首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用再分析数据,以在北半球冬季与北大西洋涛动(North Atlantic Oscillation,NAO)相关的向下游传播的准定常波列在欧洲地区是否发生反射为标准,将1957/1958年至2001/2002年这45个冬季分为高纬型和低纬型两类冬季,分别简称为在H型和L型冬季。在H(L)型冬季,和NAO相联系的向下游传播的Rossby波列主要沿高纬度(低纬度)路径传播。对比了在两种类型冬季NAO与同期大气环流、近地面温度(Surface Air Temperature,SAT)、海表面温度(Sea Surface Tempertaure,SST)和降水的关系。结果表明:大气环流方面,在H型冬季,300 hPa位势高度异常在西-西伯利亚和中-西伯利亚西部与NAO呈现正相关,而在L型冬季300 hPa位势高度异常在亚洲东海岸(约40°N)和北太平洋呈现正相关,在H型冬季与NAO相关的经向风异常在中纬度形成波列,而在L型冬季与NAO相关的经向风异常在副热带形成波列;SAT方面,在H型冬季SAT异常在欧亚大陆腹地高纬度地区与NAO呈现正相关,而在L型冬季与NAO相关的SAT异常在欧亚大陆腹地的高纬度地区相对较弱,但NAO造成的SAT异常可以扩展到亚洲东北部;降水方面,H型冬季与L型冬季主要区别在中国南方,在H型冬季降水异常与NAO的关系相对较弱,而在L型冬季降水异常与NAO呈现正相关关系;SST方面,同期SST异常在北大西洋中纬度海域与NAO呈现正相关,而在L型冬季与NAO相关的SST异常在北大西洋中纬度地区相对较弱,在北大西洋北部和南部较强。总体而言,在H型和L型冬季,NAO具有不同下游影响。  相似文献   

2.
Marine Isotope Stage (MIS) 13, an interglacial about 500,000?years ago, is unique due to an exceptionally strong East Asia summer monsoon (EASM) occurring in a relatively cool climate with low greenhouse gas concentrations (GHG). This paper attempts to find one of the possible mechanisms for this seeming paradox. Simulations with an Earth System model LOVECLIM show that the presence of ice sheets over North America and Eurasia during MIS-13 induces a positive phase of the winter North Atlantic Oscillation (NAO) like feature. The ocean having a longer memory than the atmosphere, the oceanic anomalies associated with NAO persists until summer. The signals of summer NAO are transmitted to East Asia to reinforce the monsoon there through the stationary waves excited at the Asian Jet entrance. The geopotential height shows clearly a mid-latitude wave train with positive anomalies over the eastern Mediterranean/Caspian Sea and the Okhotsk Sea and a negative anomaly over Lake Baikal. This reinforces the effect of the high-latitude wave train induced independently by the Eurasian ice sheet topography as shown in previous study. These features reinforce the Meiyu front and enhance the precipitation over East Asia. The results obtained from LOVECLIM are further confirmed by an atmospheric general circulation model, ARPEGE.  相似文献   

3.
春季北大西洋三极型海温异常变化及其与NAO和ENSO的联系   总被引:1,自引:0,他引:1  
利用1951—2016年HadISST逐月海表温度(Sea Surface Temperature,SST)资料,NCEP/NCAR再分析资料以及1958—2016年美国伍兹霍尔海洋研究所(Woods Hole Oceanographic Institution,WHOI)提供的OAFlux数据集,运用经验正交函数分解(Empirical Orthogonal Function,EOF)和偏相关分析等统计方法,研究了春季北大西洋海温异常的主要特征及其与春季NAO和前期冬季ENSO联系。结果表明:春季北大西洋海温异常EOF的第一模态是自北而南出现的三极结构的海温距平型,其方差贡献率为35.7%。春季北大西洋三极型海温异常的形成主要受到春季NAO主导作用,还受到前期冬季热带中东太平洋海温异常的影响。消除前期冬季Niňo3.4的影响后,春季北大西洋三极型海温异常指数与同期北大西洋涛动(North Atlantic Oscillation,NAO)指数的偏相关系数分别为0.50,通过了99%置信度水平的显著性检验。消除春季NAO的影响后,春季北大西洋三极型海温异常指数与前期冬季Niňo3.4指数的偏相关系数为-0.26,通过了95%信度水平的显著性检验。春季NAO正(负)位相引起的海表风场和海表湍流热通量的异常,进而激发出正(负)位相的北大西洋三极型海温异常。前期冬季ENSO事件可以引起春季大气环流异常和热带外海温异常,进而调制春季NAO对北大西洋三极型海温异常的影响。  相似文献   

