首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
景观类型分析在土地覆被变化中的作用   总被引:1,自引:1,他引:0  
  相似文献   

2.
榆林地区景观变化探测模型   总被引:3,自引:1,他引:2  
Landscape is a dynamic phenomenon that almost continuously changes. The overall change of a landscape is the result of complex and interacting natural and spontaneous processes and planned actions by man. However, numerous activities by a large number of individuals are not concerted and contribute to the autonomous evolution of the landscape in a similar way as natural processes do. There is a well-established need to detect land use and ecological change so that appropriate policies for the ;egional sustainable development can be developed. Landscape change detection is considered to be effectively repeated surveillance and needs especially strict protocols to identify landscape change. This paper developed a series of technical frameworks on landscape detection based on Landsat Thematic Mapper (TM) Data. Through human-machine interactive interpretation, the interpretation precision was 92.00% in 1986 and 89.73% in 2000. Based on the interpretation results of TM images and taking Yulin prefecture as a case study area, the area of main landscape types was summarized respectively in 1986 and 2000. The landscape pattern changes in Yulin could be divided into ten types.  相似文献   

3.
《地理学报(英文版)》2001,11(2):244-244
Lanzhou, China, Sept. 22-25th, 2001 ( First circular announcement) Jointly organized by: IALE-China; IALE-Australia Cold and Arid Regions Environmental & Engineering Research Institute, CAS Programme Committee: Richard Hobbs (Australia), Xiao Duning (China) Nobukazu Nakagoshi (Japan), Sun-Kee Hong (Korea), Parida Kuneepong (Thailand), Elena Klimina (Russia), Kalpana Bhakuni, (India), Zhan Zhiyong (Hong Kong, China), Chun-Yen Chang (Taibei, China)Objectives and Topics: A Theoretical aspects and quantitative approaches (Landscape pattern and processes, Landscape modeling, GIS and Remote sensing). B Landscape change and driving forces (Monitoring of landscape changes, Human activity and land use, Culture and landscape). C Landscape management and reconstruction (Ecological restoration of natural areas, Landscape planning in rural areas, Ecological risk and security assessment for catchments, Ecological engineering in agricultural landscapes). D Environment protection and ecological development in western China (Management of oasis landscape, desert landscape and desertification control, Biodiversity conservation, landscape Resources and tourism). E Urban landscape ecology Preliminary conference program: September 22, arrival in Lanzhou, Registration. September 23, plenary sessions; September 24, in-conference excursion (Lanzhou city) September 25, parallel sessions Working language: English Post conference excursions: September 26-29, 2001 No.1 Silk Road and Arid Region Landscape: Desert, Oasis, and Dunhuang. No.2 Qinghai-Xizang (Tibet) Plateau, Meadow, Salt Lake and Qinghai Lake, Cool Desert No.3 World Natural Heritege: Jiuzhaigou, Sichuan Province (Forest and Waterfall)Call for papers: Participants intending to present a paper or a poster during the conference are requested to send an abstract (no longer than 500 words) as email or TXT format attachment to the conference secretary (Landscape2001@sina.com). Or, you can send the hard copy to: Dr. CAO Yu, Institute of Applied Ecology, CAS, P.O.Box 417, Shenyang, 110015, China. Please include the participant's full address (postal, phone, fax, email) in the abstract. The deadline for abstract submission is June 30th, 2001. Abstracts will be published as conference proceedings, which will be available at the conference. Selected papers will be published after the conference.Registration fee for the conference: US$300, including all meals during the conference, and coffee break refreshments. Room rent will be on your own.Registration fee for the excursions: US$500, including transportation and accommodations. Please notify the conference secretary about your interest for participation. Further conference announcement and registration forms will be sent to you later soon.Contact address: Academic information (Abstract etc.): Dr. LI Xiuzhen; Dr. CAO Yu (Institute of Applied Ecology, CAS) Shenyang 110015, China Tel: 86-24-23916291 Fax: 86-24-23843313 General information: Prof. WANG Genxu; Dr. JIAO Yuanmei (Cold and Arid Regions Environmental & Engineering Research Institute) Lanzhou 730000, China Tel: 86-931-8275120, 8275122 Fax: 86-931-8273894 Email: Landscape2001 @sina.com  相似文献   

