首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 828 毫秒
1.
张国祥 《岩土力学》2014,299(2):334-338
采用旋转挡土墙计算模型的变换法,将在地震和拟静力法条件下主动土压力的求解问题转化为在静力条件下主动土压力的求解问题。根据在静力条件下水平层分析法的主动土压力推导结果,直接获得在地震条件下主动土压力强度分布、土压力合力及其作用点位置的表达式,并运用图解法得到了临界破裂角的解析解。公式可考虑水平和垂直地震加速度、不同墙背倾角、墙背和坡面倾角与填料存在黏结力和外摩擦角、存在均布超载等诸多因素的影响,公式可以适用于在常用边界和地震条件下黏性土的主动土压力计算。旋转地震角法是将在地震和拟静力法条件下挡土墙计算模型旋转为在静力条件下挡土墙计算模型,但旋转挡土墙计算模型并不改变挡土墙和墙后填土的应力状态,按在静力条件下挡土墙主动土压力求解方法求解在地震和拟静力法条件下主动土压力,该方法大大简化了在地震和拟静力法条件下的主动土压力计算公式推导过程,统一了在拟静力法条件下的地震土压力求解,理论更加完善。  相似文献   

2.
地震条件下挡墙后黏性土主动土压力研究   总被引:1,自引:0,他引:1  
林宇亮  杨果林  赵炼恒 《岩土力学》2011,32(8):2479-2486
采用水平层分析法,得到了地震条件下挡墙后黏性土主动土压力合力和作用点位置、土压力强度分布以及临界破裂角的解析解。公式考虑了水平和垂直地震加速度、挡墙墙背倾角、填料黏聚力和内摩擦角、填料与墙背的黏结力和外摩擦角、均布超载等因素,并分析了这些因素对主动土压力的影响。结果表明,朗肯和库伦理论下的主动土压力公式以及Mononobe-Okabe主动土压力公式与地震条件下的主动土压力公式完全一致。地震条件下的主动土压力强度沿墙高呈非线性分布。水平地震加速度增大了主动土压力,垂直地震加速度使得主动土压力有所减小  相似文献   

3.
地震作用下挡土墙主动土压力及转动位移分析   总被引:2,自引:0,他引:2  
杨海清  杨秀明  周小平 《岩土力学》2012,33(Z2):139-144
分析地震引起的挡土墙位移及墙后土压力,对于评估挡土墙可靠性具有重要意义。基于拟动力法,考虑时效、地震波传播的相位差、超载、墙背摩擦角、填土黏聚力以及填土开裂等影响,建立地震作用下挡土墙主动土压力计算模型,获得挡土墙绕墙趾转动模式下主动土压力大小、分布形式及作用点高度。同时,考虑挡土墙本身受地震荷载作用的影响,求出挡土墙绕墙趾的转动位移。通过与Mononobe-Okabe法对比可知,文中获得的主动土压力值与Mononobe-Okabe法接近,但Mononobe-Okabe法低估了主动土压力作用点高度,表明采用Mononobe-Okabe法设计存在风险。通过算例分析了地震系数、墙背摩擦系数、超载大小、时间、填土黏聚力和内摩擦角对挡土墙转动位移的影响。  相似文献   

4.
安军海  陶连金  蒋录珍 《岩土力学》2022,43(5):1277-1288
开展了近远场地震动作用下盾构扩挖地铁车站结构的振动台试验,分析了砂土模型地基的水平位移、地表变形、加速度、土压力反应及模型结构的加速度、应变等。结果表明:模型地基-结构体系的地震响应对中低频成分发育的地震波反应更为强烈;强震作用下地铁车站结构具有明显的空间效应,地下结构的存在将会改变模型地基表面变形的分布模式。小震时模型结构中柱的加速度反应自下而上逐渐增加,而大震时其反应规律变成先增大后减小;车站结构中板的加速度反应最大、底板次之、顶板最小;小震时,同等深度处模型结构的加速度反应与模型地基土的加速度反应大小相当,侧墙的动土压力自下而上逐渐增大;大震时,模型结构的加速度反应明显大于同深度处模型地基土的加速度反应,动土压力的最大值发生在扩挖隧道的拱肩和中间部位。基于震后模型结构的宏观现象和拉应变幅值,给出了砂土地基中盾构扩挖车站结构的地震损伤演化机制。  相似文献   