4.
The role of winter sea-ice in the Labrador Sea as a precursor for precipitation anomalies over southeastern North America and Western Europe in the following spring is investigated. In general terms, as the sea ice increases, the precipitation also increases. In more detail, however, analyses indicate that both the winter sea-ice and the sea surface temperature(SST)anomalies related to increases in winter sea-ice in the Labrador Sea can persist into the following spring. These features play a forcing role in the spring atmosphere, which may be the physical mechanism behind the observational relationship between the winter sea-ice and spring precipitation anomalies. The oceanic forcings in spring include Arctic sea-ice anomalies and SST anomalies in the tropical Pacific and high-latitude North Atlantic. Multi-model Coupled Model Intercomparison Project Phase 5 and Atmospheric Model Intercomparison Project simulation results show that the atmospheric circulation response to the combination of sea-ice and SST is similar to that observed, which suggests that the oceanic forcings are indeed the physical reason for the enhanced spring precipitation. Sensitivity experiments conducted using an atmospheric general circulation model indicate that the increases in precipitation over southeastern North America are mainly attributable to the effect of the SST anomalies, while the increases over Western Europe are mainly due to the sea-ice anomalies. Although model simulations reveal that the SST anomalies play the primary role in the precipitation anomalies over southeastern North America, the observational statistical analyses indicate that the area of sea-ice in the Labrador Sea seems to be the precursor that best predicts the spring precipitation anomaly.  相似文献   

5.
An OGCM hindcast is used to investigate the linkages between North Atlantic Ocean salinity and circulation changes during 1963–2003. The focus is on the eastern subpolar region consisting of the Irminger Sea and the eastern North Atlantic where a careful assessment shows that the simulated interannual to decadal salinity changes in the upper 1,500 m reproduce well those derived from the available record of hydrographic measurements. In the model, the variability of the Atlantic meridional overturning circulation (MOC) is primarily driven by changes in deep water formation taking place in the Irminger Sea and, to a lesser extent, the Labrador Sea. Both are strongly influenced by the North Atlantic Oscillation (NAO). The modeled interannual to decadal salinity changes in the subpolar basins are mostly controlled by circulation-driven anomalies of freshwater flux convergence, although surface salinity restoring to climatology and other boundary fluxes each account for approximately 25% of the variance. The NAO plays an important role: a positive NAO phase is associated with increased precipitation, reduced northward salt transport by the wind-driven intergyre gyre, and increased southward flows of freshwater across the Greenland–Scotland ridge. Since the NAO largely controlled deep convection in the subpolar gyre, fresher waters are found near the sinking region during convective events. This markedly differs from the active influence on the MOC that salinity exerts at decadal and longer timescales in most coupled models. The intensification of the MOC that follows a positive NAO phase by about 2 years does not lead to an increase in the northward salt transport into the subpolar domain at low frequencies because it is cancelled by the concomitant intensification of the subpolar gyre which shifts the subpolar front eastward and reduces the northward salt transport by the North Atlantic Current waters. This differs again from most coupled models, where the gyre intensification precedes that of the MOC by several years.  相似文献   

