首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
辽东的主要剪切带及其金矿化特征   总被引:6,自引:7,他引:6       下载免费PDF全文
辽东地区构造上位于辽中—吉南元古宙活动带西南部,为胶辽克拉通金矿床分布比较集中的地区。金矿化作用发生于古元古宙变质沉积岩和花岗片麻岩的韧性及脆-韧性剪切带之中,剪切活动与成金事件具同时性关系。矿化剪切带分为3大系统,其中近东—西向和北东—南西向两大系统发育于辽河群分布区,其受控于岩石非均匀性,分别借助于早(吕梁)期S1(≈S0)和S2或D3剪切带而形成,剪切活动(构造事件)与成金事件主要发生于印支运动;丹东韧性剪切带及其相关构造为本区最重要的含矿系统,矿床均顺主构造线分布,并规律性地受控于其次级构造,剪切带的形成和成金事件均在燕山运动时期。本区提供了一个特殊的克拉通成矿作用格局:容矿岩石时代老,成金事件时代新。  相似文献   

2.
The Taparko gold deposit, located in the eastern branch of the Proterozoic Birimian Bouroum-Yalogo greenstone belt (Burkina Faso) consists of a network of quartz veins developed in a N 170° trending shear zone (250 m wide, 4 km long) superimposed on the regional Birimian structural pattern. The quartz vein network is composed of: (a) a dominant array of quartz veins (type 1), parallel to the shear zone and comprising strongly deformed dark quartz exhibiting foliation, layering, ribbon, tension gashes, etc.; (b) oblique and subparallel related veins (type 2) of gray to white weakly deformed quartz crosscutting the dominant quartz veins resulting in breccia structures; and (c) shallow dipping veins (type 3), cross-cutting veins types 1 and 2 and filled by undeformed white buck structure quartz. Cross-cutting relationships and different quartz types in different veins and within individual veins imply a concomitant filling of the veins during the progressive deformation. Initial sinistral transcurrent shearing evolved with time to sinistral reverse shearing. Metallic minerals occur only in type 1 and 2 veins and were deposited in two stages, with native gold being related to second stage sulfides. Gold (and chalcopyrite) precipitated preferentially upon the surfaces of fractured pyrite grains in low-pressure sites (pressure shadow zones) around and/or within the sulfide grains (along subsequently annealed fractures). The formation of the South Taparko deposit can be divided into a succession of events: (a) during the first event, N 170°-directed sinistral transcurrent shearing resulted in a N 20° mylonitic foliation and fractured rock which allowed H2O-, CO2- and SiO2-rich fluids to circulate and deposit quartz with buck texture; (b) during the second event, type 1 quartz was strongly deformed and type 2 veins formed with sigmoidal shapes as viewed on a horizontal plane; and (c) during the third event, the sinistral transcurrent shearing evolved to sinistral reverse shearing and the deformation style evolved correspondingly from ductile to brittle-ductile. During the last phase of deformation gold nucleated and deposited in low-pressure zones. Received: 9 July 1997 / Accepted: 23 March 1998  相似文献   

3.
《Ore Geology Reviews》2009,35(4):580-596
The Semna gold deposit is one of several vein-type gold occurrences in the central Eastern Desert of Egypt, where gold-bearing quartz veins are confined to shear zones close to the boundaries of small granitoid stocks. The Semna gold deposit is related to a series of sub-parallel quartz veins along steeply dipping WNW-trending shear zones, which cut through tectonized metagabbro and granodiorite rocks. The orebodies exhibit a complex structure of massive and brecciated quartz consistent with a change of the paleostress field from tensional to simple shear regimes along the pre-existing fault segments. Textural, structural and mineralogical evidence, including open space structures, quartz stockwork and alteration assemblages, constrain on vein development during an active fault system. The ore mineral assemblage includes pyrite, chalcopyrite, subordinate arsenopyrite, galena, sphalerite and gold. Hydrothermal chlorite, carbonate, pyrite, chalcopyrite and kaolinite are dominant in the altered metaggabro; whereas, quartz, sericite, pyrite, kaolinite and alunite characterize the granodiorite rocks in the alteration zones. Mixtures of alunite, vuggy silica and disseminated sulfides occupy the interstitial open spaces, common at fracture intersections. Partial recrystallization has rendered the brecciation and open space textures suggesting that the auriferous quartz veins were formed at moderately shallow depths in the transition zone between mesothermal and epithermal veins.Petrographic and microthermometric studies aided recognition of CO2-rich, H2O-rich and mixed H2O–CO2 fluid inclusions in the gold-bearing quartz veins. The H2O–CO2 inclusions are dominant over the other two types and are characterized by variable vapor: liquid ratios. These inclusions are interpreted as products of partial mixing of two immiscible carbonic and aqueous fluids. The generally light δ34S of pyrite and chalcopyrite may suggest a magmatic source of sulfur. Spread in the final homogenization temperatures and bulk inclusion densities are likely due to trapping under pressure fluctuation through repeated fracture opening and sealing. Conditions of gold deposition are estimated on basis of the fluid inclusions and sulfur isotope data as 226–267 °C and 350–1100 bar, under conditions transitional between mesothermal and epithermal systems.The Semna gold deposit can be attributed to interplay of protracted volcanic activity (Dokhan Volcanics?), fluid mixing, wallrock sulfidation and a structural setting favoring gold deposition. Gold was transported as Au-bisulfide complexes under weak acid conditions concomitant with quartz–sericite–pyrite alteration, and precipitated through a decrease in gold solubility due to fluid cooling, mixing with meteoric waters and variations in pH and fO2.  相似文献   