4.
Landscape pattern analysis has been a major topic in landscape ecology[1-4]. Many quantitative methods have also been designed to describe the pattern, in order to get an overall idea of how the landscape is structured, and what is the effect of different patterns on large scale ecological processes[5-11]. So far this kind of research has mainly focused on habitat analysis, or site selection of wild animals, in the scope of nature conservation[12-13]. But few pattern analyses have been made on…  相似文献   

5.
Analyses of desertified land and land use change in Naiman County of Inner-Mongolia showed that there was a fluctuated in-crease of rain-fed cropland in the period from 1951 to 1960, then decreased until the middle of the 1990's, then increased again, while irrigated cropland consistently increased. The woodland and build-up land consistently increased while grassland area de-creased. The area of water body increased from 1975 to 1995 and then decreased while river beach decreased. Wetland change fluctuated with a maximum of 303.53km2 in 1995 and a minimum of 62.08 km2 in 2002. Invasion of cropland into river beach does not only change land coverage on the beach, but also the hydrological process of the river systems and deeply influence wa-ter availability. The correlation between cropland and underground water table is negative and significant. Increase of irrigated cropland is the primary cause of water availability reduction. Water table reduction is negatively correlated to cropland. The total desertified land has decreased since 1975. A rapid increase occurred before 1959, but it is difficult to assess the change of deserti-fication due to lack of data from 1959 to 1975. Changes of different types of desertified lands were different. There is no signifi-cant correlation between land use and different types of desertified land, but there is a significant negative correlation between woodland and total desertified land. The correlation between grassland and total desertified land is positive and significant. There is a significant correlation between different land cover and key factors such as water body and annual precipitation, river beach and runoff, area of shifting dune and annual precipitation, and cropland and underground water table. Desertification reversion in Naiman County is fragile and will be even much more fragile due to population growth, rapid land use and climate change. This will lead to continued invasion of irrigated cropland into more fragile ecosystems and reduction of water availability.  相似文献   

6.
土地利用变化对水城盆地岩溶水水质的影响   总被引:1,自引:0,他引:1  
The influence of land use and land cover on ecological environment is a focus of global change research. The paper chooses an industrial city-Shuicheng in Guizhou Province-as a study area because the karst water quality around the city is deteriorating with land use and land cover change.The natural susceptibility of karst water system is an important factor leading to karst water pollution.But land use and land cover change is also a main factor according to the chemical analysis of karst water quality and land use change. So it is a good way to protect karst water through rational planning and managing of land use and land cover.  相似文献   

7.
长沙城市土地扩张特征及影响因素   总被引:3,自引:2,他引:1  
This research systematically analyses land-use map of Changsha city in different periods of time. The spatial form and structural evolution was analysed by studying indices such as city land-use structure proportion, expansion intensity, economic flexibility, population flexibility, changing compactness index and so on. The dynamic mechanism of urban land expansion has been discussed by integrating the regional social economy development situation and many aspects such as the physiographical surrounding, population and economic development, traffic infrastructure, planning and regional development tactic and system innovation. The research indicates that the urban land expansion speed and intensity have steadily increased in Changsha from 1949 to 2004. The expansion form has been from a single external expansion to a combination form of external and internal expansion, from a circular or linear continuous form to a blocky or agglomeration shape. Overall, the urban land expansion of Changsha city is a phasic, diversified and complex process. And no matter what the stage is, it is an organic system containing multiple speed, pattern and shape, which are driven by multiple impetuses. The dominant feature at different stages was highlighted be- cause of the balance and fluctuation between different forces, and the existing urban land border and shape have resulted from the joint efforts of these phasic forces.  相似文献   

