首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How late are K-feldspar megacrysts in granites?   总被引:1,自引:0,他引:1  
R.H. Vernon  S.R. Paterson 《Lithos》2008,104(1-4):327-336
Various petrologists have suggested that K-feldspar megacrysts grow in granites that are extensively crystallized, even at subsolidus conditions. However, experimental evidence indicates that, though K-feldspar nucleates relatively late in the crystallization history, abundant liquid is available for development of large crystals. A great deal of evidence, involving many different factors, favours a magmatic/phenocrystic origin for K-feldspar megacrysts in granites, namely simple twinning, oscillatory zoning, euhedral plagioclase inclusions, and concentric, crystallographically controlled arrangements of inclusions. In addition, abundant evidence has been presented of (1) mechanical accumulation of K-feldspar megacrysts in granites, (2) alignment of megacrysts and megacryst concentrations in magmatic flow foliations, (3) involvement of megacrysts in zones of magma mixing in granite plutons, and (4) occurrence of megacrysts in some volcanic rocks, implying that the megacrysts were suspended in enough liquid to be moved without fracturing or plastic deformation. Detailed trace element and isotopic data also indicate that megacrysts can move between coexisting felsic and more mafic magmas. Irregular overgrowths on megacrysts are consistent with continued magmatic growth after euhedral megacrystic growth ceased, the overgrowths being impeded by simultaneously crystallizing quartz and feldspar grains.  相似文献   

2.
Radiolarian paleobiogeography for the late Albian–Santonian is proposed for the first time. The paleobiogeographic differentiation is found to be different for the Albian, Cenomanian, Turonian, and Coniacian–Santonian. The Tethyan and Boreal superrealms can be recognized for the Albian–Santonian. For the Albian–Santonian, the Tethyan Superrealm can be subdivided into realms: Atlantic-Mediterranean, Carpathian-Caucasian, and Tropical-Pacific. The boundaries of these realms changed throughout geological time. The Boreal Superrealm recognized for the Albian so far cannot be subdivided into realms, whereas in the Cenomanian it included the East European and Western Siberian realms without a clear definition of the boundaries and the Boreal-Pacific (in the North Pacific). The Boreal Superrealm is subdivided in the Turonian into two realms (European-Western Siberian and Boreal-Pacific), and in the Coniacian–Santonian, it is subdivided into three realms (European, Western Siberian, and Boreal-Pacific). The Austral Superrealm can be recognized only for the Albian and Cenomanian, and because of the lack of data, it cannot be delineated for the Turonian and Coniacian–Santonian.  相似文献   

3.
The dynamics of radiolarian evolution in the late Albian–Campanian is analyzed, and several stages are recognized. The first stage (late Albian–middle Cenomanian), related to the MCE regional anoxic event, showed low evolutionary tempos and hence lacked structural change in radiolarian communities. The second stage (late Cenomanian–early Turonian), corresponding to ОАЕ 2, which was a global anoxic event, is characterized by a decrease in the number of genera, while many genera showed increased diversification of species composition. At this stage, a considerable number of genera became extinct and appeared, suggesting an increased rate of the radiolarian evolution. The third stage (middle Turonian–early Coniacian), including the beginning of ОАЕ 3, is characterized by a stabilized number of genera. The fourth stage (late Coniacian–Santonian) completely encompasses ОАЕ 3 except for its very beginning. At this stage, the radiolarian communities underwent a significant structural change, while their rate of evolution increased considerably. Nevertheless, during the ОАЕ 3 stage, a distinct trend toward a decrease in generic diversity continued from the late Cenomanian to the middle Turonian. The fifth stage (Campanian) is characterized by quite significant changes in the assemblage composition, while the trend toward a gradual decrease in the number of genera steadily continued. At this stage, which coincided with a considerable cooling, twice as many genera became extinct as during ОАЕ 2. The analysis of the dynamics of radiolarian evolution showed that the anoxic MCE, ОАЕ 2, and ОАЕ 3 events did not result in degradation of radiolarian assemblages. This suggests that this group has significant stratigraphic potential. In general, the evolution of radiolarians in the Late Cretaceous was gradual. By the end of the Campanian, nearly half of the generic diversity was composed of genera which appeared at the beginning of the Cretaceous and earlier.  相似文献   