4.
The Semna gold deposit is one of several vein-type gold occurrences in the central Eastern Desert of Egypt, where gold-bearing quartz veins are confined to shear zones close to the boundaries of small granitoid stocks. The Semna gold deposit is related to a series of sub-parallel quartz veins along steeply dipping WNW-trending shear zones, which cut through tectonized metagabbro and granodiorite rocks. The orebodies exhibit a complex structure of massive and brecciated quartz consistent with a change of the paleostress field from tensional to simple shear regimes along the pre-existing fault segments. Textural, structural and mineralogical evidence, including open space structures, quartz stockwork and alteration assemblages, constrain on vein development during an active fault system. The ore mineral assemblage includes pyrite, chalcopyrite, subordinate arsenopyrite, galena, sphalerite and gold. Hydrothermal chlorite, carbonate, pyrite, chalcopyrite and kaolinite are dominant in the altered metaggabro; whereas, quartz, sericite, pyrite, kaolinite and alunite characterize the granodiorite rocks in the alteration zones. Mixtures of alunite, vuggy silica and disseminated sulfides occupy the interstitial open spaces, common at fracture intersections. Partial recrystallization has rendered the brecciation and open space textures suggesting that the auriferous quartz veins were formed at moderately shallow depths in the transition zone between mesothermal and epithermal veins.Petrographic and microthermometric studies aided recognition of CO2-rich, H2O-rich and mixed H2O–CO2 fluid inclusions in the gold-bearing quartz veins. The H2O–CO2 inclusions are dominant over the other two types and are characterized by variable vapor: liquid ratios. These inclusions are interpreted as products of partial mixing of two immiscible carbonic and aqueous fluids. The generally light δ34S of pyrite and chalcopyrite may suggest a magmatic source of sulfur. Spread in the final homogenization temperatures and bulk inclusion densities are likely due to trapping under pressure fluctuation through repeated fracture opening and sealing. Conditions of gold deposition are estimated on basis of the fluid inclusions and sulfur isotope data as 226–267 °C and 350–1100 bar, under conditions transitional between mesothermal and epithermal systems.The Semna gold deposit can be attributed to interplay of protracted volcanic activity (Dokhan Volcanics?), fluid mixing, wallrock sulfidation and a structural setting favoring gold deposition. Gold was transported as Au-bisulfide complexes under weak acid conditions concomitant with quartz–sericite–pyrite alteration, and precipitated through a decrease in gold solubility due to fluid cooling, mixing with meteoric waters and variations in pH and fO2.  相似文献   

5.
Gold mineralization of the Hutti mine, southern India, is situated in closely spaced laminated quartz veins and associated alteration haloes along steeply dipping shear zones within a sequence of rather uniform amphibolites. Intense shearing has resulted in large-scale mylonitization of the wall rocks. Anastomosing shear zones, with intervening lensoid bodies of unsheared amphibolites, are characteristic features of the deposit. The general pattern of symmetrical alteration comprises a distal zone of chlorite-rich rock, with a proximal biotite-rich zone adjacent to laminated quartz veins. Arsenopyrite thermometry yielded a temperature range of 350-477 °C for the biotite alteration zone, which preceded the formation of the laminated quartz veins. Mass balance calculations on the alteration zones indicate a gradual mass and volume loss during alteration. The alteration is accompanied by intense potash metasomatism and addition of sulfur, which resulted in the formation of arsenopyrite, pyrrhotite, and pyrite. Results of fluid inclusion studies suggest that low salinity (3.9-13.5 wt% NaCl equivalent) H2O-CO2 rich fluids were responsible for gold-rich laminated quartz vein formation in the Hutti deposit. These fluids constituted a later counterpart of the protracted fluid activity that first formed the biotite alteration zone. The estimated P-T values range from 1.0 to 1.7 kbar at 280-320 °C. These data, along with the alteration assemblages and the characteristic gold-sulfide association, both in the altered wall rock and laminated quartz veins, suggest that gold, transported as reduced bisulfide complexes, was deposited in response to sulfidation reactions in the wall rocks. Comparison of P-T conditions of formation of gold-quartz veins at Hutti with two other large gold deposits in the eastern Dharwar Craton, namely Kolar (1.8 kbar/280 °C) and western Ramagiri (1.45-1.7 kbar/240-270 °C), indicates broadly similar lode-gold forming conditions in the Dharwar Craton.  相似文献   

