首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acreage estimation of Rabi sorghum crop in Ahmadnagar, Pune and Solapur districts of central Maharashtra has been attempted using synchronously acquired Landsat MSS and TM data of 1987–88 season and IRS LISS-I data of 1988–89 season; in conjuction with near-synchronous ground truth data. The remote-sensing-based acreage estimations for the districts were compared with the respective estimates by Bureau of Economics and Statistics (BES). As the acreages were underestimated with the classification of standard four-band MSS data, the atmospheric correction of fourband MSS data and normalised differencing (ND) of the atmospheric-corrected MSS data were attempted. The main observations are: (1) the use of Landsat MSS data results in underestimation of sorghum acreage in comparison with BES estimation, (2) the atmospheric correction and ND transformation of MSS data are necessary for bringing acreage estimates in agreement with BES estimates, (3) Mid-IR data in band 1.55 to 1.75 μm are useful in improving the separability of land-use classes, and (4) remote sensing data with radiometric sensitivity comparable to LISS-I or Landsat TM and Signal-to-Noise ratios comparable to LISS-I data are suitable for accurate acreage estimation of sorghum.  相似文献   

2.
Forest cover plays a key role in climate change by influencing the carbon stocks, the hydrological cycle and the energy balance. Forest cover information can be determined from fine-resolution data, such as Landsat Enhanced Thematic Mapper Plus (ETM+). However, forest cover classification with fine-resolution data usually uses only one temporal data because successive data acquirement is difficult. It may achieve mis-classification result without involving vegetation growth information, because different vegetation types may have the similar spectral features in the fine-resolution data. To overcome these issues, a forest cover classification method using Landsat ETM+ data appending with time series Moderate-resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data was proposed. The objective was to investigate the potential of temporal features extracted from coarse-resolution time series vegetation index data on improving the forest cover classification accuracy using fine-resolution remote sensing data. This method firstly fused Landsat ETM+ NDVI and MODIS NDVI data to obtain time series fine-resolution NDVI data, and then the temporal features were extracted from the fused NDVI data. Finally, temporal features combined with Landsat ETM+ spectral data was used to improve forest cover classification accuracy using supervised classifier. The study in North China region confirmed that time series NDVI features had significant effects on improving forest cover classification accuracy of fine resolution remote sensing data. The NDVI features extracted from time series fused NDVI data could improve the overall classification accuracy approximately 5% from 88.99% to 93.88% compared to only using single Landsat ETM+ data.  相似文献   

3.
Recent developments in remote sensing technology, in particular improved spatial and temporal resolution, open new possibilities for estimating crop acreage over larger areas. Remotely sensed data allow in some cases the estimation of crop acreage statistics independently of sub-national survey statistics, which are sometimes biased and incomplete. This work focuses on the use of MODIS data acquired in 2001/2002 over the Rostov Oblast in Russia, by the Azov Sea. The region is characterised by large agricultural fields of around 75 ha on average. This paper presents a methodology to estimate crop acreage using the MODIS 16-day composite NDVI product. Particular emphasis is placed on a good quality crop mask and a good quality validation dataset. In order to have a second dataset which can be used for cross-checking the MODIS classification a Landsat ETM time series for four different dates in the season of 2002 was acquired and classified. We attempted to distinguish five different crop types and achieved satisfactory and good results for winter crops. Three hundred and sixty fields were identified to be suitable for the training and validation of the MODIS classification using a maximum likelihood classification. A novel method based on a pure pixel field sampling is introduced. This novel method is compared with the traditional hard classification of mixed pixels and was found to be superior.  相似文献   

4.
Failure of the Scan Line Corrector (SLC) on the Landsat ETM+ sensor has had a major impact on many applications that rely on continuous medium resolution imagery to meet their objectives. The United States Department of Agriculture (USDA) Cropland Data Layer (CDL) program uses Landsat imagery as the primary source of data to produce crop-specific maps for 20 states in the USA. A new method has been developed to fill the image gaps resulting from the SLC failure to support the needs of Landsat users who require coincident spectral data, such as for crop type mapping and monitoring. We tested the new gap-filled method for a CDL crop type mapping project in eastern Nebraska. Scan line gaps were simulated on two Landsat 5 images (spring and late summer 2003) and then gap-filled using landscape boundary models, or segment models, that were derived from 1992 and 2002 Landsat images (used in the gap-fill process). Various date combinations of original and gap-filled images were used to derive crop maps using a supervised classification process. Overall kappa values were slightly higher for crop maps derived from SLC-off gap-filled images compared to crop maps derived from the original imagery (0.3–1.3% higher). Although the age of the segment model used to derive the SLC-off gap-filled product did not negatively impact the overall agreement, differences in individual cover type agreement did increase (?0.8%–1.6% using the 2002 segment model to ?5.0–5.1% using the 1992 segment model). Classification agreement also decreased for most of the classes as the size of the segment used in the gap-fill process increased.  相似文献   