4.
Fang  Tong  Liu  Yun 《中国地球化学学报》2019,38(4):459-471

Equilibrium isotope fractionation of thallium (Tl) includes the traditional mass-dependent isotope fractionation effect and the nuclear volume effect (NVE). The NVE dominates the overall isotope fractionation, especially at high temperatures. Heavy Tl isotopes tend to be enriched in oxidized Tl3+-bearing species. Our NVE fractionation results of oxidizing Tl+ to Tl3+ can explain the positive enrichments observed in ferromanganese sediments. Experimental results indicate that there could be 0.2–0.3 ε-unit fractionation between sulfides and silicates at 1650 °C. It is consistent with our calculation results, which are in the range of 0.17–0.38 ε-unit. Importantly, Tl’s concentration in the bulk silicate Earth (BSE) can be used to constrain the amount of materials delivered to Earth during the late veneer accretion stage. Because the Tl concentration in BSE is very low and its Tl isotope composition is similar with that of chondrites, suggesting either no Tl isotope fractionation occurred during numerous evaporation events, or the Tl in current BSE was totally delivered by late veneer. If it is the latter, the Tl-content-based estimation could challenge the magnitude of late veneer which had been constrained by the amount of highly siderophile elements in BSE. Our results show that the late-accreted mass is at least five-times larger than the previously suggested magnitude, i.e., 0.5 wt% of current Earth’s mass. The slightly lighter 205Tl composition of BSE relative to chondrites is probable a sign of occurrence of Tl-bearing sulfides, which probably were removed from the mantle in the last accretion stage of the Earth.

  相似文献   

5.
6.
7.
B. G. Els 《Sedimentary Geology》1998,120(1-4):205-224
Studies of the auriferous Witwatersrand placers and associated rocks have revealed that certain palaeo-environments, especially braided fluvial, are particularly well represented in this part of the rock record. However, there is a paucity of lithofacies indicating certain other palaeo-environments. Possible reasons for their scarceness or absence are suggested in this paper. It is generally assumed that pre-vegetational fluvial systems would have been characteristically braided, because of the absence of land plants necessary to stabilise river banks. A question arising is what kind of downstream changes such pre-vegetational braided streams underwent. A recent study of a braided stream placer revealed that the depositing system retained its braided character right down to the palaeo-shoreline. However, gravel did not reach the palaeo-beach. As with many modern examples, beach conglomerates are rare in the Witwatersrand rocks. The paucity of conglomeratic beach placers is ascribed to the low probability of gravel being transported across coastal plains, because of the relatively low slopes or depths of rivers here. The Witwatersrand fluvial channels are generally considered to have had high width-to-depth ratios, because of the absence of land vegetation to stabilise channel banks. However, two examples of deep, relatively narrow scour features, with predominantly fine-grained fills, occur near the base of the Central Rand Group. The low width-to-depth ratios of these scour features, which probably represent palaeo-valleys, are ascribed to severe incision during a rapid sea-level fall. The auriferous fluvial systems of the Witwatersrand are generally considered to have been entirely braided, due to the lack of bank stability. However, the fluvial B placer of the Welkom goldfield is confined to discrete channels. Their banks are thought to have been stable, due to the cohesive nature of the lutite into which the gravelly streams incised. In addition, braiding sensu stricto was probably inhibited by initial incision and a low sediment supply. No deposits of specifically deltaic sub-environments have been found in the Central Rand Group. Their absence is attributed to the following factors: (a) the paucity (absence?) of well-defined palaeo-river mouths; (b) low concentrations of suspended sediment; (c) intermittent sediment supply to the palaeo-coastline; and (d) reworking by tidal and longshore currents. Alluvial-fan deposits are also apparently absent in the Witwatersrand rocks. The absence of fan deposits is attributed to the poor potential for development and preservation of fan deposits in the compressive tectonic setting proposed for the Witwatersrand Basin. Although ventifacts have been found in the Witwatersrand rocks, no aeolianites have been reported. Their apparent absence is probably due to (a) reworking in a predominantly humid climate, and (b) transport of sand by dominant winds to areas unfavourable for the preservation of aeolianites.  相似文献   

