namely, the eruption of the Siberian traps, in the Brunhes epoch, and in Miocene (in the interval of 5–10 Ma), the time behavior of the geomagnetic field was close to a stationary stochastic process.  相似文献   

4.
We present the results of analyzing a representative collection of the middle Miocene 12.4–10.0 Ma basalts that compose the volcanic cover of the Shufan and Sovgavan plateaus, namely the Nikolo-L’vovsk (NL) and Sovetskaya Gavan (SG) volcanic fields. Preliminary data are obtained about the relicts of some volcanic edifices within the West and East Sikhote-Alin volcanic belts, namely the Shishlovskii, Malyshevo, and Truzhenik objects. It is established that the volcanic rocks from these localities are characterized by similar petrologic and magnetic properties. Thermal cleaning of the samples is carried out, and the coordinates of the paleomagnetic pole are determined as Λ = 190.2°E, Φ = 71.3°N for basalts of the Nokolo-L’vovsk area and Λ = 180.4°E, Φ = 71.9°N for rocks from the Sovgavan locality. These values are consistent with the data for coeval volcanics from other regions of Eurasia. Reliable determinations of the paleointensity H pal for a representative collection of samples were obtained using the Thellier method. The corresponding values of the virtual dipole moment (VDM) are almost half its present-day value. The analysis of the Miocene VDM values available from the world database revealed a low average field 5.06 × 1022 Am2 characterized by high variance σ = 2.13 × 1022 Am2 at that time. The similarity of VDM values for the Miocene characterized by frequent inversions and for the Cretaceous Superchron supports the hypothesis of the lack of a correlation between the VDM values and the frequency of geomagnetic inversions.  相似文献   

5.
A large volume of data on the paleointensity H an obtained by A.S. Bol’shakov and G.M. Solodovnikov is ignored in modern reconstructions because the authors did not indicate whether they used the check-point procedure for the detection of chemical alterations in rocks associated with determination of H an. The paper presents new values of H an determined by the Thellier-Coe method with the use of the checkpoint procedure from samples of the Armenian collection of Cretaceous rocks used in published studies of Bol’shakov and Solodovnikov. The new results are close to the published ones and point to a small value of the geomagnetic field in the Cretaceous, thereby corroborating Bol’shakov-Solodovnikov’s hypothesis on a low paleofield in the Mesozoic. Our study of samples of the collection studied confirms the reliability of Bol’shakov-Solodovnikov’s determinations of H an.  相似文献   

6.
The results of the Thellier–Coe experiments on paleointensity determination on the samples which contain chemical remanent magnetization (CRM) created by thermal annealing of titanomagnetites are reported. The results of the experiments are compared with the theoretical notions. For this purpose, Monte Carlo simulation of the process of CRM acquisition in the system of single-domain interacting particles was carried out; the paleointensity determination method based on the Thellier–Coe procedure was modeled; and the degree of paleointensity underestimation was quantitatively estimated based on the experimental data and on the numerical results. Both the experimental investigations and computer modeling suggest the following main conclusion: all the Arai–Nagata diagrams for CRM in the high-temperature area (in some cases up to the Curie temperature T c) contain a relatively long quasi-linear interval on which it is possible to estimate the slope coefficient k and, therefore, the paleointensity. Hence, if chemical magnetization (or remagnetization) took place in the course of the magnetomineralogical transformations of titanomagnetite- bearing igneous rocks during long-lasting cooling or during repeated heatings, it can lead to incorrect results in determining the intensity of the geomagnetic field in the geological past.  相似文献   

7.
Absolute geomagnetic paleointensity measurements were made on 255 samples from 38 lava flows of the ~1.09 Ga Lake Shore Traps exposed on the Keweenaw Peninsula (Michigan, USA). Samples from the lava flows yield a well-defined characteristic remanent magnetization (ChRM) component within a ~375°C–590°C unblocking temperature range. Detailed rock magnetic analyses indicate that the ChRM is carried by nearly stoichiometric pseudo-single-domain magnetite and/or low-Ti titanomagnetite. Scanning electron microscopy reveals that the (titano)magnetite is present in the form of fine intergrowths with ilmenite, formed by oxyexsolution during initial cooling. Paleointensity values were determined using the Thellier double-heating method supplemented by low-temperature demagnetization in order to reduce the effect of magnetic remanence carried by large pseudosingle-domain and multidomain grains. One hundred and two samples from twenty independent cooling units meet our paleointensity reliability criteria and yield consistent paleofield values with a mean value of 26.3 ± 4.7μT, which corresponds to a virtual dipole moment of 5.9 ± 1.1×1022 Am2. The mean and range of paleofield values are similar to those of the recent Earth’s magnetic field and incompatible with a “Proterozoic dipole low”. These results are consistent with a stable compositionally-driven geodynamo operating by the end of Mesoproterozoic.  相似文献   