6.
The Paleoproterozoic terranes (Birimian) of West Africa are well known to host numerous economic gold mineralizations. The Angovia gold mineralization is located in a brecciated and mylonitic zone within the Birimian greenstones. The sulfide–gold mineralization is mainly represented by gold associated with pyrite and chalcopyrite. A fluid inclusion study undertaken on mineralized quartz veins revealed the presence of aqueous-carbonic (CO2–H2O) fluids, the association of carbonic (CO2) and early aqueous fluids, followed by later aqueous (H2O-salt) and finally nitrogen-rich fluids. Entrapment of the initial homogeneous aqueous-carbonic fluids prior to fluid immiscibility depicts the evolution of the P–T conditions during the exhumation of the terranes after the peak of green-schist metamorphism. The CO2 rich-fluid occurs especially in gold-bearing quartz, and are considered as the main evidence of the ore-forming process in the gold-bearing quartz veins. It is considered as a product of immiscibility of the CO2–H2O parent. The volatile fraction of carbonic and aqueous-carbonic fluid inclusions is dominated by CO2, containing minor amounts of N2, even smaller amounts of CH4 and sporadically, H2S. The aqueous-carbonic fluids have moderate salinity (3–10 wt.% eq. NaCl). Late aqueous and N2 – (CH4–CO2) fluids are considered as later, unrelated to the main ore stage, and were trapped during the cooling of the hydrothermal system from 300 to 200 °C.The immiscibility has been favored by a strong pressure drop, the main trapping P–T conditions being 320–370 °C and 105–135 MPa. The mineralizing process is likely related to the immiscibility event, which was probably favored by the release of the fluid pressure after fracturing along the main shear zones. The ore process is likely to have occurred along the main shear zones or related secondary structures affected by cycling of the fluid pressure and quartz sealing–fracturing processes. The superimposed process can also explain the relative complexity of the quartz textures and fluid inclusion microfractures, and the rather wide range in the density of both parent fluid and CO2-dominated fluid.  相似文献   

7.
The Canan area (Honduras) is characterized by a gold-bearing ore deposit that is associated with quartz-veined shear zones. Gold mineralization occurs in low-to medium-grade metamorphic host-rocks (graphitic and sericitic schists). Hydrothermal fluids, which are associated with the emplacement of Cretaceous-Tertiary granodioritic intrusions, are responsible for the formation of quartz veins and the hydrothermal alteration of wall-rocks. Three main altered zones have been detected in the wall-rocks as far as 150 cm from the quartz veins. The distal zone (up to 50-cm thick) contains quartz, chlorite and illite. The intermediate zone is the thickest (up to 80 cm) and is marked by quartz, muscovite, sulphides, kaolinite and native elements such as Au and Ag. The proximal zone, which is close to the quartz veins, is rather thin (up to 25 cm) and contains clay minerals, Al-oxides-hydroxides and sulphides. The transition from the distal to the proximal zone is accompanied by the enrichment of SiO2 and the depletion of all other major elements, except for Fe2O3(tot). Precious metals occur in the highest concentrations in the intermediate zone (Au up to 7.6 ppm and Ag up to 11 ppm). We suggest that gold was transported as a reduced sulphur complex and was precipitated from the hydrothermal solution by the reaction of the sulphur complexes with Fe2+ from the alteration of the mafic minerals of the host-rock. Fluid–wall-rock interactions seem to be the main cause of gold mineralization. Genetic relationships with a strike-slip fault system, hydrothermal alteration zones within the metamorphic wall-rocks, and an entire set of geochemical anomalies are consistent with orogenic-type gold deposits of the epizonal class.  相似文献   

8.
Strongly deformed volcaniclastic metasediments and ophiolitic slices hosting the Sukari gold mineralization display evidence of a complex structural evolution involving three main ductile deformational events (D1–D3). D1 produced ENE-trending folds associated with NNW-propagating thrust slices and intrusion of the Sukari granite (689 ± 3 Ma). D2 formed a moderately to steeply dipping, NNW-trending S2 foliation curved to NE and developed arcuate structure constituting the Kurdeman shear zone (≤ 595 Ma) and East Sukari imbricate thrust belt. Major NE-trending F2 folds, NW-dipping high-angle thrusts, shallow and steeply plunging mineral lineation and shear indicators recorded both subhorizontal and subvertical transport direction during D2. D3 (560–540 Ma) formed NNE-trending S3 crenulation cleavage, tight F3 folds, Sukari Thrust and West Sukari imbricate thrust. The system of NW-trending sinistral Kurdeman shear zone (lateral ramps and tear faults) and imbricate thrusts (frontal ramps) forming the actuate structure developed during SE-directed thrusting, whereas the prevailing pattern of NNE-trending dextral Sukari shear zone and imbricate thrusts forming Sukari thrust duplex developed during NE-directed tectonic shearing. Sukari granite intruded in different pluses between 689 and 540 Ma and associated with at least four phases of quartz veins with different geometry and orientation. Structural analysis of the shear fabrics indicates that the geometry of the mineralized quartz veins and alteration patterns are controlled by the regional NNW- and NE-trending conjugate zones of transpression. Gold-bearing quartz veins are located within NNW-oriented sinistral shear zones in Kurdeman gold mine area, within steeply dipping NW- and SE dipping thrusts and NE- and NS-oriented dextral and sinistral shear zones around Sukari mine area, and along E-dipping backthrusts and NW-SE and N-S fractures in Sukari granite. The high grade of gold mineralization in Sukari is mainly controlled by SE-dipping back-thrusts branched from the major NW-dipping Sukari Thrust. The gold mineralization in Sukari gold mine and neighboring areas in the Central Eastern Desert of Egypt is mainly controlled by the conjugate shear zones of the Najd Fault System and related to E-W directed shortening associated with oblique convergence between East and West Gondwana.  相似文献   