8.
Severe climate changes culminating in at least three major glacial events have been recognized in the Neoproterozoic sedimentary record from many parts of the world. Supportive to the global nature of these climatic shifts, a considerable amount of data have been acquired from deposits exposed in Pan-African orogenic belts in southwestern and western Africa. By comparison, published data from the Pan-African belts in Central Africa are scarce. We report here evidence of possibly two glacial events recorded in the Mintom Formation that is located on the margin of the Pan-African orogenic Yaoundé belt in South-East Cameroon.In the absence of reliable radiometric data, only maximum and minimum age limits of 640 and 580 Ma, respectively, can at present be applied to the Mintom Formation. The formation consists of two lithostratigraphic ensembles, each subdivided in two members (i.e., in ascending stratigraphic order the Kol, Métou, Momibolé, and Atog Adjap Members). The basal ensemble exhibits a typical glacial to post-glacial succession. It includes diamictites comprising cobbles and boulders in a massive argillaceous siltstone matrix, and laminated siltstones followed by, in sharp contact, a 2 m-thick massive dolostone that yielded negative δ13C values (<?3‰ V-PDB) similar to those reported for Marinoan cap carbonates elsewhere. However, uncertainty remains regarding the glacial influence on the siliciclastic facies because the diamictite is better explained as a mass-flow deposit, and diagnostic features such as dropstones have not been seen in the overlying siltstones. The Mintom Formation may thus provide an example of an unusual succession of non-glacial diamictite overlain by a truly glacial melt-related cap-carbonate.We also report the recent discovery of ice-striated pavements on the structural surface cut in the Mintom Formation, suggesting that glaciers developed after the latter had been deposited and deformed during the Pan-African orogeny. Striations, which consistently exhibit two principal orientations (N60 and N110), were identified in two different localities, in the west of the study area on siltstones of the Kol Member, and in the east on limestones of the Atog Adjap Member, respectively. N60-oriented striae indicate ice flow towards the WSW. Assigning an age to these features remains problematical because they were not found associated with glaciogenic deposits. Two hypotheses can equally be envisaged, i.e., either the striated surfaces are correlated: (1) to the Gaskiers (or Neoproterozoic post-Gaskiers) glaciation and represent the youngest Ediacaran glacial event documented in the southern Yaoundé belt; or (2) to the Late Ordovician Hirnantian (Saharan) glaciation, thereby providing new data about Hirnantian ice flows in Central Africa.  相似文献   

9.
Studies of accreted oceanic plateau sections provide crucial information on their structures, compositions, and origins. We investigate the petrogenesis of ultramafic–mafic rocks in the Tangjia–Sumdo greenstone belt of southeast Tibet using petrography, whole-rock geochemistry, and U-Pb zircon geochronology. These rocks are divided into four groups based on geochemical characteristics that include depleted and tholeiitic mafic rocks, transitional mafic rocks, enriched and alkaline mafic rocks, and picritic ultramafic rocks. Depleted and tholeiitic mafic rocks have the oldest crystallization ages (~272 Ma), followed by picritic ultramafic rocks (~270 Ma), transitional mafic rocks (267–254 Ma), and enriched and alkaline mafic rocks (252–250 Ma). Hafnium and neodymium isotope ratios of depleted and tholeiitic mafic rocks (εHf(t) = +13.1–+16.9; εNd(t) = +6.9–+7.1), transitional mafic rocks (εHf(t) = +1.8–+16.9; εNd(t) = +0.8–+5.5), enriched and alkaline mafic rocks (εHf(t) = +0.5–+5.4; εNd(t) = ?1.5 to +1.9) and picritic ultramafic rocks (εHf(t) = +14.9–+17.2; εNd(t) = +7.8–+9.0) are similar to those of N-MORB, E-MORB, OIB and depleted-type picritic mafic rocks in other oceanic plateaus, respectively. The geochemical characteristics of the depleted and tholeiitic mafic rocks suggest that they formed by partial melting of depleted spinel lherzolite in a mid-ocean ridge setting, whereas the picritic ultramafic rocks suggest a high degree of partial melting of depleted lherzolite in a hot mantle plume head. The transitional mafic rocks formed by partial melting of moderately enriched garnet lherzolite. The youngest rocks (enriched and alkaline mafic rocks) formed by partial melting of a more enriched garnet lherzolite (compared to transitional mafic rocks) at relatively low temperatures. We propose that the depleted and tholeiitic mafic rocks represent normal oceanic crust of the Sumdo Paleo-Tethys Ocean and the transitional mafic rocks, enriched and alkaline mafic rocks and picritic ultramafic rocks are the fragments of the oceanic plateau, which were related to middle–late Permian mantle plume activity in the Sumdo Paleo-Tethys Ocean. We further suggest that the majority of the Tangjia–Sumdo greenstone belt represents a middle–late Permian oceanic plateau that reflects a previously unrecognized middle–late Permian mantle plume.  相似文献   