5.
Developing techniques are required to generate agricultural land cover maps to monitor agricultural fields. Landsat 8 Operational Land Imager (OLI) offers reflectance data over the visible to shortwave-infrared range. OLI offers several advantages, such as adequate spatial and spectral resolution, and 16 day repeat coverage, furthermore, spectral indices derived from Landsat 8 OLI possess great potential for evaluating the status of vegetation. Additionally, classification algorithms are essential for generating accurate maps. Recently, multi-Grained Cascade Forest, which is also called deep forest, was proposed, and it was shown to give highly competitive performance for classification. However, the ability of this algorithm to generate crop maps with satellite data had not yet been evaluated. In this study, the reflectance at 7 bands and 57 spectral indices calculated from Landsat 8 OLI data were evaluated for its potential for crop type identification.  相似文献   

6.
Rice crop occupies an important aspect of food security and also contributes to global warming via GHGs emission. Characterizing rice crop using spatial technologies holds the key for addressing issues of global warming and food security as different rice ecosystems respond differently to the changed climatic conditions. Remote sensing has become an important tool for assessing seasonal vegetation dynamics at regional and global scale. Bangladesh is one of the major rice growing countries in South Asia. In present study we have used remote sensing data along with GIS and ancillary map inputs in combination to derive seasonal rice maps, rice phenology and rice cultural types of Bangladesh. The SPOT VGT S10 NDVI data spanning Aus, Aman and Boro crop season (1st May 2008 to 30th April 2009) were used, first for generating the non-agriculture mask through ISODATA clustering and then to generate seasonal rice maps during second classification. The spectral rice profiles were modelled and phenological parameters were derived. NDVI growth profiles were modelled and crop calendar was derived. To segregate the rice cultural types of Bangladesh into IPCC rice categories, we used elevation, irrigated area, interpolated rainfall maps and flood map through logical modelling in GIS. The results indicated that the remote sensing derived rice area was 9.99 million ha as against the reported area of 11.28 million ha. The wet and dry seasons accounted for 64% and 36 % of the rice area, respectively. The flood prone, drought prone and deep water categories account for 7.5%, 5.56% and 2.03%, respectively. The novelty of current findings lies in the spatial outcome in form of seasonal and rice cultural type maps of Bangladesh which are helpful for variety of applications.  相似文献   

7.
The National Agricultural Statistics Service (NASS) of the US Department of Agriculture (USDA) produces the Cropland Data Layer (CDL) product, which is a raster-formatted, geo-referenced, crop-specific, land cover map. CDL program inputs include medium resolution satellite imagery, USDA collected ground truth and other ancillary data, such as the National Land Cover Data set. A decision tree-supervised classification method is used to generate the freely available state-level crop cover classifications and provide crop acreage estimates based upon the CDL and NASS June Agricultural Survey ground truth to the NASS Agricultural Statistics Board. This paper provides an overview of the NASS CDL program. It describes various input data, processing procedures, classification and validation, accuracy assessment, CDL product specifications, dissemination venues and the crop acreage estimation methodology. In general, total crop mapping accuracies for the 2009 CDLs ranged from 85% to 95% for the major crop categories.  相似文献   

8.
Two band simulad WiFS data for five dates correspfonding to rabi sorghun growing season of 1993-94 has been generated for Aurangabad district of Maharashtra. Ground truth data has been used for supervised classificatioa of one date raw image and five date NDVI of simulated WiFS data and the results were compared with those derived from single date IRS LISS I data. Analysis of classification accuracies indicate that single date WIFS data gives slightly lower accuracy of 79 per cent against 81 per cent obtained for single date LISS I data. Overall accuracy for 5-date WiFS data is 96 per cent which shows that classification performance of five date WiFS NDVI data is far superior to the single date data of the IRS-IC WiFS as well as the IRS LISS I. The study thus shows the importance of temporal domain of data acquisition in sorghum crop discrimination, Growth profile for sorghum and other crop classes were generated from multidate WiFS derived NDVI data. Differences in growth profiles of sorghum vigour classes as well as amongst different crop types and forests corroborate the premise of better discrimination of crop types and their vigour on multidate remotely sensed data.  相似文献   

