首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 993 毫秒
1.
Over the last decade, our studies in ancient evaporitic basins have been based on a detailed study of a single borehole record. The detailed findings in medium- to large-sized evaporitic basins were shadowed with a relevant question: can interpretations from a representative evaporitic record in a single borehole be extended to the whole evaporitic basin? This paper addresses that question; the results obtained are compared with results from another distant point within the basin. The general methodology not only proves its reliability in interpreting the evolution of evaporitic basins from a single borehole but reveals its capability to obtain detailed palaeoenvironmental interpretations.

The chemical evolution of an Upper Eocene evaporitic sequence from the South Pyrenean foreland basin (Spain) has been investigated along the Súria-19 borehole record. Detailed petrographic and mineralogical study, X-ray microanalysis of frozen primary inclusions trapped in halite (Cryo-SEM-EDS), systematic isotopic analysis (δ34S and δ18O in sulphates) and computer-based evaporation models have been integrated in a multi-proxy methodology. This study revealed that a variable amount of Ca excess is required throughout different parts of the marine Lower Halite Unit (LHU) for sylvite, instead of K–Mg sulphates, to form. This Ca excess is in turn different from that required for the western sector of the same evaporitic basin (Navarrese subbasin). Quick and variable changes in Ca-rich brines or equivalent dolomitization required are explained as internal processes within the basin rather than secular variations in seawater chemistry.

The general hydrological evolution of the Catalan subbasin is explained as a restricted subbasin with a first marine stage in which continental input (up to 50% of total input) had an important control on the geochemistry of the subbasin. A second stage was determined during potash precipitation, in which the subbasin was cut from any seawater input to end up in its last stage as a purely continental evaporitic basin. Coupling evaporation models and analytical results we have obtained the proportions of recycling and their sources, estimated to change from a 100% (total mass of sulphate) Eocene source to 20% Eocene and 80% Triassic (Keuper) towards the latest stage of potash precipitation. The results obtained have been compared with results from the Navarrese subbasin allowing an integrated interpretation of the hydrological evolution of the whole Upper Eocene South Pyrenean basin. Local geochemical variations within the Upper Eocene south Pyrenean basin are explained by the differences in paleogeographical setting of the Navarrese and Catalan subbasins.  相似文献   


2.
Petrographic and geochemical studies of an Upper Eocene reef and associated basinal sediments from the mixed carbonate–siliciclastic fill of the south‐eastern Pyrenean foreland basin near Igualada (NE Spain) provide new insights into the evolution of subsurface hydrology during the restriction of a marine basin. The reef deposits are located on delta‐lobe sandstones and prodelta marls, which are overlain by hypersaline carbonates and Upper Eocene evaporites. Authigenic celestite (SrSO4) is an important component in the observed diagenetic sequences. Celestite is a significant palaeohydrological indicator because its low solubility constrains transportation of Sr2+ and SO42? in the same diagenetic fluid. Stable isotopic analyses of carbonates in the reef indicate that meteoric recharge was responsible for aragonite stabilization and calcite cementation. Sulphur and oxygen isotope geochemistry of the celestite demonstrates that it formed from residual sulphate after bacterial sulphate reduction, but also requires that there was a prior episode of sulphate recycling. Meteoric water reaching the reef and basinal areas was most probably charged with SO42? from the dissolution of younger Upper Eocene marine evaporites. This sulphate, combined with organic matter present in the sediments, fuelled bacterial sulphate reduction in the meteoric palaeoaquifer. Strontium for celestite precipitation was partly derived in situ from dissolution of aragonite corals in the reef and basinal counterparts. However, 87Sr/86Sr data also suggest that Sr2+ was partly derived from dissolution of overlying evaporites. Mixing of these two fluids promoted celestite formation. The carbonate stable isotopic data suggest that the local meteoric water was enriched in 18O compared with that responsible for stabilization of other reefs along the basin margin. Furthermore, meteoric recharge at Igualada post‐dated evaporite deposition in the basin, whereas other parts of the same reef complex were stabilized before evaporite formation. This discrepancy resulted from the spatial distribution of continental siliciclastic units that acted as groundwater conduits.  相似文献   