5.
左熹  陈国兴  王志华  杜修力  孙田  胡庆兴 《岩土力学》2010,31(12):3733-3740
开展了近场和远场地震动作用下3跨3层地铁车站结构地基液化效应的振动台模型试验,测试了地铁车站结构的加速度、应变、水平位移反应和地基土孔隙水压力、加速度、震陷及其作用于模型结构侧墙的动土压力反应。分析和总结了地铁车站结构地基液化效应特征,结果表明:模型结构对其周围地基土孔隙水压力场的分布有明显影响,结构两侧和底部地基土中的孔压峰值小于相同深度离结构较远地基土中的孔压峰值;地基土中孔压的消散速度自下而上呈逐渐减慢的趋势;地震动作用过程中,模型结构产生向上的相对运动,强地震动作用时模型结构上浮现象明显;模型结构侧墙受到的动土压力随深度增大而减小,输入地震动特性对动土压力的大小有显著影响。  相似文献   

6.
朱建明  林庆涛  高晓将  高林生 《岩土力学》2016,37(12):3417-3426
目前关于临近地下室外墙影响的挡土墙空间土压力的计算理论的研究还比较少,原有的平面应变条件下的理论不能满足挡土墙的长高比B/H较小时的挡土墙土压力计算要求。通过将土拱效应原理引入顾慰慈[8]建立的空间土压力计算模型,建立了考虑土拱效应的临近地下室外墙影响的空间土压力计算模型,根据挡土墙和地下室外墙的间距与土体破裂面状态的关系将该模型分为3种情况,并将各模型划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域,通过在各个区域内取水平微分单元体,建立各微分单元体的水平和竖向静力平衡方程,推导出了各区相应的挡土墙空间主动土压力计算公式,该公式可以计算出墙背任意位置的主动土压力;并提出了空间土压力合力及其合力作用点的计算方法。通过算例计算可以直观地看出挡土墙后主动土压力的空间分布,由此可以看出,当空间效应存在时,考虑土拱效应的挡土墙主动土压力沿墙长的分布与平面应变条件时有很大的不同,此时挡土墙两端附近区域的主动土压力远小于平面应变条件下计算出的主动土压力,同时可以看出,考虑空间效应的挡土墙主动土压力合力作用点要比平面应变条件下的位置要高,挡土墙长高比B/H越小,空间效应对主动土压力沿墙长的分布和主动土压力合力作用点位置的影响越大。  相似文献   

7.
基于极限平衡理论,利用单元分层法分别讨论了墙后无开挖回填和有开挖回填不同工况条件下的挡土墙土压力分布形式,推导出不同工况条件下的主动土压力强度及主动土压力系数理论公式。结果表明,墙后无开挖回填工况条件下墙背主动土压力沿墙高成线性分布;墙后有开挖回填工况条件下墙背土压力沿墙高成非线性分布。  相似文献   

8.
改进的主动土压力计算方法   总被引:1,自引:0,他引:1  
王仕传  孙本杰  邵艳 《岩土力学》2015,36(5):1375-1379
墙背土压力分布与挡土墙的位移大小和转动模式密切相关。针对绕墙底向外转动的刚性挡土墙,基于土压力形成机制的分析及已有的研究成果,建立挡土墙位移与墙背土体内摩擦角发挥值之间的关系式,反映了墙背土体内摩擦角随着挡土墙位移的增加而渐进发挥的过程。在此基础上,提出一种改进的考虑位移影响的主动土压力计算方法。计算结果表明,随着挡土墙位移的增大,墙背土压力由静止土压力逐步减小。当挡土墙位移达到临界值后,相应的墙背土压力均收敛于库仑主动土压力。墙底背面土压力也是随着挡土墙位移的增长而逐步收敛于库仑主动土压力。与模型试验结果对比表明,理论计算值与试验实测值基本吻合。  相似文献   

9.
针对重力式挡土墙墙后分层填土对墙身受力影响的问题,深入研究分析墙背土压力动态变化值及规律性,利用大型通用有限元分析软件ADINA,建立了平面应变单元及墙、土接触单元的有限元计算模型,并且综合考虑墙后回填土Mohr-Coulomb材料本构模型,初始地应力场平衡、墙后回填土分层碾压填筑,设置墙、土之间的接触受力进行有限元分析计算,最终采用库仑主动土压力理论计算、预埋土压力仪器监测与有限元仿真计算结果进行对比分析,能够准确地反映墙后回填土因分层填筑而导致土压力变化的规律及三者偏差幅度规律,为同类重力式挡土墙在土基上的设计和施工提供科学的技术支撑和经验参考。  相似文献   

10.
土-地下结构体系地震反应的简化分析方法   总被引:1,自引:0,他引:1  
基于Penzien提出的土-结构动力相互作用分析的集中质量模型,考虑等价土体的层间剪切刚度与阻尼效应,提出了土-地下结构动力相互作用体系地震反应分析的简化分析方法,选取具有不同地震动特性的Taft波、汶川地震什邡八角波和松潘波作为基岩水平向输入地震动,采用该简化方法和二维有限元法对土-地铁地下车站结构体系的地震加速度反应特性进行了对比分析,结果表明:简化方法计算的地铁地下车站结构峰值加速度反应大于二维有限元法计算的地铁地下车站结构峰值加速度反应,两者的差异与输入地震动特性有关,但其随地铁地下车站结构高度变化的总体趋势较为一致;随着输入地震动强度的增大,其差异程度也有所加大。该简化方法可合理反映土-地下结构体系的动力相互作用效应,可作为地下结构抗震设计分析的一种辅助方法。  相似文献   