9.
The Betam gold deposit, located in the southern Eastern Desert of Egypt, is related to a series of milky quartz veins along a NNW-trending shear zone, cutting through pelitic metasedimentary rocks and small masses of pink granite. This shear zone, along with a system of discrete shear and fault zones, was developed late in the deformation history of the area. Although slightly sheared and boudinaged within the shear zone, the auriferous quartz veins are characterised by irregular walls with a steeply plunging ridge-in-groove lineation. Shear geometry of rootless intra-folial folds and asymmetrical strain shadows around the quartz lenses suggests that vein emplacement took place under a brittle–ductile shear regime, clearly post-dating the amphibolite-facies regional metamorphism. Hydrothermal alteration is pervasive in the wallrock metapelites and granite including sericitisation, silicification, sulphidisation and minor carbonatisation. Ore mineralogy includes pyrite, arsenopyrite and subordinate galena, chalcopyrite, pyrrhotite and gold. Gold occurs in the quartz veins and adjacent wallrocks as inclusions in pyrite and arsenopyrite, blebs and globules associated with galena, fracture fillings in deformed arsenopyrite or as thin, wire-like rims within or around rhythmic goethite. Presence of refractory gold in arsenopyrite and pyrite is inferred from microprobe analyses. Clustered and intra-granular trail-bound aqueous–carbonic (LCO2 + Laq ± VCO2) inclusions are common in cores of the less deformed quartz crystals, whereas carbonic (LCO2 ± VCO2) and aqueous H2O–NaCl (L + V) inclusions occur along inter-granular and trans-granular trails. Clathrate melting temperatures indicate low salinities of the fluid (3–8 wt.% NaCl eq.). Homogenisation temperatures of the aqueous–carbonic inclusions range between 297 and 323°C, slightly higher than those of the intra-granular and inter-granular aqueous inclusions (263–304°C), which are likely formed during grain boundary migration. Homogenisation temperatures of the trans-granular H2O–NaCl inclusions are much lower (130–221°C), implying different fluids late in the shear zone formation. Fluid densities calculated from aqueous–carbonic inclusions along a single trail are between 0.88 and 0.98 g/cm3, and the resulting isochores suggest trapping pressures of 2–2.6 kbar. Based on the arsenopyrite–pyrite–pyrrhotite cotectic, arsenopyrite (30.4–30.7 wt.% As) associated with gold inclusions indicates a temperature range of 325–344°C. This ore paragenesis constrains f S2 to the range of 10−10 to 10−8.5 bar. Under such conditions, gold was likely transported mainly as bisulphide complexes by low salinity aqueous–carbonic fluids and precipitated because of variations in pH and f O2 through pressure fluctuation and CO2 effervescence as the ore fluids infiltrated the shear zone, along with precipitation of carbonate and sericite. Wallrock sulphidation also likely contributed to destabilising the gold–bisulphide complexes and precipitating gold in the hydrothermal alteration zone adjacent to the mineralised quartz veins.  相似文献   

10.
新疆胜利达坂金矿区金矿化特征   总被引:2,自引:0,他引:2  
胜利达坂金矿区,发育近EW向的韧性剪切带。该剪切带是区内金矿的主要控矿构造,控制了矿床、矿体及矿化体的分布。矿体主要沿韧性剪切带糜棱面理分布。矿石的主要类型是浸染糜棱岩型和变形石英脉型。成矿的最有利部位是剪切带内应力梯度大的地带。区内乳白色变形石英脉具有很大的找金潜力。该区金矿属韧性剪切带型金矿。  相似文献   