3.
Astronomical tuning of the Messinian pre‐salt succession in the Levant Basin allows for the first time the reconstruction of a detailed chronology of the Messinian salinity crisis (MSC) events in deep setting and their correlation with marginal records that supports the CIESM ( 2008 ) 3‐stage model. Our main conclusions are (1) MSC events were synchronous across marginal and deep basins, (2) MSC onset in deep basins occurred at 5.97 Ma, (3) only foraminifera‐barren, evaporite‐free shales accumulated in deep settings between 5.97 and 5.60 Ma, (4) deep evaporites (anhydrite and halite) deposition started later, at 5.60 Ma and (5) new and published 87Sr/86Sr data indicate that during all stages, evaporites precipitated from the same water body in all the Mediterranean sub‐basins. The wide synchrony of events and 87Sr/86Sr homogeneity implies inter‐sub‐basin connection during the whole MSC and is not compatible with large sea‐level fall and desiccation of the Mediterranean.  相似文献   

4.
Sichuan Basin is one of the most important marine–salt forming basins in China. The Simian and Triassic have a large number of evaporites. The Triassic strata have found a large amount of polyhalite and potassium-rich brine. However, no soluble potassium salt deposit were found. In this study, the halite in well Changping 3 which is located at the eastern part of the Sichuan basin was studied using the characteristics, hydrogen and oxygen isotopes of the fluid inclusion in halite to reconstruct the paleoenvironment. The salt rocks in well Changping 3 can be divided into two types: grey salt rock and orange salt rock. The result shows that the isotopic composition of the halite fluid inclusion is distinct from the global precipitation line reflecting that the salt formation process is under strong evaporation conditions and the climate is extremely dry. At the same time, compared with the hydrogen and oxygen isotopes of brine in the Sichuan Basin and the hydrous isotope composition of the inclusions in the salt inclusions of other areas in China, it is shown that the evaporation depth of the ancient seawater in the Sichuan Basin was high and reached the precipitation of potassium and magnesium stage.  相似文献   

5.
Geological and environmental implications of the evaporite karst in Spain   总被引:2,自引:0,他引:2  
In Spain, evaporite outcrops cover approximately 7% of the total area of the country. Most of the evaporitic formations are made up of Ca-sulfates (gypsum/anhydrite) or Ca-sulfates and halite. Certain Paleogene marine evaporites also contain K-Mg-chlorides, and some Tertiary continental formations bear substantial amounts of Na-sulfates in the subsurface (glauberite and thenardite). Mesozoic evaporitic formations commonly wedge out towards the ground surface, passing into condensed sequences and dissolution-collapse breccias. Some of these highly porous breccias constitute major regional aquifers. In several areas, interstratal karstification of the evaporites has given rise to gravitational deformations such as basin structures, monoclines, and collapse structures covering several square kilometers that record a cumulative subsidence in excess of 200 m (Teruel and Calatayud Grabens). A widespread consequence of evaporite dissolution processes in Spain is the hydrochemical degradation of surface waters. Some of the largest and most outstanding lake systems, from an environmental perspective, occur in karstic depressions developed in evaporitic formations (Fuente de Piedra, Gallocanta, Bujaraloz, and Bañolas lakes). Sinkhole activity is a major geohazard in several evaporite karst areas. The sinkhole risk has a particularly high impact in sectors where Tertiary evaporites are overlain by Quaternary alluvial aquifers (Calatayud, Zaragoza, and Madrid areas). Some of the detrimental effects of subsidence include severe damage to historical monuments (Calatayud), the demolition of a whole village (Puilatos), or the derailment of a freight train (Zaragoza area). The deepest gypsum caves are found in Triassic diapiric structures (El Sumidor Cave, 210 m deep), and the longest ones are developed in horizontally lying Neogene sequences (Sorbas caves, and Estremera maze cave). The Cardona diapir hosts salt caves up to 4,300 m long whose genesis is related to flooding of mine galleries caused by the interception of a phreatic conduit. The main anthropogenic impacts on the endokarstic systems are related to the disposal of wastewaters and the destruction of caves by quarrying. The fluvial valleys that cross Tertiary evaporitic outcrops commonly show peculiar geological characteristics related to dissolution-induced synsedimentary subsidence phenomena: (1) Thickened alluvium filling dissolution basins up to several tens of kilometers long and more than 100 m deep. The largest thickenings are found in areas where the bedrock contains halite and glauberite. (2) Superimposed alluvial units locally bounded by angular unconformities. (3) Abundant deformational structures and paleosinkholes related to the rockhead and/or interstratal karstification of the substratum. These fluvial valleys typically are flanked by a prominent gypsum escarpment. Rock-falls favored by the dissolutional enlargement of joints derived from these scarps are the type of mass movement which has caused the highest number of casualties in Spain.  相似文献   