10.
Late Vendian (540–550 Ma) U–Pb age was established for zircon from postcollisional granites of the Osinovsky Massif located among island-arc complexes of the Isakovka terrane in the northwestern Sayan–Yenisei accretionary belt. The granites were formed 150 Ma after the formation of the host island-arc complexes and 50–60 Ma after the beginning of their accretion to the Siberian Craton. These events mark the final stage of the Neoproterozoic history of the Yenisei Ridge related to the end of accretion of oceanic fragments and the beginning of the Caledonian Orogeny. The granites are subalkaline leucoractic Na–K rocks enriched in Rb, U, and Th. The petrogeochemical and Sm–Nd isotope data (TNd(DM)-2st = 1490–1650 Ma and εNd(T) from–2.5 to–4.4) indicate that their source was highly differentiated continental crust of the SW margin of the Siberian Craton. Therefore, the host Late Riphean island-arc complexes were thrust over the craton margin for distance significantly exceeding the size of the Osinovsky Massif.  相似文献   

11.
The Thakkhola–Mustang graben is located at the northern side of the Dhaulagiri and Annapurna ranges in North Central Nepal. The structural pattern is mainly characterised by the N020–040° Thakkhola Fault system responsible for the development of the half-graben. A detailed study of the substrate and the sedimentary fill in several outcrops indicates polyphased faulting:-pre-sedimentation faulting (Miocene), with a mainly NNW–SSE to N–S compressional stress expressed in the substratum by N020–040° and N180–N010° sinistral and N130–140° dextral conjugate strike-slip faults;-syn-sedimentation faulting (Pliocene–Pleistocene), characterised by a W–E to WNW–ESE extensional stress and tectonic subsidence of the half-graben during the Tetang period (Pliocene probably), followed by a doming of the Tetang deposits and a short period of erosion (cf. Pliocene planation surface and unconformity between the Tetang and Thakkhola Formations); the Thakkhola period (Pleistocene) is characterized by a W–E to WNW–ESE extensional stress and a major subsidence of the half graben;-post-sedimentation recurrent extensional faulting and N–S and NE–SW normal faults in the late Quaternary terrace formations.Geodynamic interpretation of the faulting is discussed in relation to the following:
  • 1.the geographic situation of the Thakkhola–Mustang half-graben in the southern part of Tibet and its setting in the Tethyan series above the South Tibetan Detachment System (STDS);
  • 2.the geodynamic conditions of the convergence between India and Eurasia and the dextral east–west shearing between the High Himalayas and south Tibet;
  • 3.the possible relations between the sinistral Thakkhola and the dextral Karakorum strike-slip faults in a N–S compressional stress regime during the Miocene.
  相似文献   