8.
The global database on the paleointensity, containing determinations of the virtual dipole moment (VDM) for a stable (normal) regime of the geomagnetic field in a time interval of up to 3.5 Ga, is supplemented by new VDM determinations and analyzed. The field generation process started no later than 3–3.5 Ga (earlier data are absent) at the stage of the Earth’s core formation. Since that time, the dipole value has differed from its present value by no more than an order of magnitude, and the deviations that have already been detected tend toward smaller values. The distribution of VDM values in the time interval 0–400 Ma is bimodal, which apparently reflects the presence of two different generation levels of the geomagnetic field distinguished by a relatively large value (close to the present field value) and a relatively small value (approximately half as large as the present value). The total duration of decreased VDM values appreciably exceeds that of increased VDM values (179.1 and 28.6 Myr, respectively). On the whole, data on the paleointensity do not contradict the hypothesis about the dipole nature of the field over the last 400 Myr; however, the number of determinations at high paleolatitudes is too small to draw decisive conclusions on the validity (or invalidity) of the dipole field approximation based solely on paleointensity data.  相似文献   

9.
The territory of Karelia (Baltic Shield) is virtually not represented in the global paleomagnetic database for the Lower Riphean time interval (1650—1350 Ma). As regards the paleointensity H an, the huge interval 1–2 Ga in length is represented in the global paleointensity database by only eight determinations concentrated in the interval 1–1.35 Ga. The paper presents results of paleomagnetic studies of volcanic and subvolcanic rocks composing the Early Riphean Salmi Formation, which outcrops in the valley of the lower Tulemaioki River in the northern coast area of Lake Ladoga. Results of the study indicate that, in the Early Riphean time, the East European craton was located in the tropical region of the Southern Hemisphere between 15° S and 40° S. The inferred value of H an is close to the lower boundary of the interval (1.36–11.56) × 1022 A m2, encompassing previously published intensity values of the paleofield 1–1.35 Ga; this supports the hypothesis on the existence of long intervals of a lower field in the period in question [Maquoin et al., 2003].  相似文献   

10.
The reliability of the Thellier method for determining the paleointensity of a geomagnetic field is explored on recent igneous rocks of Kamchatka. The main magnetic mineral in the studied rocks is titanomagnetite with different degree of oxidation. It is obtained that the reliability of the results can be assessed based on the deviations of the check points of the partial thermoremanent magnetization (pTRM) during the Thellier experiment. Besides, for different rocks, it is found that the stability of titanomagnetites to heating during the experiments can be insufficient for validating the reliability of the results of paleointensity determination; however, at the same time, the reliability may depend on the initial (oxidation) state of the magnetic minerals of the studied rocks.  相似文献   

11.
Preliminary paleointensity results are presented from 36 sites with virtual geomagnetic pole (VGP) latitudes of about 30–90° normal polarity in the Quaternary West Eifel volcanic field. A strong correlation between VGP latitude and the Earth's virtual magnetic dipole moment (VDM) is observed, with low intensities for low VGP latitudes indicating possibly an emplacement during an excursion or event of the Brunhes epoch. The age distribution of the West Eifel volcanics is, as yet, poorly known. Also, the mean VDM value for sites with high VGP latitudes is considerably lower than the present day dipole moment of the Earth.  相似文献   

12.
Paleointensity measurements have been carried out on 3.5 Ga samples from the Komati Formation type locality using both the Thellier and Van Zijl methods. These samples contain a single steeply-directed negative TRM component acquired during metamorphism of the Komati lavas. Thellier experiments yielded values ranging from 12 to 37 μT but an average paleofield intensity for the four best determinations is 20 ± 3 μT. A slightly lower average paleointensity of 15 ± 3 μT was obtained using Van Zijl experiments. Preheating was used to chemically stabilize seven samples used in Van Zijl determinations and these produced nearly ideal plots with an average paleointensity of 13 ± 2 μT. A single basaltic komatiite sample gave a nearly ideal Van Zijl plot indicating about 21 μT, nearly the same paleointensity as the peridotitic komatiite samples even though its NRM intensity was several orders of magnitude lower. Since the Komati characteristic remanence was acquired during a slow cooling, the data must be reduced by a factor of 1.55 to account for the difference between laboratory and natural cooling rates. Calculation of an equivalent equatorial paleointensity using the paleolatitude implied by the steep Komati characteristic remanence then gives value of 5 μT for the intensity of the geomagnetic field at 3.5 Ga, lower than the present value of about 30 μT.  相似文献   