11.
Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran   总被引:1,自引:1,他引:1  
The Qolqoleh gold deposit is located in the northwestern part of the Sanandai‐Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile–brittle shear zones generated during Late Cretaceous–Tertiary continental collision between the Afro‐Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano‐sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore‐controlling structure is NE–SW‐trending oblique thrust with vergence toward south ductile–brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal–plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au‐bearing highly deformed and altered mylonitic host rocks and cross‐cutting Au‐ and sulfide‐bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz–sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz–sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross‐cutting Au‐quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite–chlorite alteration zone that may be taken to imply wall‐rock interaction with near neutral fluids (pH 5–6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide‐bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore‐forming stages have proved that the Qolqoleh deposit was formed in the compression–extension stage during the Late Cretaceous–Tertiary continental collision in a ductile–brittle shear zone, and is characterized by orogenic gold deposits.  相似文献   

12.
The gold mineralization of the Hutti Mine is hosted by nine parallel, N–S trending, steeply dipping, 2–10 m wide shear zones, that transect Archaean amphibolites. The shear zones were formed after peak metamorphism during retrograde ductile D2 shearing in the lower amphibolite facies. They were reactivated in the lower to mid greenschist facies by brittle–ductile D3 shearing and intense quartz veining. The development of a S2–S3 crenulation cleavage facilitates the discrimination between the two deformation events and contemporaneous alteration and gold mineralization. Ductile D2 shearing is associated with a pervasively developed distal chlorite–sericite alteration assemblage in the outer parts of the shear zones and the proximal biotite–plagioclase alteration in the center of the shear zones. D3 is characterized by development of the inner chlorite-K-feldspar alteration, which forms a centimeter-scale alteration halo surrounding the laminated quartz veins and replaces earlier biotite along S3. The average size of the laminated vein systems is 30–50 m along strike as well as down-dip and 2–6 m in width.Mass balance calculations suggest strong metasomatic changes for the proximal biotite–plagioclase alteration yielding mass and volume increase of ca. 16% and 12%, respectively. The calculated mass and volume changes of the distal chlorite–sericite alteration (ca. 11%, ca. 8%) are lower. The decrease in δ18O values of the whole rock from around 7.5‰ for the host rocks to 6–7‰ for the distal chlorite–sericite and the proximal biotite–plagioclase alteration and around 5‰ for the inner chlorite-K-feldspar alteration suggests hydrothermal alteration during two-stage deformation and fluid flow.The ductile D2 deformation in the lower amphibolite facies has provided grain scale porosities by microfracturing. The pervasive, steady-state fluid flow resulted in a disseminated style of gold–sulfide mineralization and a penetrative alteration of the host rocks. Alternating ductile and brittle D3 deformation during lower to mid greenschist facies conditions followed the fault-valve process. Ductile creep in the shear zones resulted in a low permeability environment leading to fluid pressure build-up. Strongly episodic fluid advection and mass transfer was controlled by repeated seismic fracturing during the formation of laminated quartz(-gold) veins. The limitation of quartz veins to the extent of earlier shear zones indicate the importance of pre-existing anisotropies for fault-valve action and economic gold mineralization.  相似文献   

13.
During emplacement and cooling, the layered mafic–ultramafic Kettara intrusion (Jebilet, Morocco) underwent coeval effects of deformation and pervasive fluid infiltration at the scale of the intrusion. In the zones not affected by deformation, primary minerals (olivine, plagioclase, clinopyroxene) were partially or totally altered into Ca‐amphibole, Mg‐chlorite and CaAl‐silicates. In the zones of active deformation (centimetre‐scale shear zones), focused fluid flow transformed the metacumulates (peridotites and leucogabbros) into ultramylonites where insoluble primary minerals (ilmenite, spinel and apatite) persist in a Ca‐amphibole‐rich matrix. Mass‐balance calculations indicate that shearing was accompanied by up to 200% volume gain; the ultramylonites being enriched in Si, Ca, Mg, and Fe, and depleted in Na and K. The gains in Ca and Mg and losses in Na and K are consistent with fluid flow in the direction of increasing temperature. When the intrusion had cooled to temperatures prevailing in the country rock (lower greenschist facies), deformation was still active along the shear zones. Intense intragranular fracturing in the shear zone walls and subsequent fluid infiltration allowed shear zones to thicken to metre‐scale shear zones with time. The inner parts of the shear zones were transformed into chlorite‐rich ultramylonites. In the shear zone walls, muscovite crystallized at the expense of Ca–Al silicates, while calcite and quartz were deposited in ‘en echelon’ veins. Mass‐balance calculations indicate that formation of the chlorite‐rich shear zones was accompanied by up to 60% volume loss near the centre of the shear zones; the ultramylonites being enriched in Fe and depleted in Si, Ca, Mg, Na and K while the shear zones walls are enriched in K and depleted in Ca and Si. The alteration observed in, and adjacent to the chlorite shear zones is consistent with an upward migrating regional fluid which flows laterally into the shear zone walls. Isotopic (Sr, O) signatures inferred for the fluid indicate it was deeply equilibrated with host lithologies.  相似文献   