8.
榆林地区土地退化机制和调控   总被引:6,自引:0,他引:6  
Yulin district is located in the transitional zone between Mu Us Desert and Loess Plateau of northern Shaanxi Province,thus it is particularly vulnerable to degradation due to its fragile ecosystem and intense human activites there,The purpose of hias study is to explore the mechanism,process and driving force of land degradation in area with vulnerable eco-environment within the context of increasing population and intensifying human economic activities,and then find out the patterns and countermeasures of how to control them using the economic and technological ways,In detail ,this study includes three main sections:the first section analyzes the mechanism,causes and characteristics of land degradation,which can be achieved by the typical field investigations and systematical analysis within the regional natural,social and econmomic context.Based on the technologies of remote sensing and GIS ,and combined with the modeling methods,the second section reveals the change characteristics of land use and its driving force from 1990 to 2000; AS to the third section ,feasible countermeasures of how to prevent the degradation and rehabilitate the regional ecology are propsed ,which are studed from the perspective of harmony between nature and economy,and the conception of regional sustainable development.  相似文献   

9.
吉林省西部土地沙化动态变化   总被引:1,自引:0,他引:1  
The sandy land of the western part of Jilin Province is located in the ecotone of semi-humid and semi-arid area in the temperate zone of China. The sandy desertification has widely spread in the region because of the vulnerable natural conditions and the unreasonable human activity; as a result of this, the precious land resources and the economic development in the area have been seriously impacted. In this paper, the sandy land ecologic environment geographic information system is established based on the multi-spectral, multi-temporal Landsat TM images and field investigation. The comprehensive indexes of sandy desertification extent assessment which include vegetation degradation, wind erosion extent and soil depth are presented to classify the sandy land in western Jilin into three levels--slight, moderate and severe sandy desertification with the support of GIS platform. The results demonstrate that the sandy desertification has been partly controlled in the past twenty years, except some small sites. However, this doesn‘t necessarily mean that there is nothing for more concern. The two main causes of sandy desertification have not been eliminated yet, one is its natural factor, especially the physical and chemical characters of sandy soil and dry climate; another is the immoderate economic activity of human being that has highly accelerated the sandy desertification process.  相似文献   

10.
1989-2003年中国北方土地覆被变化   总被引:2,自引:0,他引:2  
The 13 provinces (autonomous regions and municipalities) in northern China are located in latitude 31°-54°N and longitude 73°-136°E including Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Jilin, Liaoning, Heilongjiang, Shaanxi, Gansu, Ningxia, Qinghai, and Xinjiang, where environments are fragile. In recent years, the eco-environmental problems such as vegetation destruction, desertification and soil erosion etc. become serious because of climate change and unreasonable human activities. In this paper, landscape pattern and its evolution in northern China from 1989 to 2003 was investigated by the combined use of RS and GIS based on the basic theory and method of landscape ecology. Land use/cover maps of the study area in 1989, 1999 and 2003 were produced by using 1 km monthly NOAA Advanced Very High Resolution Radiometer (AVHRR) and SPOTNGT Normalized Difference Vegetation Index (NDVI) dataset from national climate bureau of China which were geo-registered to Lambert azimuthal equal-area map projection and were used in the paper. Landscape evolution in the area over the study period was investigated by two methods: (a) the changes of various landscape metrics were analyzed using the landscape structure analysis program FRAGSTATS; (b) the transition matrix of landscape patch types was calculated with the help of the RS and GIS software. The results showed that from 1989 to 2003, the landscape within the study area had undertaken a complicated evolution in landscape structure and composition. The diversity index and evenness index increased during the period, which means that the landscape pattern tended to be diversified and even. The fragmentation index of grassland, forestland and water areas also increased significantly. This showed that the distribution and structure of forestland, grassland and water areas had been changed greatly during the period, especially grassland which became more and more fragmentized, and its fragmentation index increased from 19.23% to 88.72%. The transi  相似文献   