6.
The relationship between winter sea ice variability and the North Atlantic Oscillation (NAO) is examined for the time period 1860–2300. This study uses model output to extend recently reported observational results to multi-century time scales. Nine ensemble members are used in two Global Climate Models with forcing evolving from pre-industrial conditions through the so-called A1B scenario in which carbon dioxide stabilizes at 720 ppm by 2100. Throughout, the NAO generates an east-west dipole pattern of sea ice concentration (SIC) anomalies with oppositely signed centers of action over the Labrador and Barents Seas. During the positive polarity of the NAO, SIC increases over the Labrador Sea due to wind-driven equatorward advection of ice, and SIC decreases over the Barents Sea due to wind-driven poleward transport of heat within the mixed layer of the ocean. Although this NAO-driven SIC variability pattern can always be detected, it accounts for a markedly varying fraction of the total sea ice variability depending on the strength of the forced sea ice extent trend. For the first half of the 20th century or 1990 control conditions, the NAO-driven SIC pattern accounts for almost a third of the total SIC variance. In the context of the long term winter sea ice retreat from 1860 to 2300, the NAO-driven SIC pattern is robustly observable, but accounts for only 2% of the total SIC variance. The NAO-driven SIC dipole retreats poleward with the retreating marginal ice zone, and its Barents Sea center of action weakens. Results presented here underscore the idea that the NAO’s influence on Arctic climate is robustly observable, but time dependent in its form and statistical importance.  相似文献   

7.
The relationship between the late spring North Atlantic Oscillation (NAO) and the summer extreme precipitation frequency (EPF) in the middle and lower reaches of the Yangtze River Valley (MLYRV) is examined using an NECP/NCAR reanalysis dataset and daily precipitation data from 74 stations in the MLYRV. The results show a significant negative correlation between the May NAO index and the EPF over the MLYRV in the subsequent summer. In positive EPF index years, the East Asian westerly jet shifts farther southward, and two blocking high positive anomalies appear over the Sea of Okhotsk and the Ural Mountains. These anomalies are favorable to the cold air from the mid-high latitudes invading the Yangtze River Valley (YRV). The moisture convergence and the ascending motion dominate the MLYRV. The above patterns are reversed in negative EPF index years. A wave train pattern that originates from the North Atlantic extends eastward to the Mediterranean and then moves to the Tibetan Plateau and from there to the YRV, which is an important link in the May NAO and the summer extreme precipitation in the MLYRV. The wave train may be aroused by the tripole pattern of the SST, which can explain why the May NAO affects the summer EPF in the MLYRV.  相似文献   

8.
Abstract

The spatial and temporal relationships between subarctic Canadian sea‐ice cover and atmospheric forcing are investigated by analysing sea‐ice concentration, sea‐level pressure and surface air temperature data from 1953 to 1988. The sea‐ice anomalies in Hudson Bay, Baffin Bay and the Labrador Sea are found to be related to the North Atlantic Oscillation (NAO) and the Southern Oscillation (SO). Through a spatial Student's i‐test and a Monte Carlo simulation, it is found that sea‐ice cover in both Hudson Bay and the Baffin Bay‐Labrador Sea region responds to a Low/Wet episode of the SO (defined as the period when the SO index becomes negative) mainly in summer. In this case, the sea‐ice cover has a large positive anomaly that starts in summer and continues through to autumn. The ice anomaly is attributed to the negative anomalies in the regional surface air temperature record during the summer and autumn when the Low/Wet episode is developing. During strong winter westerly wind events of the NAO, the Baffin Bay‐Labrador Sea ice cover in winter and spring has a positive anomaly due to the associated negative anomaly in surface air temperature. During the years in which strong westerly NAO and Low/Wet SO events occur simultaneously (as in 1972/73 and 1982/83), the sea ice is found to have large positive anomalies in the study region; in particular, such anomalies occurred for a major portion of one of the two years. A spectral analysis shows that sea‐ice fluctuations in the Baffin Bay‐Labrador Sea region respond to the SO and surface air temperature at about 1.7‐, 5‐ and 10‐year periods. In addition, a noticeable sea‐ice change was found (i.e. more polynyas occurred) around the time of the so‐called “climate jump” during the early 1960s. Data on ice thickness and on ice‐melt dates from Hudson Bay are also used to verify some of the above findings.  相似文献   