14.
Gold mineralization at Hutti is confined to a series of nine parallel, N–S to NNW–SSE trending, steeply dipping shear zones. The host rocks are amphibolites and meta-rhyolites metamorphosed at peak conditions of 660±40°C and 4±1 kbar. They are weakly foliated (S1) and contain barren quartz extension veins. The auriferous shear zones (reefs) are typically characterized by four alteration assemblages and laminated quartz veins, which, in places, occupy the entire reef width of 2–10 m, and contain the bulk of gold mineralization. A <1.5 m wide distal chlorite-sericite (+biotite, calcite, plagioclase) alteration zone can be distinguished from a 3–5 m wide proximal biotite-plagioclase (+quartz, muscovite, calcite) alteration zone. Gold is both spatially and temporally associated with disseminated arsenopyrite and pyrite mineralization. An inner chlorite-K-feldspar (+quartz, calcite, scheelite, tourmaline, sphene, epidote, sericite) alteration halo, which rims the laminated quartz veins, is characterized by a pyrrhotite, chalcopyrite, sphalerite, ilmenite, rutile, and gold paragenesis. The distal chlorite-sericite and proximal biotite-plagioclase alteration assemblages are developed in microlithons of the S2–S3 crenulation cleavage and are replaced along S3 by the inner chlorite-K-feldspar alteration, indicating a two-stage evolution for gold mineralization. Ductile D2 shearing, alteration, and gold mineralization formed the reefs during retrograde evolution and fluid infiltration under upper greenschist to lower amphibolite facies conditions (560±60°C, 2±1 kbar). The reefs were reactivated in the D3 dextral strike-slip to oblique-slip environment by fault-valve behavior at lower greenschist facies conditions (ca. 300–350°C), which formed the auriferous laminated quartz veins. Later D4 crosscutting veins and D5 faults overprint the gold mineralization. The alteration mineralogy and the structural control of the deposit clearly points to an orogenic style of gold mineralization, which took place either during isobaric cooling or at different levels of the Archean crust. From overlaps in the tectono-metamorphic history, it is concluded that gold mineralization occurred during two tectonic events, affecting the eastern Dharwar craton in south India between ca. 2550 – 2530 Ma: (1) The assemblage of various terranes of the eastern block, and (2) a tectono-magmatic event, which caused late- to posttectonic plutonism and a thermal perturbation. It differs, however, from the pre-peak metamorphic gold mineralization at Kolar and the single-stage mineralization at Ramagiri. Notably, greenschist facies gold mineralization occurred at Hutti 35–90 million years later than in the western Dharwar craton. Editorial handling: G. Beaudoin  相似文献   

15.
The Eastern Desert of Egypt is well known as a gold-mining district since ancient times. Gold mineralization is closely associated with the granitic rocks in such way that the mineralization is either hosted by or occurs immediately adjacent to the granite intrusions. Granitic rocks accompanying gold mineralization in the Eastern Desert can be grouped into three categories i.e. syn-late tectonic calc-alkaline granites, calc-alkaline to mildly alkaline granites of the transitional stage and post-tectonic alkaline granites.Tectonically, gold mineralization is linked with the tectonothermal stages that were operative during the evolution of the Arabian–Nubian Shield (ANS). During the primitive stages of the island-arc formation, pre-orogenic gold mineralization (auriferous exhalites) was formed by hot brines accompanying submarine volcanic activity. No role for the granite is observed in this stage. Syn-orogenic gold mineralization (i.e. gold hosted in altered ophiolitic serpentinites along thrust faults and in sutures, quartz veins hosted in the metavolcano-sedimentary assemblage and/or the I-type granitic rocks surrounding them) connected with the collision and accretion stage is characterized by emplacement of calc-alkaline (I-type) older granite batholiths. Shear fractures reflected in brittle–ductile shear zones and amphibolite-green schist facies regional metamorphism were broadly contemporaneous with this intense compressional tectonic regime. Available fluid inclusion microthermometry and isotopic studies reveal that both metamorphic and magmatic fluids related to the syn-late tectonic calc-alkaline granites were operative. A further indication for the role of the granites is indicated by the presence of some concentrations of Antimony, Bismuth, Molybdenum, Tungsten, Rubidium, Beryllium, Tin, Yttrium, Ytterbium, Tantalum and Niobium in some auriferous quartz veins in the Egyptian gold mines.In the cratonal development of the (ANS), the land underwent a transitional stage between the major subduction-related calc-alkaline magmatic activity and the subsequent post-tectonic plutonism represented by the alkaline granites. This transitional stage is dominated by the eruption of Dokhan volcanics and deposition of molass-type Hammamat sediments. At ~ 590–530 Ma, the Arabian–Nubian Shield was deformed by post-accretionary structures, in the form of N-trending shortening zones such as the Hamisana shear zone and NW-trending strike-slip faults such as the Najd fault system. The regional NNW–SSE directed extension opened spaces that were progressively sealed with different magmatic phases including among them a considerable proportion of rocks referred to as “younger granites” in the Egyptian literature. Late-orogenic gold mineralization connected with the transitional stage is represented principally by the gold-bearing quartz veins traversing Hammamat molasse sediments, quartz veins traversing syn-extensional younger granites and generally quartz veins in ductile to brittle shears related to the Najd fault system and within Hamisana shear zone and its splays.By the end of Pan African orogeny until the Tertiary, the basement was intermittently intruded by a number of sub-alkaline to per alkaline granite bodies that host Mo, Sn, W, Nb–Ta and U mineralization in the Eastern Desert of Egypt. Anorogenic gold mineralization connected with post-orogenic granites is represented by small amounts of the element in disseminations, stockworks and quartz veins of Sn–W–Ta–U mineralization.The present review shows that gold mineralization in Egypt is an expression of two major cycles with distinct magmatic and tectonic characteristics, and the two cycles were separated by a transitional stage. The emplacement of granites in the compressional cycle played an important role in metamorphosing the country rocks by producing the heat energy required for the regional metamorphism and the providing of the magmatic fluids. The H2O–CO2 fluids enriched in volatiles were released at the greenschist–amphibolite facies transition at 450°–500 °C and mixed with the I-type calc-alkaline granite related fluids and both moved down a temperature gradient away from the amphibolite-green schist transition at depth to a lower temperature regime in the upper levels where it is deposited in brittle–ductile shear zones. With the extensional cycle, the syn-extensional granite intrusions acted as heat engine in such way that the heat of the granite drove the convective cells to circulate through the auriferous host-granite contacts, leaching gold and other elements and depositing it in structurally favorable sites. In addition, the contrasts in competency between the granites with brittle deformational characteristics and the surrounding country rocks with a ductile response to stress, led to a generation of extensive fracture pattern within the more competent unit.  相似文献   