6.
郭佩  李长志 《古地理学报》1999,24(2):210-225
中国是一个多盐湖国家,然而盐湖研究主要集中于分析湖水化学性质、盐类物质来源和盐矿资源开发等,对盐类矿物沉积特征和埋藏成岩改造研究较少,造成从蒸发岩角度去理解古代盐湖盆地的油气富集规律较为困难。在广泛阅读国内外大型盐湖文献的基础上,笔者介绍了盐湖分类方案和蒸发岩中盐类矿物的主要成因类型,并总结了中国陆相含油气盆地中常见的硫酸盐、氯化物、含钠碳酸盐和硼酸盐的沉积—成岩过程及其古环境和古气候意义。同时,尝试利用盐湖沉积最新研究成果去探讨中国含油气盆地蒸发岩研究中存在争议或值得关注的问题,得出: (1)深部热液可为湖泊输送大量元素离子,但要在湖泊环境下富集大量蒸发岩,则(半)干旱气候和蒸发浓缩作用是前提条件;(2)易溶蒸发岩(如石盐)在沉积中心单层厚度大,而在斜坡—边缘区缺失,这是季节性气温变化和温跃层浮动引发“中心聚集效应”的结果;(3)温度可影响蒸发岩中盐类矿物溶解度、晶体结构形态和发育深度,而部分无水盐类矿物在常温常压下却无法结晶,这一现象可用来指示古地温和地层埋藏史;(4)碳酸盐型盐湖中的Na-碳酸盐种类可指示大气CO2浓度和古温度。  相似文献   

7.
郭佩  李长志 《古地理学报》2022,24(2):210-225
中国是一个多盐湖国家,然而盐湖研究主要集中于分析湖水化学性质、盐类物质来源和盐矿资源开发等,对盐类矿物沉积特征和埋藏成岩改造研究较少,造成从蒸发岩角度去理解古代盐湖盆地的油气富集规律较为困难。在广泛阅读国内外大型盐湖文献的基础上,笔者介绍了盐湖分类方案和蒸发岩中盐类矿物的主要成因类型,并总结了中国陆相含油气盆地中常见的硫酸盐、氯化物、含钠碳酸盐和硼酸盐的沉积—成岩过程及其古环境和古气候意义。同时,尝试利用盐湖沉积最新研究成果去探讨中国含油气盆地蒸发岩研究中存在争议或值得关注的问题,得出: (1)深部热液可为湖泊输送大量元素离子,但要在湖泊环境下富集大量蒸发岩,则(半)干旱气候和蒸发浓缩作用是前提条件;(2)易溶蒸发岩(如石盐)在沉积中心单层厚度大,而在斜坡—边缘区缺失,这是季节性气温变化和温跃层浮动引发“中心聚集效应”的结果;(3)温度可影响蒸发岩中盐类矿物溶解度、晶体结构形态和发育深度,而部分无水盐类矿物在常温常压下却无法结晶,这一现象可用来指示古地温和地层埋藏史;(4)碳酸盐型盐湖中的Na-碳酸盐种类可指示大气CO2浓度和古温度。  相似文献   