9.
An ocean analysis, assimilating both surface and subsurface hydrographic temperature data into a global ocean model, has been produced for the period 1958–2000, and used to study the time and space variations of North Atlantic upper ocean heat content (HC). Observational evidence is presented for interannual-to-decadal variability of upper ocean thermal fluctuations in the North Atlantic related to the North Atlantic Oscillation (NAO) variability over the last 40 years. The assimilation scheme used in the ocean analysis is a univariate, variational optimum interpolation of temperature. The first guess is produced by an eddy permitting global ocean general circulation forced by atmospheric reanalysis from the National Center for Environmental Prediction (NCEP). The validation of the ocean analysis has been done through the comparison with objectively analyzed observations and independent data sets. The method is able to compensate for the model systematic error to reproduce a realistic vertical thermal structure of the region and to improve consistently the model estimation of the time variability of the upper ocean temperature. Empirical orthogonal function (EOF) analysis shows that an important mode of variability of the wintertime upper ocean climate over the North Atlantic during the period of study is characterized by a tripole pattern both for SST and upper ocean HC. A similar mode is found for summer HC anomalies but not for summer SST. Over the whole period, HC variations in the subtropics show a general warming trend while the tropical and north eastern part of the basin have an opposite cooling tendency. Superimposed on this linear trend, the HC variability explained by the first EOF both in winter and summer conditions reveals quasi-decadal oscillations correlated with changes in the NAO index. On the other hand, there is no evidence of correlation in time between the NAO index and the upper ocean HC averaged over the whole North Atlantic which exhibits a substantial and monotonic warming trend during the last two decades of the analysis period. The maximum correlation is found between the leading principal component of winter HC anomalies and NAO index at 1 year lag with NAO leading. For SST anomalies significant correlation is found only for winter conditions. In contrast, for HC anomalies high correlations are found also in the summer suggesting that the summer HC keeps a memory of winter conditions.  相似文献   

10.
Conventional average values of Wallace-Gutzler indices for the regional circulations and average values of major variability components of the fields of the North Atlantic surface temperature anomalies are plotted on the geographical map used to analyze the total daily precipitation fields. The computation conditions of average values are defined by the dates classified according to three equiprobable gradations of total precipitation. A projection of conditional average values to the precipitation field points enables to estimate the atmospheric and oceanic “tracks” within the marked out gradations of total precipitation. The stratification and computation of characteristics are carried out for the summer and winter seasons. Large regions are revealed of statistically significant interrelation of the atmospheric circulation and major components of variability of the sea surface temperature anomalies with the extreme gradations of total precipitation for summer and winter seasons. The recommendations are formulated for the use of obtained results in the practice of the seasonal forecasting of meteorological conditions.  相似文献   

11.
北极海冰变化的时间和空间型   总被引:14,自引:0,他引:14  
汪代维  杨修群 《气象学报》2002,60(2):129-138
利用 4 4a(195 1~ 1994年 )北极海冰密度逐月资料 ,分析提出了一种与北极冰自然季节变化相吻合的分季法 ,并根据这种分季法 ,使用EOF分解 ,揭示了北极各季海冰面积异常的特征空间型及其对应的时间变化尺度。结果表明 :(1)北极冰面积异常变化的关键区 ,冬季 (2~ 4月 )主要位于北大西洋一侧的格陵兰海、巴伦支海和戴维斯海峡以及北太平洋一侧的鄂霍次克海和白令海 ,夏季 (8~ 10月 )则主要限于从喀拉海、东西伯利亚海、楚科奇海到波佛特海的纬向带状区域内 ,格陵兰海和巴伦支海是北极海冰面积异常变化的最重要区域 ;(2 )春 (5~ 7月 )、秋 (11月~次年 1月 )季各主要海区海冰面积异常基本呈同相变化 ,夏季东西伯利亚海、楚科奇海、波佛特海一带海冰面积异常和喀拉海呈反相变化 ,而冬季巴伦支海、格陵兰海海冰面积异常和戴维斯海峡、拉布拉多海、白令海、鄂霍次克海的海冰变化呈反相变化 ;(3)北极冰总面积过去 4 4a来确实经历了一种趋势性的减少 ,并且叠加在这种趋势变化之上的是年代尺度变化 ,其中春季 (5~ 7月 )海冰面积异常变化对年平均北极冰总面积异常变化作出了主要贡献 ;(4)位于北太平洋一侧极冰面积异常型基本具有半年的持续性 ,而位于北大西洋一侧极冰面积异常型具有半年至一年的持续性  相似文献   