12.
In regions with limited knowledge of the historical volcanic record, like remote areas in the Andean Southern Volcanic Zone, the definition of reliable age-depth models for lake sequences represents a valuable tool for tephra layers dating. In Lake Futalaufquen (42.8°S), Northern Patagonia, a short sedimentary sequence was extracted after the AD 2008 Chaitén eruption with the purpose to analyze the records of volcanic eruptions at these poorly studied latitudes. The sequence was dated by 210Pb, 137Cs, and 14C techniques. Five tephras were identified for the last 1600 years, restricted to the last 5 centuries. Sedimentology, morphology, and geochemical properties allowed the characterization of the tephras and their correlation with tephras recently identified proximal to the sources, mainly from Chaitén and Huequi volcanoes, and Michinmahuida accessory cones, representing the first distal records reported of these tephras. Furthermore, tephras modeled ages obtained by the sequence age-depth model shrink the ages for the volcanic events, like a potential cycle of activity from Michinmauida accessory cones during AD 1530 ± 55, one eruption from Huequi volcano at AD 1695 ± 50, and a possible recent eruption from Chaitén at AD 1775 ± 40. Additionally, the work contributes to improve the regional volcanic records knowledge, basic for volcanic hazard assessment.  相似文献   

13.
This paper presents a review of available petrological, geochonological and geochemical data for late Mesozoic to Recent igneous rocks in the South China Sea (SCS) and adjacent regions and a discussion of their petrogeneses and tectonic implications. The integration of these data with available geophysical and other geologic information led to the following tectono-magmatic model for the evolution of the SCS region. The geochemical characteristics of late Mesozoic granitic rocks in the Pearl River Mouth Basin (PRMB), micro-blocks in the SCS, the offshore continental shelf and Dalat zone in southern Vietnam, and the Schwaner Mountains in West Kalimantan, Borneo indicate that these are mainly I-type granites plus a small amount of S-type granites in the PRMB. These granitoids were formed in a continental arc tectonic setting, consistent with the ideas proposed by Holloway (1982) and Taylor and Hayes, 1980, Taylor and Hayes, 1983, that there existed an Andean-type volcanic arc during later Mesozoic era in the SCS region. The geochonological and geochemical characteristics of the volcanics indicate an early period of bimodal volcanism (60–43 Ma or 32 Ma) at the northern margin of the SCS, followed by a period of relatively passive style volcanism during Cenozoic seafloor spreading (37 or 30–16 Ma) within the SCS, and post-spreading volcanism (tholeiitic series at 17–8 Ma, followed by alkali series from 8 Ma to present) in the entire SCS region. The geodynamic setting of the earlier volcanics was an extensional regime, which resulted from the collision between India and Eurasian plates since the earliest Cenozoic, and that of the post-spreading volcanics may be related to mantle plume magmatism in Hainan Island. In addition, the nascent Hainan plume may have played a significant role in the extension along the northern margin and seafloor spreading in the SCS.  相似文献   

14.
Abstract

Two groups of stretching lineations can be distinguished in the Central Alpine " root zone " between Ticino and Mera :

1) Steeply plunging lineations formed during retrograde metamor-Phism under amphibolite/greenschist facies conditions indicate an uplift movement of the Central Alps. The lineations can be related to an important back-thrusting event of late Oligocene/early Miocene age.

2) Gently plunging lineations formed under lower greenschist facies conditions display a pattern typical of a dextral strike-slip system. These lineations are of early Miocene age.

This cpmbined movement, achieved by ductile deformation along the lnsubric line was followed by a stage of brittle deformation in a dextral strike-slip system (= Tonale line).

The signification of this interpretation is shown in a new crustal cross section through the Central Alpine/Southern Alpine border zone in the Iicino area.  相似文献   

15.
Due to the apparent rhythmic characteristics of the stratigraphically complex unit formed of deltaic and mostly lacustrine deposits in Qianjiang depression (Jianghan basin), we used the seismic pattern proxies inside a seismic sequence, by analyzing the character of reflections (amplitude, continuity, and configuration) to detect the different seismic facies and to predict their depositional environmental settings. The depression fills are characterized by a distinct upward change in seismic facies; beginning with a fan facies in the bottom, followed by free facies occurring where thick salt sediments were presented, then convergent base-lapping facies, succeeded by chaotic facies and overlain by parallel to sub-parallel facies. The convergent base-lapping facies is the most common and the parallel and draping facies is restricted to slope areas shallower than 1000 m in water depth. Three depositional environments that range from fluvial, delta, to marine (lake) are predicted too. This paper lays the foundation for the development of a seismic sequence stratigraphic framework, and contributing to better understanding of the potential evaluation of hydrocarbon occurrence in the Eastern center of China.  相似文献   