13.
The results of paleomagnetic studies and paleointensity determinations from two Neoarchaean Shala dikes with an age of ~2504 Ma, located within the Vodlozerskii terrane of the Karelian craton, are presented. The characteristic components of primary magnetization with shallow inclinations I = ?5.7 and 1.9 are revealed; the reliability of the determinations is supported by two contact tests. High paleointensity values are obtained by the Thellier–Coe and Wilson techniques. The calculated values of the virtual dipole moment (11.5 and 13.8) × 1022 A m2 are noticeably higher than the present value of 7.8 × 1022 A m2. Our results, in combination with the previous data presented in the world database, support the hypothesized existence of a period of high paleointensity in the Late Archaean–Early Proterozoic.  相似文献   

14.
Relative paleointensities are obtained from a 6-m sediment core from Lake St. Croix, Minnesota, spanning the time range from 445 to 1740 years B.P. To normalize the natural remanent magnetization (NRM) for variations in the magnetic content, a laboratory-induced remanence is chosen, whose alternating field (AF) demagnetization curves most closely resemble the NRM demagnetization curves. By plotting the ratio of the NRM to the normalizing remanence versus AF demagnetizing field, HAF, for samples of the same sediment horizon, as well as for samples from different horizons, estimates are obtained for expected uncertainties in the relative paleointensities. For the Lake St. Croix sediments the anhysteretic remanence (ARM) demagnetization curves are very similar to those of the NRM's, and ARM is therefore used as the normalization parameter. Because the sediment exhibits homogeneous remanence properties throughout, and HAF = 100Oe is the optimum “cleaning” field for the entire core, NRM100/ARM100 is evaluated to represent the fluctuations of the relative paleointensity. Our relative paleointensity data exhibit the same general features as obtained from archeomagnetic studies. The intensity increases as one goes back in time with a peak near 800 years B.P., representing an increase in the intensity of up to 60%. Apparent periodicities in the intensity of 300–400 years are observed.  相似文献   

15.
The reversed paleomagnetic direction of the Laschamp and Olby flows represents a specific feature of the geomagnetic field. This is supported by paleomagnetic evidence, showing that the same anomalous direction was recorded at several distinct sites, including scoria of the Laschamp volcano. To examine this anomalous geomagnetic fluctuation, we studied the paleointensity of the Laschamp and Olby flows, using the Thellier method. Twenty-five samples were selected for the paleointensity experiments, and from seven we obtained reliable results. Because the paleointensity results of the Olby and Laschamp flows as well as Laschamp scoria are very similar, they can be represented by a single mean paleointensity,F = 7.7 μT. Considering that this low paleointensity is less than 1/6 of the present geomagnetic field and is more characteristic of transitional behavior, our results suggest that the paleomagnetic directions of the Laschamp and Olby flows were not acquired during a stable reversed polarity interval. A more likely explanation is that the Laschamp excursion represents an unsuccessful or aborted reversal.  相似文献   

16.
To test the reliability of the Thellier method for paleointensity determinations, we studied six historic lavas from Hawaii and two Gauss-age lava flows from Raiatea Island (French Polynesia). Our aim is to investigate the effects of the NRM fraction and concave-up behavior of NRM–thermal remanent magnetization (TRM) diagrams on paleointensity determinations. For the Hawaiian samples, the paleointensity results were investigated at both sample and site levels. For consistency and confidence in the paleointensity results, it is important to measure multiple samples from each cooling unit. The results from the Raiatea Island samples confirm that reliable paleointensities can be obtained from NRM–TRM diagrams with concave-up curvature, provided the data are accompanied by successful partial TRM (pTRM) checks and no significant chemical remanent magnetization (CRM) production. We conclude that reliable determinations of the paleofield strength require analyses of linear segments representing at least 40–50% of the total NRM. This new criterion has to be considered for future studies and for evaluating published paleointensities for calculating average geomagnetic field models. Using this condition together with other commonly employed selection criteria, the observed mean site paleointensities are typically within 10% of the Definitive Geomagnetic Reference Field (DGRF). Our new results for the Hawaii 1960 lava flow are in excellent agreement with the expected value, in contrast to significant discrepancies observed in some earlier studies.

Overestimates of paleointensity determinations can arise from cooling-rate dependence of TRM acquisition, viscous remanent magnetization (VRM) at elevated temperatures, and TRM properties of multidomain (MD) particles. These outcomes are exaggerated at lower temperature ranges. Therefore, we suggest that, provided the pTRM checks are successful and there is no significant CRM production, it is better to increase the NRM fraction used in paleointensity analyses rather than to maximize correlation coefficients of line segments on the NRM–TRM diagrams.