12.
This paper explores the role of synoptic eddy feedback in the air-sea interaction in the North Atlantic region, particularly the interaction between the North Atlantic Oscillation (NAO) and the North Atlantic sea surface temperature anomalies (SSTA) tripole. A linearized five-layer primitive equation atmospheric model with synoptic eddy and low-frequency flow (SELF) interaction is coupled with a linearized oceanic mixed-layer model to investigate this issue. In this model, the “climatological” storm track/activity (or synoptic eddy activity) is characterized in terms of spatial structures, variances, decay time scales and propagation speeds through the complex empirical orthogonal function (CEOF) analysis on the observed data, which provides a unique tool to investigate the role of synoptic eddy feedback in the North Atlantic air–sea coupling. Model experiments show that the NAO-like atmospheric circulation anomalies can produce tripole-like SSTA in the North Atlantic Ocean, and the tripole-like SSTA can excite a NAO-like dipole with an equivalent barotropic structure in the atmospheric circulation, which suggests a positive feedback between the NAO and the SSTA tripole. This positive feedback makes the NAO/SSTA tripole-like mode be the leading mode of the coupled dynamical system. The synoptic eddy feedback plays an essential role in the origin of the NAO/SSTA tripole-like leading mode and the equivalent barotropic structure in the atmosphere. Without synoptic eddy feedback, the atmosphere has a baroclinic structure in the response field to the tripole-like SSTA forcing, and the leading mode of the dynamic system does not resemble NAO/SSTA tripole pattern.  相似文献   

13.
The significance of the Atlantic meridional overturning circulation (MOC) for regional and hemispheric climate change requires a complete understanding using fully coupled climate models. Here we present a persistent, decadal oscillation in a coupled atmosphere–ocean general circulation model. While the present study is limited by the lack of comparisons with paleo-proxy records, the purpose is to reveal a new theoretically interesting solution found in the fully-coupled climate model. The model exhibits two multi-century-long stable states with one dominated by decadal MOC oscillations. The oscillations involve an interaction between anomalous advective transport of salt and surface density in the North Atlantic subpolar gyre. Their time scale is fundamentally determined by the advection. In addition, there is a link between the MOC oscillations and North Atlantic Oscillation (NAO)-like sea level pressure anomalies. The analysis suggests an interaction between the NAO and an anomalous subpolar gyre circulation in which sea ice near and south of the Labrador Sea plays an important role in generating a large local thermal anomaly and a meridional temperature gradient. The latter induces a positive feedback via synoptic eddy activity in the atmosphere. In addition, the oscillation only appears when the Nordic Sea is completely covered by sea ice in winter, and deep convection is active only near the Irminger Sea. Such conditions are provided by a substantially colder North Atlantic climate than today.  相似文献   

14.
The anomalous climatic variability of the Western Mediterranean in summer, its relationships with the large scale climatic teleconnection modes and its feedbacks from some of these modes are the targets of this study. The most important trait of this variability is the recurrence of warm and cold episodes, that take place at 2–4 year intervals, and which are monitored in the Western Mediterranean Index. We find that the Western Mediterranean events are part of a basin scale mode, and are related to the previous spring atmospheric anomalies. These anomalies are related mainly to the Pacific North America teleconnection pattern and the North Atlantic Oscillation, but also to a number of other climatic modes, connected with the previous two, as the Southern Oscillation, the Indian Core Monsoon and the Scandinavian teleconnection pattern. We identify the main spatial and temporal traits of the Western Mediterranean summer variability, the physical mechanisms at play in the generation of the events and their impacts. Considering the Atlantic Ocean, the Mediterranean events influence the sea surface temperature in the southeastern part of the North Atlantic Gyre. Additionally, they are significantly related to summer precipitation anomalies of the opposite sign in the Baltic basin (Central Germany and Poland) and near the Black Sea. We then estimate the mutual influence that the anomalous previous state of the Western Mediterranean, of the Pacific North America teleconnection pattern and of the North Atlantic Oscillation have on their summer conditions using a simple stochastic model. As the summer Western Mediterranean events have an influence on a part of the Baltic basin, we propose a second stochastic model in order to investigate if thereafter the Baltic basin variability will feedback on the Western Mediterranean sea surface temperature anomalies. Among the variables included in the second model are, in addition to the Western Mediterranean previous state, that of the Baltic Sea and of the Scandinavian teleconnection pattern. From each of the feedback matrices, a linear statistical analysis extracts spatial patterns whose evolution in time exhibits predictive capabilities for the Western Mediterranean evolution in summer and autumn that are above those of persistence, and that could be improved.  相似文献   