16.
The latest Carboniferous to lower Permian volcanism of the southern Variscides in Sardinia developed in a regional continental transpressive and subsequent transtensile tectonic regime.Volcanism produced a wide range of intermediate-silicic magmas including medium-to high-K calc-alkaline andesites,dacites,and rhyolites.A thick late Palaeozoic succession is well exposed in the four most representative Sardinian continental basins(Nurra,Perdasdefogu,Escalaplano,and Seui-Seulo),and contains substantial stratigraphic,geochemical,and geochronological evidence of the area's complex geological evolution from the latest Carboniferous to the beginning of the Triassic.Based on major and trace element data and LA-ICP-MS U-Pb zircon dating,it is possible to reconstruct the timing of postVariscan volcanism.This volcanism records active tectonism between the latest Carboniferous and Permian,and post-dates the unroofing and erosion of nappes in this segment of the southern Variscides.In particular,igneous zircon grains from calc-alkaline silicic volcanic rocks yielded ages between299±1 and 288±3 Ma,thereby constraining the development of continental strike-slip faulting from south(Escalaplano Basin)to north(Nurra Basin).Notably,andesites emplaced in medium-grade metamorphic basement(Mt.Cobingius,Ogliastra)show a cluster of older ages at 332±12 Ma.Despite the large uncertainty,this age constrains the onset of igneous activity in the mid-crust.These new radiometric ages constitute:(1)a consistent dataset for different volcanic events;(2)a precise chronostratigraphic constraint which fits well with the biostratigraphic data and(3)insights into the plate reorganization between Laurussia and Gondwana during the late Palaeozoic evolution of the Variscan chain.  相似文献   

17.
《Quaternary Research》2014,81(3):464-475
It is highly debated whether glacial advances on the Qinghai–Tibetan Plateau (QTP) occurred as a response to temperature cooling, or whether they were forced by an increase in moisture brought by the intensive Indian summer monsoon. We here report a case study investigating this issue. Multiple moraine series in the Yingpu Valley, Queer Shan ranges of the Hengduan Mountains, and eastern QTP, provide an excellent archive for examining the timing and trigger mechanism of glacier fluctuations. Twenty-seven optically stimulated luminescence (OSL) samples of glacial sediments were collected from this valley. The quartz OSL ages show that the moraine series of Y-1, I, M and O were formed during the Late Holocene, Late Glacial, the global Last Glacial Maximum (LGM) and Marine Oxygen Isotope Stage (MIS) 3 (likely mid-MIS-3). The youngest Y-2 moraines probably formed during the Little Ice Age (LIA). The oldest H moraines formed before MIS-3. We found that glacial advances during the late Quaternary at the Yingpu Valley responded to cold stages or cold events rather than episodes of enhanced summer monsoon and moisture. As a result, glaciers in the monsoonal Hengduan Mountains were mainly triggered by changes in temperature. Millennial time scale temperature oscillations might have caused the multiple glacial advances.  相似文献   

18.
19.
It is shown that the Crimea, Caucasus, and Kopet Dagh fold systems make up a single whole unified by a lithospheric strike-slip fault zone of concentrated dislocations. The strike-slip fault that dissects the sedimentary cover and consolidated crust is rooted in subcrustal layers of the mantle. The notions about strike-slip dislocations in the structure of the Crimea–Kopet Dagh System are considered. Comparative analysis of structure, age, and amplitude of strike-slip fault segments is carried out. The effect of strike-slip faulting on the deep-seated and near-surface structure of the Earth’s crust is considered. Based on estimation of strike-slip offsets, the paleogeography of Paleogene basins is refined; their initial contours, which have been disturbed and fragmented by slipping motion strike-slip displacement, have been reconstructed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号