16.
The Eldorado low-sulfide gold-quartz deposit, with gold reserves of more than 60 tons, is located in the damage zone of the Ishimba Fault in the Yenisei Ridge and is hosted by Riphean epidote-amphibolite metamorphic rocks (Sukhoi Pit Group). Orebodies occur in four roughly parallel heavily fractured zones where rocks were subject to metamorphism under stress and heat impacts. They consist of sulfide-bearing schists with veins of gray or milky-white quartz varieties. Gray quartz predominating in gold-bearing orebodies contains graphite and amorphous carbon identified by Raman spectroscopy; the contents of gold and amorphous carbon are in positive correlation. As inferred from thermobarometry, gas chromatography, gas chromatography-mass spectrometry, and Raman spectroscopy of fluid inclusions in sulfides, carbonates, and gray and white quartz, gold mineralization formed under the effect of reduced H2O-CO2-HC fluids with temperatures of 180 to 490 °C, salinity of 9 to 22 wt.% NaCl equiv, and pressures of 0.1 to 2.3 kbar. Judging by the presence of 11% mantle helium (3He) in fluid inclusions from quartz and the sulfur isotope composition (7.1-17.4‰ δ34S) of sulfides, ore-bearing fluids ascended from a mantle source along shear zones, where they “boiled”. While the fluids were ascending, the metalliferous S- and N-bearing hydrocarbon (HC) compounds they carried broke down to produce crystalline sulfides, gold, and disseminated graphite and amorphous carbon (the latter imparts the gray color to quartz). Barren veins of milky-white quartz formed from oxidized mainly aqueous fluids with a salinity of < 15 wt.% NaCl equiv at 150-350 °C. Chloride brines (> 30 wt.% NaCl equiv) at 150-260 °C impregnated the gold-bearing quartz veins and produced the lower strata of the hydrothermal-granitoid section. The gold mineralization (795-710 Ma) was roughly coeval to local high-temperature stress metamorphism (836-745 Ma) and intrusion of the Kalama multiphase complex (880-752 Ma).  相似文献   

17.
沈光银 《地质找矿论丛》2007,22(3):206-209,223
北干沟金矿床是韧性剪切带含金石英脉型金矿床。韧性剪切带以发育糜棱岩和片理化带为特征,应变强度和退化变质作用从边缘到中心逐渐增强,并形成鞘褶皱;韧性构造岩具有分带性;产于韧性剪切带中心部位的石英脉是主要的含金脉体;韧性剪切带的形态、活动阶段及韧性剪切变质岩的分带性对金矿具有明显的控制作用。  相似文献   

18.
Gold-bearing quartz veins of the Taihua Group consisting of Archean metavolcanic rocks are a main gold deposit type in the Xiao Qinling area,one of the three biggest gold production areas in China.The quartz veins experienced strong alteration characterized by a typical mesothermal hydrothermal altered mineral assemblage.The grade of gold is affected by the contents of sulphides,e.g.galena,pyrite and chalcopyrite.Results of minor elements analysis for the of gold-bearing quartz veins indicate higher contents of Au and high contents of Ag,Pb,Cu,Cd,W,and Mo.Abundant fluid inclusions were found in the gold-bearing quartz veins.Three types of fluid inclusions were identified:(1) aqueous inclusions;(2) CO 2-bearing inclusions;and(3) daughter crystal-bearing fluid inclusions.Homogenization temperatures ranged from 110 to 670℃ with low and high peaks appearing at 160 180℃ and 280 300℃,respectively.The salinity of aqueous inclusions varies between 1.8 wt% and 38.2 wt% NaCl.The homogenization temperature and salinity show a positive correlation.The H and O isotopes of fluid inclusions in the gold-bearing quartz veins indicate that magmatic solution and metamorphic hydrothermal solution,together with meteoric water,were involved in the formation of gold-bearing fluid.Mesozoic magma activities related to granite intrusions should be the main source of CO 2 fluid with higher temperature and salinity.  相似文献   