11.
黄睿  汤金焕 《岩土力学》2020,41(8):2564-2572
为考虑挡墙位移效应对地震土压力的影响,依据前人试验研究的结论,将摩擦角表示为与挡墙位移量和位置高度相关的函数,然后基于拟动力法和水平层分析法,推导得出RT位移模式下的地震非极限主动土压力和合力作用点的计算表达式。计算模型可描述摩擦角沿着墙高逐渐发展的不同非极限位移状态工况,并建立了挡墙位移、地震动荷载和土压力之间的相互联系。参数分析讨论了振动时间、挡土墙位移状态、地震加速度参数和土体摩擦角对地震主动土压力分布、合力大小以及合力作用点高度的影响。相比于传统的极限状态地震土压力理论,所提方法更合理地描述了地震土压力随挡墙位移的发展过程,对发展非极限土压力理论和改进边坡工程中的抗震计算方法具有一定的参考意义。  相似文献   

12.
文畅平 《岩土力学》2013,34(11):3205-3212
多级组合支挡结构形式在高边坡防护工程中得到了广泛采用,但现有研究却较少涉及这种支挡结构形式的地震土压力计算问题。应用拟静力法和塑性极限分析上限定理,并且基于强度折减技术,推导了重力式挡墙与两级锚杆挡墙组合支挡结构形式的地震主动土压力及其系数的上限解。该上限解考虑了水平和竖向地震系数、墙背倾角、坡面形式及多级支护方式、土体黏聚力、土体与墙背的黏附力等诸多因素。二级锚杆挡墙实例分析表明:静力条件下主动土压力计算值与现有相关方法的计算结果一致,土的抗剪强度折减系数、上挡墙锚杆轴力等参数,对下挡墙地震主动土压力影响显著。二级组合支挡结构地震主动土压力影响参数敏感性分析表明:水平地震系数以及重力式挡墙墙高和倾角的敏感性较大,上挡墙锚杆的轴力和倾角等参数的敏感性相对较小  相似文献   

13.
Summary Pseudo-static and dynamic non-linear finite element analyses have been performed to assess the dynamic behaviour of gravity retaining walls subjected to horizontal earthquake loading. In the pseudo-static analysis, the peak ground acceleration is converted into a pseudo-static inertia force and applied as a horizontal incremental gravity load. In the dynamic analysis, an actual measured earthquake acceleration time history has been scaled to provide peak ground acceleration values of 0.1 g and 0.3 g. Good agreement is obtained between the pseudo-static analysis and analytical methods for the calculation of the active coefficient of earth pressure. However, the results from the dynamic analysis require careful interpretation. In the pseudo-static analysis, the increase in the point of application of the resultant active force with the horizontal earthquake coefficient k h from the one-third point to the mid-height of the wall is clearly observed. In the dynamic analysis, the variation in the point of application is shown to be a function of the type of wall deformation. Both finite element analyses indicate the importance of determining the magnitude of the predicted displacements when assessing the behaviour of the wall to seismic loading.  相似文献   

14.
张慧姐  曹文贵  刘涛 《岩土力学》2020,41(9):3022-3030
为了探讨墙背倾斜与粗糙程度对挡墙被动土压力的影响,首先,结合被动状态下受挡墙墙背和滑动面摩擦影响的滑动土楔内主应力传递特点,采用圆弧形主应力迹线描述滑动土楔中最大主应力传递规律,并提出了最大主应力迹线几何参数的确定方法;然后,采用沿最大主应力迹线的分层方法将挡墙后滑动土楔划分为若干圆弧形曲线薄层单元,并通过该薄层单元受力分析,依据其静力平衡条件建立了挡墙被动土压力分析新方法。该方法不仅可反映墙土摩擦和墙背倾斜程度对被动土压力的影响,而且有效避免了目前土压力分析方法研究中普遍采用的直线薄层单元难以准确考虑复杂的单元实际受力情况的问题,从理论上确保了新提出的挡墙被动土压力分析方法更具合理性;最后,通过试验、现有同类方法及所提方法分析曲线的对比,表明了新方法的合理性与优越性。就墙背倾斜与粗糙程度对挡墙被动土压力分布及合力作用点高度的影响规律也进行了探讨。  相似文献   