11.
Rapid land landscape change has taken place in many arid and semi-arid regions such as the vulnerable ecological area over the last decade. In this paper, we quantified land landscape change of Yulin in this area between 1985 and 2000 using remote sensing and GIS. It was found that fallow landscape decreased by 125,148 hm2 while grassland and woodland increased by 107,975 hm2 and 17,157 hm2, respectively. The major factors responsible for these changes are identified as the change in the government policy on preserving the environment, continued growth in mining, and urbanization. The efforts in restoring the deteriorated ecosystem have reaped certain benefits in reducing the spatial extent of sandy land through replacement by non-irrigated farmland, woodland and grassland. On the other hand, continued expansion of mining industry and urbanization has exerted adverse impacts on the land landscape. At present regional economic development conflicts directly with the protection of the natural environment. Such a conflict has caused the destruction to the land resources and fragmentation of the landscape accompanied by land desertification, the case is even serious in some localities.  相似文献   

12.
奈曼旗20世纪80年代以来土地覆盖/利用变化研究   总被引:22,自引:9,他引:13  
赵杰  赵士洞  郑纯辉 《中国沙漠》2004,24(3):317-322
奈曼旗是我国北方农牧交错带沙漠化最严重的地区之一, 也是中国沙漠化监测和治理的重要地区之一。自20世纪80年代以来开始实行一系列土地整治措施, 土地覆盖/利用发生很大变化。利用1980年和1996年的1: 10万的TM遥感影像及GIS获得的数据, 从土地覆盖/利用结构变化、数量变化、空间景观特征变化以及主要变化过程等方面对其进行了研究。结果表明, 80年代以来奈曼旗耕地与难利用土地大幅减少, 林地和草地大幅增加; 土地覆盖/利用变化的主要过程为: 耕地退耕还草、还林, 难利用土地恢复为草地, 在适宜的草地上植树造林; 景观变得破碎, 土地利用的多样性增强。  相似文献   

13.
北京市土地利用变化的空间分布特征   总被引:45,自引:10,他引:45  
土地利用变化是全球变化中的重要组成部分 ,是短期内人类活动对自然环境施加影响的显著表现形式。本文基于遥感和地理信息系统技术 ,利用LandsatTM图像的解译成果 ,分析了北京市 1985~ 2 0 0 0年土地利用变化的空间分布特征。研究表明 ,在这 15年的时间里 ,北京市林地和城乡、工矿、居住用地的转移趋势明显 ,两者的转移率分别达到 4 0 78%和37 60 % ,主要以林地内部、林地向草地转移、居住用地的内部和工矿废弃地还林还草等类型为主。同时 ,各类土地利用类型的净变化呈现出明显的区域差异。  相似文献   

14.
湿地景观格局的动态变化与区域土地利用/覆盖格局的变化有着十分紧密的联系。以纳帕海、碧塔海和属都湖三块高原湿地所在的云南省香格里拉县建塘镇为例,在遥感和GIS技术的支持下,对该区域1974、1987和2000三期Landsat TM(ETM)影像进行了解译,分析了26 a间的土地利用/覆盖变化规律,并结合景观格局动态分析的方法,借助FRAGSTATS软件定量分析了该区景观格局特征及其动态变化。结果表明:该区土地利用/覆盖状况变化显著,主要土地利用/覆盖类型有林地以822 hm2/a的速度在大面积减少,并主要转为灌木林地,使得后者在26 a间扩大高达17倍,变化幅度最大。建设用地和耕地的面积分别扩大了6倍和2倍,而草地和雪地面积持续减少。相应地,该区景观格局定量分析显示,有林地的斑块密度增大而平均斑块面积减小迅速,呈破碎化趋势,灌木林地的斑块密度、平均斑块面积均增加,草地则与之相反均减小,耕地的斑块密度降低而平均斑块面积增加,在不断融合成大斑块,其余各景观单元斑块密度增大平均斑块面积减小,同时各斑块几何形状在1987年变化最剧烈,景观格局趋于复杂。  相似文献   