We introduce the factor, Q = Nq, to assess the quality of the weighted mean paleointensity, Hw, for each cooling unit.  相似文献   


17.
葛淑兰  L 《地球物理学报》2013,56(2):542-557
沉积物记录的地磁场强度首先提供了模拟地磁场演化的数据约束,其次提供了沉积物的年龄信息. 本文报道了菲律宾海西北部岩芯记录的地磁场相对强度,并结合岩石磁学和沉积学性质探讨了影响强度的各个因素. 除底部红粘土层的局部磁偏角偏转可能揭示了沉积后改造以外,磁化率各向异性和地磁场方向特征表明沉积物为原状沉积. 岩石磁学性质表明沉积物符合磁性均一性,可以记录可靠的地磁场强度. 由于红粘土层及其下部的磁偏角异常,本文讨论其上部约125 ka的结果. 常规归一方法获得的两个地磁场强度参数NRM/ARM(特征剩磁和非磁滞剩磁比值)和NRM/κ(特征剩磁和磁化率比值)与其它记录对比得到时间-深度对比点,对比点之间的年龄为线性内推或者外推. 地磁场强度时间模型上的岩芯氧同位素与全球氧同位素综合曲线一致证明强度结果的有效性和对比的正确性. 磁化率为归一参数的强度大多低于以非磁滞剩磁为归一参数的强度,频谱和相关分析证明NRM/ARM不与ARM和磁性矿物粒度(ARM/κ)相关,也没有轨道周期性,而NRM/κ却与κ和ARM/κ相关,而且有13~12 ka的周期. 由此我们认为NRM/ARM记录的地磁场强度比NRM/κ更好地消除了气候印记. 进一步探讨了超顺磁含量、碳酸钙含量、磁性矿物组成以及磁性矿物粒度变化与地磁场强度差值的关系,发现末次间冰期较高的超顺磁含量和磁性矿物粒度的较大范围变化造成了地磁场强度差值,后者至少造成了90%差异. 中等含量的碳酸钙和较小的磁性矿物组成变化不是磁场强度差值产生的原因. 如何校正磁性矿物粒度变化的影响将是下一步工作的重点.  相似文献   

18.
Recognition of the rapid decay of Earth’s magnetic field over the last 150 years, chronicled in magnetic observatory and satellite data, highlights the need for a higher resolution record of geomagnetic field behavior over the past millennium. Such a record would help us better understand the nature of the recent dramatic changes. A limitation of the existing database is undersampling of the Southern Hemisphere. Here we investigate the potential of obtaining archeomagnetic data from Iron-Age burnt grain bins from southern Africa. These structures preserve oriented material that can record both paleodirections and paleointensity information. Directional data collected from three sites (ca. 1200–1250 AD) fall 9–22° to the East of predictions. Thellier–Coe and Shaw paleointensity results differ from model values by ~15%. The consistency of results between the three sites suggests that further investigations of these materials with different ages could markedly improve the current spatial distribution of the archeomagnetic database.  相似文献   

19.
We test the possibility of using the pseudo-Thellier method as a means of determining absolute paleointensity. Thellier analysis of anhysteretic remanent magnetization (ARM) and pseudo-Thellier analysis of thermoremanent magnetization (TRM) have been carried out on a large collection of sized synthetic magnetites and natural rocks. In all samples, the intensity of TRM is larger than that of ARM and the ratio R (=TRM/ARM) is strongly grain size dependent. The best-fit slope (bTA) from pseudo-Thellier analysis of TRM shows a linear correlation with R. The ratio bTA/R yielded approximately correct paleointensities, although uncertainties are larger than in typical Thellier-type determinations. For single-domain and multidomain magnetites, alternating field and thermal stabilities of ARM and TRM are fairly similar. However, for ∼0.24 μm magnetite, ARM is both much less intense and less resistant to thermal demagnetization than TRM, reflecting different domain states for the two remanences and resulting in severely non-linear Arai plots for Thellier analysis of ARM.  相似文献   

20.
Determination of geomagnetic paleointensity by the Thellier method compares the decay of natural remanent magnetisation with the gain of a laboratory induced thermoremanent magnetisation. If fragile samples lose some amount of their material after each heating step, the Thellier experiment will be systematically disturbed and paleointensity will be over-estimated. For a lost of 5% of the sample’s mass an over-estimate of 10% in paleointensity is observed. This can easily be corrected by a normalisation to the initial mass of the unheated sample. This is necessary for any fragile materials such as baked clays or when a specimen breaks into pieces during the Thellier experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号