15.
The Atlantic meridional overturning circulation (AMOC) in the last 250?years of the 700-year-long present-day control integration of the Community Climate System Model version 3 with T85 atmospheric resolution exhibits a red noise-like irregular multi-decadal variability with a persistence longer than 10?years, which markedly contrasts with the preceding ~300 years of very regular and stronger AMOC variability with ~20?year periodicity. The red noise-like multi-decadal AMOC variability is primarily forced by the surface fluxes associated with stochastic changes in the North Atlantic Oscillation (NAO) that intensify and shift northward the deep convection in the Labrador Sea. However, the persistence of the AMOC and the associated oceanic anomalies that are directly forced by the NAO forcing does not exceed about 5?years. The additional persistence originates from anomalous horizontal advection and vertical mixing, which generate density anomalies on the continental shelf along the eastern boundary of the subpolar gyre. These anomalies are subsequently advected by the mean boundary current into the northern part of the Labrador Sea convection region, reinforcing the density changes directly forced by the NAO. As no evidence was found of a clear two-way coupling with the atmosphere, the multi-decadal AMOC variability in the last 250?years of the integration is an ocean-only response to stochastic NAO forcing with a delayed positive feedback caused by the changes in the horizontal ocean circulation.  相似文献   

16.
Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land–sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.  相似文献   

17.
This paper examines an asymmetric spatiotemporal connection and climatic impact between the winter atmospheric blocking activity in the Euro-Atlantic sector and the life cycle of the North Atlantic Oscillation(NAO) during the period 1950–2012. Results show that, for positive NAO(NAO+) events, the instantaneous blocking(IB) frequency exhibits an enhancement along the southwest–northeast(SW–NE) direction from the eastern Atlantic to northeastern Europe(SW–NE pattern, hereafter), which is particularly evident during the NAO+decaying stage. By contrast, for negative NAO(NAO-)events, the IB frequency exhibits a spatially asymmetric southeast–northwest(SE–NW) distribution from central Europe to the North Atlantic and Greenland(SE–NW pattern, hereafter). Moreover, for NAO-(NAO+) events, the most marked decrease(increase) in the surface air temperature(SAT) in winter over northern Europe is in the decaying stage. For NAO+events, the dominant positive temperature and precipitation anomalies exhibit the SW–NE-oriented distribution from western to northeastern Europe, which is parallel to the NAO+-related blocking frequency distribution. For NAO-events, the dominant negative temperature anomaly is in northern and central Europe, whereas the dominant positive precipitation anomaly is distributed over southern Europe along the SW–NE direction. In addition, the downward infrared radiation controlled by the NAO's circulation plays a crucial role in the SAT anomaly distribution. It is further shown that the NAO's phase can act as an asymmetric impact on the European climate through producing this asymmetric spatiotemporal connection with the Euro-Atlantic IB frequency.  相似文献   

18.
A wide range of statistical tools is used to investigate the decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) and associated key variables in a climate model (CHIME, Coupled Hadley-Isopycnic Model Experiment), which features a novel ocean component. CHIME is as similar as possible to the 3rd Hadley Centre Coupled Model (HadCM3) with the important exception that its ocean component is based on a hybrid vertical coordinate. Power spectral analysis reveals enhanced AMOC variability for periods in the range 15–30 years. Strong AMOC conditions are associated with: (1) a Sea Surface Temperature (SST) anomaly pattern reminiscent of the Atlantic Multi-decadal Oscillation (AMO) response, but associated with variations in a northern tropical-subtropical gradient; (2) a Surface Air Temperature anomaly pattern closely linked to SST; (3) a positive North Atlantic Oscillation (NAO)-like pattern; (4) a northward shift of the Intertropical Convergence Zone. The primary mode of AMOC variability is associated with decadal changes in the Labrador Sea and the Greenland Iceland Norwegian (GIN) Seas, in both cases linked to the tropical activity about 15 years earlier. These decadal changes are controlled by the low-frequency NAO that may be associated with a rapid atmospheric teleconnection from the tropics to the extratropics. Poleward advection of salinity anomalies in the mixed layer also leads to AMOC changes that are linked to processes in the Labrador Sea. A secondary mode of AMOC variability is associated with interannual changes in the Labrador and GIN Seas, through the impact of the NAO on local surface density.  相似文献   