9.
Accurate wetland maps are a fundamental requirement for land use management and for wetland restoration planning. Several wetland map products are available today; most of them based on remote sensing images, but their different data sources and mapping methods lead to substantially different estimations of wetland location and extent. We used two very high-resolution (2 m) WorldView-2 satellite images and one (30 m) Landsat 8 Operational Land Imager (OLI) image to assess wetland coverage in two coastal areas of Tampa Bay (Florida): Fort De Soto State Park and Weedon Island Preserve. An initial unsupervised classification derived from WorldView-2 was more accurate at identifying wetlands based on ground truth data collected in the field than the classification derived from Landsat 8 OLI (82% vs. 46% accuracy). The WorldView-2 data was then used to define the parameters of a simple and efficient decision tree with four nodes for a more exacting classification. The criteria for the decision tree were derived by extracting radiance spectra at 1500 separate pixels from the WorldView-2 data within field-validated regions. Results for both study areas showed high accuracy in both wetland (82% at Fort De Soto State Park, and 94% at Weedon Island Preserve) and non-wetland vegetation classes (90% and 83%, respectively). Historical, published land-use maps overestimate wetland surface cover by factors of 2–10 in the study areas. The proposed methods improve speed and efficiency of wetland map production, allow semi-annual monitoring through repeat satellite passes, and improve the accuracy and precision with which wetlands are identified.  相似文献   

10.
ABSTRACT

Globally, drought constitutes a serious threat to food and water security. The complexity and multivariate nature of drought challenges its assessment, especially at local scales. The study aimed to assess spatiotemporal patterns of crop condition and drought impact at the spatial scale of field management units with a combined use of time-series from optical (Landsat, MODIS, Sentinel-2) and Synthetic Aperture Radar (SAR) (Sentinel 1) data. Several indicators were derived such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Land Surface Temperature (LST), Tasseled cap indices and Sentinel-1 based backscattering intensity and relative surface moisture. We used logistic regression to evaluate the drought-induced variability of remotely sensed parameters estimated for different phases of crop growth. The parameters with the highest prediction rate were further used to estimate thresholds for drought/non-drought classification. The models were evaluated using the area under the receiver operating characteristic curve and validated with in-situ data. The results revealed that not all remotely sensed variables respond in the same manner to drought conditions. Growing season maximum NDVI and NDMI (70–75%) and SAR derived metrics (60%) reflect specifically the impact of agricultural drought. These metrics also depict stress affected areas with a larger spatial extent. LST was a useful indicator of crop condition especially for maize and sunflower with prediction rates of 86% and 71%, respectively. The developed approach can be further used to assess crop condition and to support decision-making in areas which are more susceptible and vulnerable to drought.  相似文献   

11.
Landsat8和MODIS融合构建高时空分辨率数据识别秋粮作物   总被引:2,自引:0,他引:2  
本文利用Wu等人提出的遥感数据时空融合方法 STDFA(Spatial Temporal Data Fusion Approach)以Landsat 8和MODIS为数据源构建高时间、空间分辨率的遥感影像数据。以此为基础,构建15种30 m分辨率分类数据集,然后利用支持向量机SVM(Support Vector Machine)进行秋粮作物识别,验证不同维度分类数据集进行秋粮作物识别的适用性。实验结果显示,不同分类数据集的秋粮作物分类结果均达到了较高的识别精度。综合各项精度指标分析,Red+Phenology数据组合对秋粮识别效果最好,水稻识别的制图精度和用户精度分别达到91.76%和82.49%,玉米识别的制图精度和用户精度分别达到85.80%和74.97%,水稻和玉米识别的总体精度达到86.90%。  相似文献   