19.
The Falun gold quartz vein mineralization is located ca 230 km NW of Stockholm, Sweden, within the Early Proterozoic volcano-sedimentary sequence of Bergslagen. The mineralization consists of a system with subparallel quartz veins that crosscut the alteration zone to the Falun massive sulphide deposit. Early barren and late gold-bearing quartz veins follow tectonic structures postdating the formation of the massive sulphide ore. Both generations of veins are epigenetic to the massive sulphide ore and were formed by hydrothermal processes. Fluid inclusion study of the gold-bearing quartz veins indicates a low-moderately saline fluid (0.3 to 17.4 equiv wt% NaCl). Heterogeneous trapping is indicated by coexisting inclusions showing a variable CO2 content from 100% CO2 ± CH4 to 100% aqueous fluid. Temperatures of total homogenization also show a wide spread from 116–350°C with a slightly bimodal distribution with peaks at ca 180°C and 280°C. MeasuredδD values — 69 to — 63%0 (SMOW), of inclusion fluid and calculatedδ 18O values of hydrothermal fluids — 7.5 to — 1.4%0 (SMOW), strongly suggest a meteoric origin for the fluids. The quite consistentδD values and the range inδ 18O values indicate that major water-rock interaction led to the evolution inδ18O of the hydrothermal fluids.  相似文献   

20.
Abstract: The Dongping deposit, located near the center of the northern margin of the north China craton, is one of the largest gold deposits in China. It is spatially, temporally, and genetically associated with the shallowly-emplaced Hercynian Shuiquan-gou alkaline intrusive complex. The complex intrudes high-grade metamorphic rocks of the Archean Sanggan Group along a deep-seated fault zone within the north China craton. Four major ore bodies (Nos. 1, 2, 22, and 70), consisting mainly of a set of en echelon lenses and veins, have been delineated at the Dongping deposit. Hypogene hydrothermal activities can be divided into four periods from early to late including: (1) gold-bearing K–feldspar–quartz stockworks and veins; (2) disseminated sulfide and gold zones; (3) gold-bearing quartz veins, and (4) barren calcite-quartz veins. Individual veins and stockwork systems can be traced along strike for 125 to 600 m and downdip for 100 to 600 m; they range from 0. 5 to 3 m in thickness. The mineralogical composition of the ore in the first three hypogene periods is relatively simple. It is composed of pyrite, galena, sphalerite, magnetite, specularite, chalcopyrite, native gold, electrum, calaverite, and altaite. Gangue minerals include K–feldspar, quartz, sericite, chlorite, epidote, albite, and calcite. Ore grade averages 6 g/t Au, but varies between 4. 14 and 22. 66 g/t Au. Gold is generally fine-grained and not visible in hand specimen. Fluid inclusions in ore-bearing quartz of periods 1, 2, and 3 are CO2–rich, variable salinity (2. 5–21 wt% equiv. NaCl), and have variable homogenization temperatures of 195° to 340°C. Quartz in the gold-bearing K–feldspar–quartz stockworks (period 1), disseminated sulfide and gold zones (period 2), and the gold-bearing quartz veins (period 3) has calculated δ18OH2O values between –1. 7 and 6. 9%, and δ values of fluid inclusion waters between –101 and –66%. All these isotope data of the ore-forming fluids plot between the magmatic fluid field and the meteoric water line. Sulfide minerals disseminated in host rocks show positive δ34S values of 1. 9 to 3. 5%. Pyrite separates from he gold-bearing K–feldspar–quartz stockworks and veins (period 1) have a δ34S range of –4. 3 to 0. 5%, whereas δ34S values of pyrite, chalcopyrite, galena, and sphalerite from the disseminated sul-fide and gold zones (period 2) and the gold-bearing quartz veins (period 3) vary from –5. 3 to –13. 4%. Gold ores are also characterized by relatively radiogenic lead isotope compositions compared to those of the alkaline syenite host rock. The data are interpreted as indicative of a mixing of lead from the alkaline intrusive complex with lead from Archean metamorphic rocks. The combined fluid inclusion measurements, sulfur, oxygen, hydrogen, and lead isotope data, and petrological observations indicate that the Dongping deposit was formed from the mixing of these magmatic fluids with meteoric waters. The deposit is, therefore, believed to be a product of Hercynian alkaline igneous processes within the north China craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号