19.
Summary ?The variability of the winter mean precipitation observed at 40 rainfall stations in Emilia-Romagna (a region in northern Italy) from 1960 to 1995 is examined. The results are compared with those obtained for the whole of Italy using records from 32 stations. Temporal variability of the time series is investigated by means of Mann-Kendall and Pettitt tests, in order to estimate the presence of trends and “change points”. Before analysis the original precipitation data set have been tested to detect the inhomogeneity points, using the Standard Normal Homogeneity Test (SNHT). Almost all stations situated in Emilia Romagna exhibit a significant decreasing trend in winter precipitation during the 1960–1995 period. The same characteristics are revealed, more significant in the northern and central part of the region, when the stations for all Italy are analysed. A significant downward shift in the winter precipitation is detected through the Pettitt test in Emilia Romagna, around 1980 at some stations, while the rest of the stations reveal the shift point occurrence around 1985. A significant downward shift in the winter precipitation is detected around 1985, when analysing the time series for all Italy. Spatial variability of winter precipitation is studied using the Empirical Orthogonal Function. The first pattern indicates that a common large-scale process could be responsible for the winter precipitation variability. The second EOF pattern shows an opposite sign of climate variability, which highlights the influence of relief on the precipitation regime. The time series associated with the first precipitation pattern (PC1) at both scales emphasises a significant decreasing trend and a downward shift point around 1985. The internal structure analysis of the North Atlantic Oscillation (NAO) index during the 1960–1995 period reveals a significant increasing trend and an upward shift around 1980. Strong correlation is also detected between PC1 (Emilia Romagna and at the scale of all Italy) and the NAO index. Thus, the changes detected in the winter precipitation around 1985 could be due to an intensification of the positive phase of the [NAO], especially after 1980. Received March 23, 2001; revised February 20, 2002; accepted March 3, 2002  相似文献   

20.
A maximum of easterly zonal wind at 925 hPa in the Caribbean region is called the Caribbean Low-Level Jet (CLLJ). Observations show that the easterly CLLJ varies semi-annually, with two maxima in the summer and winter and two minima in the fall and spring. Associated with the summertime strong CLLJ are a maximum of sea level pressure (SLP), a relative minimum of rainfall (the mid-summer drought), and a minimum of tropical cyclogenesis in July in the Caribbean Sea. It is found that both the meridional gradients of sea surface temperature (SST) and SLP show a semi-annual feature, consistent with the semi-annual variation of the CLLJ. The CLLJ anomalies vary with the Caribbean SLP anomalies that are connected to the variation of the North Atlantic Subtropical High (NASH). In association with the cold (warm) Caribbean SST anomalies, the atmosphere shows the high (low) SLP anomalies near the Caribbean region that are consistent with the anomalously strong (weak) easterly CLLJ. The CLLJ is also remotely related to the SST anomalies in the Pacific and Atlantic, reflecting that these SST variations affect the NASH. During the winter, warm (cold) SST anomalies in the tropical Pacific correspond to a weak (strong) easterly CLLJ. However, this relationship is reversed during the summer. This is because the effects of ENSO on the NASH are opposite during the winter and summer. The CLLJ varies in phase with the North Atlantic Oscillation (NAO) since a strong (weak) NASH is associated with a strengthening (weakening) of both the CLLJ and the NAO. The CLLJ is positively correlated with the 925-hPa meridional wind anomalies from the ocean to the United States via the Gulf of Mexico. Thus, the CLLJ and the meridional wind carry moisture from the ocean to the central United States, usually resulting in an opposite (or dipole) rainfall pattern in the tropical North Atlantic Ocean and Atlantic warm pool versus the central United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号