12.
Several previous studies have shown that the inclusion of the LST (Land Surface Temperature) parameter to a NDVI (Normalized Difference Vegetation Index) based classification procedure is beneficial to classification accuracy. In this work, the Yearly Land Cover Dynamics (YLCD) approach, which is based on annual behavior of LST and NDVI, has been used to classify an agricultural area into crop types. To this end, a time series of Landsat-5 images for year 2009 of the Barrax (Spain) area has been processed: georeferenciation, destriping and atmospheric correction have been carried out to estimate NDVI and LST time series for year 2009, from which YLCD parameters were estimated. Then, a maximum likelihood classification was carried out on these parameters based on a training dataset obtained from a crop census. This classification has an accuracy of 87% (kappa = 0.85) when crops are subdivided in irrigated and non-irrigated fields, and when cereal crops are aggregated in a single crop, and performs better than a similar classification from Landsat bands only. These results show that a good crop differentiation can be obtained although detailed crop separation may be difficult between similar crops (barley, wheat and oat) due to similar annual NDVI and LST behavior. Therefore, the YLCD approach is suited for vegetation classification at local scale. As regards the assessment of the YLCD approach for classification at regional and global scale, it will be carried out in a further study.  相似文献   

13.
Rice-acreage estimation of Orissa state was carried out using single-date NOAA-AVHRR data. Selection of optimum date of data acquisition for this purpose was studied using data of six acquisition dates viz. October, 3, 12, 21, 29, November 7 and 26, 1989. Comparative performance of MXL classification of two NOAA bands (Band-1: 0.58–0.68 μm and Band-2: 0.73–1.10 μm) and Normalised Difference Vegetation Index (NDVI) derived from these two-band data was examined. Acreage thus estimated was compared against Bureau of Economics and Statistics (BES) estimate of the same year. The acreage estimation obtained by two band classification was closer to BES estimate than that based on NDVI. Data acquired in the month of October have given better estimate for state level rice acreage than that acquired in the month of November.  相似文献   

14.
In the context of growing populations and limited resources, the sustainable intensification of agricultural production is of great importance to achieve food security. As the need to support management at a range of spatial scales grows, decision-support tools appear increasingly important to enable the timely and regular assessment of agricultural production over large areas and identify priorities for improving crop production in low-productivity regions. Understanding productivity patterns requires the timely provision of gapless, spatial information about agricultural productivity. In this study, dense 30-m time series covering the 2004–2014 period were generated from Landsat and MODerate-resolution Imaging Spectroradiometer (MODIS) satellite images over the irrigated cropped area of the Fergana Valley, Central Asia. A light-use efficiency model was combined with machine learning classifiers to assess the crop yield at the field level. The classification accuracy of land cover maps reached 91% on average. Crop yield and acreage estimates were in good agreement (R2 = 0.812 and 0.871, respectively) with reported yields and acreages at the district level. Several indicators of cropland intensity and productivity were derived on a per-field basis and used to highlight homogeneous regions in terms of productivity by means of clustering. Results underlined that regions with lower water-use efficiency were not only located further away from irrigation canals and intake points, but also had limited access to markets and roads. The results underline that yield could be increased by roughly 1.0 and 1.4 t/ha for cotton and wheat, respectively, if the access to water would be optimized in some of the regions. The minimum calibration requirement of the method and the fusion of multi-sensor data are keys to cope with the constraints of operational crop monitoring and guarantee a sustained and timely delivery of the agricultural indicators to the user community. The results of this study can form the baseline to support regional land- and water-resource management.  相似文献   

15.
This paper reports acreage, yield and production forecasting of wheat crop using remote sensing and agrometeorological data for the 1998–99 rabi season. Wheat crop identification and discrimination using Indian Remote Sensing (IRS) ID LISS III satellite data was carried out by supervised maximum likelihood classification. Three types of wheat crop viz. wheat-1 (high vigour-normal sown), wheat-2 (moderate vigour-late sown) and wheat-3 (low vigour-very late sown) have been identified and discriminated from each other. Before final classification of satellite data spectral separability between classes were evaluated. For yield prediction of wheat crop spectral vegetation indices (RVI and NDVI), agrometeorological parameters (ETmax and TD) and historical crop yield (actual yield) trend analysis based linear and multiple linear regression models were developed. The estimated wheat crop area was 75928.0 ha. for the year 1998–99, which sowed ?2.59% underestimation with land record commissioners estimates. The yield prediction through vegetation index based and vegetation index with agrometeorological indices based models were 1753 kg/ha and 1754 kg/ha, respectively and have shown relative deviation of 0.17% and 0.22%, the production estimates from above models when compared with observed production show relative deviation of ?2.4% and ?2.3% underestimations, respectively.  相似文献   