8.
Criteria for the recognition of salt-pan evaporites   总被引:6,自引:0,他引:6  
Layered evaporites can accumulate in: (1) ephemeral saline pans, (2) shallow perennial lagoons or lakes, and (3) deep perennial basins. Criteria for recognizing evaporites deposited in these settings have yet to be explicitly formulated. The characteristics of the ephemeral saline pan setting have been determined by examining eight. Holocene halite-dominated pans (salt pans) and their deposits (marine and non-marine) from the U.S., Mexico, Egypt and Bolivia. These salt pans are typified by alternating periods of flooding, resulting in a temporary brackish lake, evaporative concentration, when the lake becomes saline, and desiccation, which produces a dry pan fed only by groundwater. The resulting deposits consist of alternating layers (millimetres to decimetres) of halite and mud. The layers of halite are characterized by: (1) vertical and horizontal cavities, rounded crystal edges and horizontal truncation surfaces, due to dissolution during flooding; (2) vertical ‘chevrons’ and ‘cornets’ grown syntaxially on the bottom during the saline lake stage; (3) halite cements (overgrowths and euhedral cavity linings) and disruption of layering into metre-scale polygons, produced during the desiccation stage. The muddy interbeds are characterized by displacive growth of halite during the desiccation stage. Immediately below the surface of the pan the halite layers are ‘matured’ by repeated episodes of dissolution and diagenetic crystal growth. This results in porous crusts with patches of ‘chevron’ and ‘cornet’ crystals truncated by dissolution, clear diagenetic halite cement, and internal sediment. These layers of ‘mature’ halite closely resemble the patchy cloudy and clear textures of ancient halite deposits. Holocene salt-pans are known to cover thousands of square kilometres and cap halite deposits hundreds of metres thick, so they are realistic models for ancient evaporites in scale, e.g. Permian Salado Formation of New Mexico-Texas, which preserves many primary salt-pan features.  相似文献   

9.
Fluvial systems and their preserved stratigraphic expression as the fill of evolving basins are controlled by multiple factors, which can vary both spatially and temporally, including prevailing climate, sediment provenance, localized changes in the rates of creation and infill of accommodation in response to subsidence, and diversion by surface topographic features. In basins that develop in response to halokinesis, mobilized salt tends to be displaced by sediment loading to create a series of rapidly subsiding mini‐basins, each separated by growing salt walls. The style and pattern of fluvial sedimentation governs the rate at which accommodation becomes filled, whereas the rate of growth of basin‐bounding salt walls governs whether an emergent surface topography will develop that has the potential to divert and modify fluvial drainage pathways and thereby dictate the resultant fluvial stratigraphic architecture. Discerning the relative roles played by halokinesis and other factors, such as climate‐driven variations in the rate and style of sediment supply, is far from straightforward. Diverse stratigraphic architectures present in temporally equivalent, neighbouring salt‐walled mini‐basins demonstrate the effectiveness of topographically elevated salt walls as agents that partition and guide fluvial pathways, and thereby control the loci of accumulation of fluvial successions in evolving mini‐basins: drainage pathways can be focused into a single mini‐basin to preserve a sand‐prone fill style, whilst leaving adjoining basins relatively sand‐starved. By contrast, over the evolutionary history of a suite of salt‐walled mini‐basins, region‐wide changes in fluvial style can be shown to have been driven by changes in palaeoclimate and sediment‐delivery style. The Triassic Moenkopi Formation of the south‐western USA represents the preserved expression of a dryland fluvial system that accumulated across a broad, low‐relief alluvial plain, in a regressive continental to paralic setting. Within south‐eastern Utah, the Moenkopi Formation accumulated in a series of actively subsiding salt‐walled mini‐basins, ongoing evolution of which exerted a significant control on the style of drainage and resultant pattern of stratigraphic accumulation. Drainage pathways developed axial (parallel) to salt walls, resulting in compartmentalized accumulation of strata whereby neighbouring mini‐basins record significant variations in sedimentary style at the same stratigraphic level. Despite the complexities created by halokinetic controls, the signature of climate‐driven sediment delivery can be deciphered from the preserved succession by comparison with the stratigraphic expression of part of the system that accumulated beyond the influence of halokinesis, and this approach can be used to demonstrate regional variations in climate‐controlled styles of sediment delivery.  相似文献   