15.
朱磊  刘雅轩 《干旱区地理》2013,36(5):946-954
近几十年来,玛纳斯河流域以耕地面积过度扩张、山区林地与草地退化为代表的一系列不可持续的发展方式已对区域生态安全和土地可持续利用构成了威胁。通过利用遥感影像与GIS方法,以沙湾县和农八师垦区为研究区,定量评价了区域土地利用的空间适宜性,并将其与国家退耕还林还草政策作为主要约束条件,建立元胞自动机模型对研究区景观格局进行了空间优化。结果表明:(1)1976-2012年,研究区耕地面积显著扩张,增加的耕地主要由未利用地、草地和林地转换而来;林地面积净减少幅度达65.90%,转出林地中有58.33%转换为耕地;草地净面积在研究时段内虽略有增加,但仍有6.352×104 hm2的草地转换为耕地,占草地转出总面积的66.03%;(2)耕地、林地和草地适宜性等级处于I级(很适宜)和Ⅱ级(适宜)的面积分别占研究区总面积的79.74%、70.23%和59.82%;(3)优化后,区域内耕地、林地和草地三者的比例由原来的6.04∶0.39∶3.57调整为4.03∶0.99∶4.98。优化结果在一定程度上减缓了耕地的扩张,提高了林地、草地所占比例,有利于该区域绿洲生态系统的稳定性和社会经济可持续发展。  相似文献   

16.
2000-2010年中国退牧还草工程区土地利用/覆被变化   总被引:1,自引:0,他引:1  
在3S技术支持下,结合景观格局定量分析方法,基于30 m分辨率的土地利用/覆被数据,对中国退牧还草工程区2000-2010年土地利用/覆被时空分布特征进行研究。通过利用土地利用转移矩阵和动态度来判定土地利用变化的速度和区域差异,并在斑块类型和景观水平上分析研究区景观格局特征,探讨土地利用格局变化的生态效应。结果表明:①近10年来,研究区土地利用/覆被类型以草地和其他类用地为主,整体内部结构稳定少动。草地变化面积仅占2000年草地总面积的0.37%;林地、湿地、耕地和人工表面的面积均有所增加;其他类用地面积有所减少。②全区土地综合动态度均小于0.1%,土地利用/覆被变幅较小,除人工表面较活跃外,其他各类型变化相对缓慢,且各省土地利用区域差异较小。③研究区内景观基质未发生改变,区域景观破碎度递减,景观多样性水平上升,景观聚集度和连续性微弱下降,景观整体保持较完整态势。退牧还草工程的实施使土地利用/覆被结构和景观格局均得以优化。  相似文献   

17.
Based on TM image data and other survey materials, this paper analyzed the spatiotemporal patterns of land use change in the Bohai Rim during 1985–2005. The findings of this study are summarized as follows: (1) Land use pattern changed dramatically during 1985–2005. Industrial and residential land in urban and rural areas increased by 643,946 hm2, of which urban construction land had the largest and fastest increase of 294,953 hm2 at an annual rate of 3.72%. (2) The outward migration of rural population did not prevent the expansion of residential land in rural areas by 184,869 hm2. This increase reveals that construction of rural residences makes seriously wasteful and inefficient use of land. (3) Arable land, woodland and grassland decreased at a rate of –0.02%, –0.12% and –1.32% annually, while unused land shrank by 157,444 hm2 at an annual rate of –1.69%. (4) The change of land use types showed marked fluctuations over the two stages (1985–1995 and 1995–2005). In particular, arable land, woodland and unused land experienced an inversed trend of change. (5) There was a significant interaction between arable land and woodland. Industrial construction land in urban and rural areas showed a net trend of increase during the earlier period, but only adjustment to its internal structure during the second period. The loss of arable land to the construction of factories, mines and residences took place mainly in the fringe areas of large and medium-sized cities, along the routes of major roads, as well as in the economically developed coastal areas in the east. Such changes are closely related to the spatial differentiation of the level of urbanization and industrialization in the region.  相似文献   