15.
Failure of several gravity retaining walls in residential areas built on reclaimed land, during the October 23, 2004 Chuetsu earthquake in Niigata Prefecture, Japan, determined the authorities to consider the seismic retrofit of the walls in order to mitigate future similar disasters in the urban environment. This study addresses the effectiveness of ground anchors in improving the seismic performance of such retaining structures through a sliding block analysis of the seismic response of an anchored gravity retaining wall supporting a dry homogeneous fill slope subject to horizontal ground shaking. Sliding failure along the base of the wall and translational failure along a planar slip surface of the active wedge within the fill material behind the wall were considered in the formulation, whereas the anchor load was taken as a line load acting on the face of the gravity retaining wall. The effects of magnitude and orientation of anchor load on the yield acceleration of the wall-backfill system and seismically induced wall displacements were examined. It was found that for the same anchor orientation, the yield acceleration increases in a quasi-linear manner with increasing the anchor load, whereas an anchor load of a given magnitude acting at various orientations produces essentially identical yield accelerations. On the other hand, the computed earthquake-induced permanent displacements of the anchored gravity retaining wall decrease exponentially with increasing magnitude of anchor load. Additionally, the influence of backfill strength properties (e.g., internal friction angle) on the seismic wall displacement appears to diminish considerably for the anchored gravity retaining wall. A dynamic displacement analysis conducted for the anchored gravity retaining wall subjected to various seismic waveforms scaled to the same peak earthquake acceleration revealed a good correlation between the calculated permanent wall displacements and the Arias intensity parameter characterizing the input accelerogram.  相似文献   

16.
刘新喜  李彬  王玮玮  贺程  李松 《岩土力学》2022,43(5):1175-1186
为了研究挡墙后有限土体的主动土压力,以墙后无黏性土体为研究对象,假定破裂面为通过墙踵的平面,且在挡墙平动模式下,墙后土体形成圆弧形小主应力拱。采用沿小主应力迹线分层的方法,将挡墙后土体划分为若干个圆弧形曲线薄层单元,考虑了单元体上下表面应力分布的不均匀性,提出了一种有限土体挡墙主动土压力计算方法,给出了主动土压力合力及其作用点高度的表达式,并验证了该方法的正确性。研究结果表明:采用曲线薄层单元法可以准确考虑单元体复杂的受力情况,能更好地反映挡墙后有限土体主动土压力的变化规律;有限填土时主动土压力沿墙高 呈非线性分布,土压力先随着土体深度增加呈单调递增趋势,然后在接近墙底位置处呈单调递减趋势。分析参数敏感性时取不同土体宽高比与墙背粗糙程度对挡墙主动土压力分布及合力作用点高度进行分析,结果表明:随着土体宽高比n的增大,主动土压力值逐渐增大,土压力分布曲线非线性越来越明显,合力作用点高度逐渐降低且恒大于 。当 0.71时,均趋于稳定。可将 0.71作为有限土体与半无限土体的临界宽高比。随着摩擦角 的增大,主动土压力值逐渐减小,土压力分布曲线非线性越来越明显,合力作用点高度逐渐增大且恒大于 。  相似文献   

17.
钢板桩挡墙主动土压力分布的形状效应   总被引:1,自引:0,他引:1  
采用有限元数值试验,研究帽型钢板桩的截面形状对墙后主动土压力分布规律的影响。首先,对室内缩尺模型试验进行数值模拟,对比实测数据验证数值模型的有效性;然后,建立钢板桩挡墙数值模型,模拟该挡墙在不同位移模式下土压力变化和分布的规律,与平板挡墙计算结果进行对比,分析钢板桩截面形状对土压力分布的影响,进一步探讨形状效应的可能影响因素及机制。分析结果表明,钢板桩的截面形状影响墙后主动土压力的分布形式,影响程度与位移模式有关;墙体平动和绕墙底转动情况下,钢板桩挡墙凸出部分的主动土压力值大于凹处,但墙体绕墙顶转动情况下差异不明显;主动土压力的形状效应由土拱效应引起,截面高宽比对其影响显著,墙土摩擦角影响有限。  相似文献   

18.
墙背粗糙导致墙后土体应力方向发生偏转,目前,黏性土中考虑土体应力方向偏转对土压力影响的研究较少。为此,本文首先在探讨墙后土体主应力偏转规律的基础上,采用沿主应力迹线分层形成曲线薄层单元。然后,通过分析曲线薄层单元的受力情况,建立曲线薄层单元的静力平衡方程,推导出平动模式下黏性土体土压力沿墙高分布的公式,进而获得黏性土土压力分析新方法。最后,将本文方法与实测结果和现有理论进行对比验证和参数分析,验证本文方法的可靠性和合理性。研究结果表明:考虑墙土摩擦效应的计算结果更能准确反映黏性土体土压力沿墙高的分布规律;土压力大小随黏聚力增大而减小;随着墙土摩擦角的增大,土压力合力逐渐减小,作用点高度缓慢升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号