10.
Salt beds and salt allochthons are transient features in most sedimentary basins, which through their dissolution can carry, focus and fix base metals. The mineralisation can be subsalt, intrasalt or suprasalt, and the salt body or its breccia can be bedded or halokinetic. In all these evaporite‐associated low‐temperature diagenetic ore deposits there are four common factors that can be used to recognise suitably prepared ground for mineralisation: (i) a dissolving evaporite bed acts either as a supplier of chloride‐rich basinal brines capable of leaching metals, or as a supplier of sulfur and organics that can fix metals; (ii) where the dissolving bed is acting as a supplier of chloride‐rich brines, there is a suitable nearby source of metals that can be leached by these basinal brines (redbeds, thick shales, volcaniclastics, basalts); (iii) there is a stable redox interface where these metalliferous chloride‐rich waters mix with anoxic waters within a pore‐fluid environment that is rich in organics and sulfate/sulfide/H2S; and (iv) there is a salt‐induced focusing mechanism that allows for a stable, long‐term maintenance of the redox front, e.g. the underbelly of the salt bed or allochthon (subsalt deposits), dissolution or halokinetically maintained fault activity in the overburden (suprasalt deposits), or a stratabound intrabed evaporite dissolution front (intrasalt deposits). The diagenetic evaporite ‐ base‐metal association includes world‐class Cu deposits, such as the Kupferschiefer‐style Lubin deposits of Poland and the large accumulations in the Dzhezkazgan region of Kazakhstan. The Lubin deposits are subsalt and occur where long‐term dissolution of salt, in conjunction with upwelling metalliferous basin brines, created a stable redox front, now indicated by the facies of the Rote Faule. The Dzhezkazgan deposits (as well as smaller scale Lisbon Valley style deposits) are suprasalt halokinetic features and formed where a dissolving halite‐dominated salt dome maintained a structural focus to a regional redox interface. Halokinesis and dissolution of the salt bed also drove the subsalt circulation system whereby metalliferous saline brines convectively leached underlying sediments. In both scenarios, the resulting redox‐precipitated sulfides are zoned and arranged in the order Cu, Pb, Zn as one moves away from the zone of salt‐solution supplied brines. This redox zonation can be used as a regional pointer to both mineralisation and, more academically, to the position of a former salt bed. In the fault‐fed suprasalt accumulations the feeder faults were typically created and maintained by the jiggling of brittle overburden blocks atop a moving and dissolving salt unit. A similar mechanism localises many of the caprock replacement haloes seen in the diapiric provinces of the Gulf of Mexico and Northern Africa. Evaporite‐associated Pb–Zn deposits, like Cu deposits, are focused by brine flows associated with both bedded and halokinetic salt units or their residues. Stratabound deposits, such as Gays River and Cadjebut, have formed immediately adjacent to or within the bedded salt body, with the bedded sulfate acting as a sulfur source. In allochthon/diapir deposits the Pb–Zn mineralisation can occur both within a caprock or adjacent to the salt structure as replacements of peridiapiric organic‐rich pyritic sediments. In the latter case the conditions of bottom anoxia that allowed the preservation of pyrite were created by the presence of brine springs and seeps fed from the dissolution of nearby salt sheets and diapirs. The deposits in the peridiapiric group tend to be widespread, but individual deposits tend to be relatively small and many are subeconomic. However, their occurrence indicates an active metal‐cycling mechanism in the basin. Given the right association of salt allochthon, tectonics, source substrate and brine ponding, the system can form much less common but world‐class deposits where base‐metal sulfides replaced pyritic laminites at burial depths ranging from centimetres to kilometres. This set of diagenetic brine‐focusing mechanisms are active today beneath the floor of the Atlantis II Deep and are thought to have their ancient counterparts in some Proterozoic sedex deposits. The position of the allochthon, its lateral continuity, and the type of sediment it overlies controls the size of the accumulation and whether it is Cu or Pb–Zn dominated.  相似文献   