16.
Mapping crop types is of great importance for assessing agricultural production, land-use patterns, and the environmental effects of agriculture. Indeed, both radiometric and spatial resolution of Landsat’s sensors images are optimized for cropland monitoring. However, accurate mapping of crop types requires frequent cloud-free images during the growing season, which are often not available, and this raises the question of whether Landsat data can be combined with data from other satellites. Here, our goal is to evaluate to what degree fusing Landsat with MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data can improve crop-type classification. Choosing either one or two images from all cloud-free Landsat observations available for the Arlington Agricultural Research Station area in Wisconsin from 2010 to 2014, we generated 87 combinations of images, and used each combination as input into the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to predict Landsat-like images at the nominal dates of each 8-day MODIS NBAR product. Both the original Landsat and STARFM-predicted images were then classified with a support vector machine (SVM), and we compared the classification errors of three scenarios: 1) classifying the one or two original Landsat images of each combination only, 2) classifying the one or two original Landsat images plus all STARFM-predicted images, and 3) classifying the one or two original Landsat images together with STARFM-predicted images for key dates. Our results indicated that using two Landsat images as the input of STARFM did not significantly improve the STARFM predictions compared to using only one, and predictions using Landsat images between July and August as input were most accurate. Including all STARFM-predicted images together with the Landsat images significantly increased average classification error by 4% points (from 21% to 25%) compared to using only Landsat images. However, incorporating only STARFM-predicted images for key dates decreased average classification error by 2% points (from 21% to 19%) compared to using only Landsat images. In particular, if only a single Landsat image was available, adding STARFM predictions for key dates significantly decreased the average classification error by 4 percentage points from 30% to 26% (p < 0.05). We conclude that adding STARFM-predicted images can be effective for improving crop-type classification when only limited Landsat observations are available, but carefully selecting images from a full set of STARFM predictions is crucial. We developed an approach to identify the optimal subsets of all STARFM predictions, which gives an alternative method of feature selection for future research.  相似文献   

17.
With the availability of high frequent satellite data, crop phenology could be accurately mapped using time-series remote sensing data. Vegetation index time-series data derived from AVHRR, MODIS, and SPOT-VEGETATION images usually have coarse spatial resolution. Mapping crop phenology parameters using higher spatial resolution images (e.g., Landsat TM-like) is unprecedented. Recently launched HJ-1 A/B CCD sensors boarded on China Environment Satellite provided a feasible and ideal data source for the construction of high spatio-temporal resolution vegetation index time-series. This paper presented a comprehensive method to construct NDVI time-series dataset derived from HJ-1 A/B CCD and demonstrated its application in cropland areas. The procedures of time-series data construction included image preprocessing, signal filtering, and interpolation for daily NDVI images then the NDVI time-series could present a smooth and complete phenological cycle. To demonstrate its application, TIMESAT program was employed to extract phenology parameters of crop lands located in Guanzhong Plain, China. The small-scale test showed that the crop season start/end derived from HJ-1 A/B NDVI time-series was comparable with local agro-metrological observation. The methodology for reconstructing time-series remote sensing data had been proved feasible, though forgoing researches will improve this a lot in mapping crop phenology. Last but not least, further studies should be focused on field-data collection, smoothing method and phenology definitions using time-series remote sensing data.  相似文献   

18.
Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.  相似文献   

19.
Site-specific information of crop types is required for many agro-environmental assessments. The study investigated the potential of support vector machines (SVMs) in discriminating various crop types in a complex cropping system in the Phoenix Active Management Area. We applied SVMs to Landsat time-series Normalized Difference Vegetation Index (NDVI) data using training datasets selected by two different approaches: stratified random approach and intelligent selection approach using local knowledge. The SVM models effectively classified nine major crop types with overall accuracies of >86% for both training datasets. Our results showed that the intelligent selection approach was able to reduce the training set size and achieved higher overall classification accuracy than the stratified random approach. The intelligent selection approach is particularly useful when the availability of reference data is limited and unbalanced among different classes. The study demonstrated the potential of utilizing multi-temporal Landsat imagery to systematically monitor crop types and cropping patterns over time in arid and semi-arid regions.  相似文献   

20.
中国农情遥感速报系统   总被引:49,自引:3,他引:49  
吴炳方 《遥感学报》2004,8(6):481-497
介绍了中国农情遥感速报系统的建设情况 ,系统内容包括农作物长势监测、农作物种植面积监测、农作物单产预测与粮食产量估算、作物时空结构监测和粮食供需平衡预警等。简要介绍了 1998年以来中国农情遥感速报系统在监测内容与监测范围、监测频率、技术发展以及质量控制与过程检验体系建立等方面的进展 ,并就中国农情遥感速报系统的发展方向提出了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号