18.
徐州煤矿区土地利用变化分析   总被引:5,自引:0,他引:5  
胡召玲  杜培军  赵昕 《地理学报》2007,62(11):1204-1214
以3 个时相的卫星遥感图像TM 为主要数据源, 利用神经网络分类法进行监督分类, 获得1987-2003 年间徐州煤矿区土地利用变化的基础数据。由此计算出土地利用类型的动态转移矩阵、土地利用程度变化指数、动态度指数、土地利用变化类型的多度和重要度指数等区域土地利用变化的指数模型, 定量分析该区土地利用变化情况。结果显示: ① 建设用地和水体的面积均保持持续上升的势头; 耕地呈现持续下降态势; 林地先减少后增加; 未利用地面积则呈现出先增加后减少态势。② 在1987-2003 年间, 建设用地和未利用地都主要转向耕地。在1987-1994 年间, 水体主要向林地转移; 耕地主要转向未利用地和建设用地; 林地主要转向耕地。在1994-2003 年间, 水体的转移比例很小; 耕地主要转向未利用地和林地; 林地主要转向水体。③ 在1987-2003 年间, 该区土地利用变化的剧烈程度很大, 并且其土地利用正处于一个衰退期。④ 在1987-1994 年间, 主要的土地利用变化类型分别是: 未利用地与耕地、耕地与建设用地之间的相互转化。在1994-2003 年间, 主要的土地利用变化类型分别是: 耕地转化为未利用地、耕地转化为林地、未利用地转化为耕地、耕地转化为建设用地。  相似文献   

19.
基于遥感技术的宁夏南部山区LUCC研究   总被引:9,自引:1,他引:8  
以1975、1987 和2001 年的Landsat TM/MSS 影像为数据源, 利用遥感(RS) 和地理信息系 统(GIS) 相结合的技术, 运用统计方法和转移矩阵对宁夏南部山区26 年来的土地利用/覆被变化 ( LUCC) 状况进行了研究。结果表明, 宁夏南部山区土地利用/覆被的主要类型是耕地, 其次是草 地和林地; 耕地在1987 年达到了最高峰, 为790312.06hm2, 占总土地面积的70.03%。转移矩阵分 析得出, 在1975~1987 年间, 有370770.52hm2 草地和39813.57hm2 林地转化成耕地; 而在1987~ 2001 年间又有316865.89 hm2 耕地转化为草地和50729.16 hm2 耕地转化为林地。导致这种变化 的原因是上世纪70、80 年代当地经济发展思路以基本农田建设为中心, 鼓励农民进行开荒种地; 而到90 年代后, 国家开发政策的转变和重大生态工程的建设, 特别是退耕还林还草, 为当地草地 和林地的恢复起到了重要的作用。  相似文献   

20.
基于遥感和GIS的松嫩沙地土地利用/土地覆被时空格局研究   总被引:23,自引:9,他引:14  
利用1986年和2000年2期TM影像资料,建立相应的空间图形库系统,定量分析了松嫩沙地典型区近15a来土地利用数量变化,从土地利用斑块特征、斑块空间邻接关系变化和主导变化类型角度对土地利用/覆被格局进行了清晰的空间描述。结果表明,研究时段内该区土地利用量变和质变活跃。耕地面状成片、条带状延伸和斑块状空间扩展,从整体上呈现集中化特征。较大面积的草地和林地被分割、破碎化,小块盐碱化草地空间聚集与扩张。耕地与草地、草地与盐碱地空间相邻度变大,草地开垦强度增大、土地盐碱化日益严重。空间变化上表现为耕地、林地、草地和未利用地之间相互转化,以草地、林地-旱地,草地-未利用地,未利用地-旱地、水田及旱地-水田最为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号