11.
During the Cenozoic numerous shallow epicontinental evaporite basins formed due to tectonic movements in the Northern Province of the Central Iran Tectonic Zone (the Great Kavir Basin). During the Miocene, due to sea‐level fluctuations, thick sequences of evaporites and carbonates accumulated in these basins that subsequently were overlain by continental red beds. Development of halite evaporites with substantial thickness in this area implies inflow of seawater along the narrow continental rift axis. The early ocean basin development was initiated in Early Eocene time and continued up to the Middle Miocene in the isolated failed rift arms. Competition between marine and non‐marine environments, at the edge of the encroaching sea, produced several sequences of both abrupt and gradual transition from continental wadi sediments to marginal marine evaporites in the studied area. These evaporites show well‐preserved textures indicative of relatively shallow‐brine pools. The high Br content of these evaporites indicates marine‐derived parent brines that were under the sporadic influence of freshening by meteoric water or replenishing seawater. However, the association of hopper and cornet textures denotes stratified brine that filled a relatively large pool and prevented rapid variations in the Br profile. Unstable basin conditions that triggered modification of parent brine chemistry prevailed in this basin and caused variable distribution patterns for different elements in the chloride units. The presence of sylvite and the absence of Mg‐sulphate/chlorides in the paragenetic sequence indicate SO4−depleted parent brine in the studied sequence. Petrographic examinations along with geochemical analyses on these potash‐bearing halites reveal parental brines which were a mixture of seawater and CaCl2‐rich brines. The source of CaCl2‐rich brines is ascribed to the presence of local rift systems in the Great Kavir Basin up to the end of the Early Miocene. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Extensive deposition of marine evaporites occurred during the Early–Middle Eocene in the South‐eastern Pyrenean basin (north‐east Spain). This study integrates stratigraphic and geochemical analyses of subsurface data (oil wells, seismic profiles and gravity data) together with field surveys to characterize this sedimentation in the foredeep and adjacent platform. Four major evaporite units were identified. The oldest was the Serrat Evaporites unit, with a platform‐slope‐basin configuration. Thick salina and sabkha sulphates accumulated on the platform, whereas resedimented and gravity‐derived sulphates were deposited on the slope, and salt and sulphates were deposited in the deep basin. In the subsequent unit (Vallfogona evaporites), thin sulphates formed on the platform, whereas very thick siliciclastic turbidites accumulated in the foredeep. However, some clastic gypsum coming from the platform (gypsarenites and gypsum olistoliths) was intercalated in these turbidites. The following unit, the Beuda Gypsum Formation developed in a sulphate platform‐basin configuration, where the topography of the depositional surface had become smooth. The youngest unit, the Besalú Gypsum, formed in a shallow setting. This small unit provides the last evidence of marine influence in a residual basin. Sulphur and oxygen isotope compositions are consistent with a marine origin for all evaporites. However, δ34S and δ18O values also suggest that, except for the oldest unit (Serrat Evaporites), there was some sulphate recycling from the older into the younger units. The South‐eastern Pyrenean basin constitutes a fine example of a foreland basin that underwent multiepisodic evaporitic sedimentation. In the basin, depositional factors evolved with time under a structural control. Decreasing complexity is observed in the lithofacies, as well as in the depositional models, together with a diminishing thickness of the evaporite units.  相似文献   

13.
C.J. Eastoe  & T. Peryt 《地学学报》1999,11(2-3):118-131
Routine trace-element geochemistry suggests that components in putative marine halite evaporites may be partly of nonmarine origin, but such interpretations are commonly ambiguous. Stable chlorine isotopes may provide a less-ambiguous marker of chloride origin where δ37Cl departs from the range predicted for evaporite formation from seawater. Bedded halite with primary sedimentary textures preserves original δ37Cl values. Measurable change in δ37Cl can be generated by incongruent dissolution of halite, but only if less than half the original halite remains. Badenian (middle Miocene) halite from the Forecarpathian and from the East Slovakian and Transcarpathian basins has a δ37Cl range of – 0.2 to 0.8‰. Two phenomena cannot be explained by simple evaporation of 0.0‰ seawater. At Wieliczka, the Shaft Salt has distinctive δ37Cl values (– 0.2 to 0.0‰) relative to neighbouring salt beds (0.2 to  0.6‰), requiring a large, abrupt input of brine with negative δ37Cl. Halite with high (0.6 – 0.8‰) δ37Cl near the base of the East Slovakian and Transcarpathian evaporites requires a large input of chloride with positive δ37Cl into the basins. Expulsion of basin brine with non-0‰δ37Cl into the evaporite basins may account for the nonmarine chloride sources.  相似文献   

14.
Outcrops, offshore wells, electric logs and seismic profiles from northern Tunisia provide an opportunity to decipher the Messinian Salinity Crisis in the Strait of Sicily. Messinian deposits (including gypsum beds) near the Tellian Range reveal two successive subaerial erosional surfaces overlain by breccias and marine Zanclean clays, respectively. In the Gulf of Tunis, Messinian thick evaporites (mostly halite) are strongly eroded by a fluvial canyon infilled with Zanclean clays. The first erosional phase is referred to the intra-Messinian tectonic phase and is analogous to that found in Sicily. The second phase corresponds to the Messinian Erosional Surface that postdates the marginal evaporites, to which the entire Sicilian evaporitic series must refer. The Western and Eastern Mediterranean basins were separated during deposition of the central evaporites.  相似文献   

15.
The Upper Miocene and Pliocene evaporite deposits of the Atacama Desert of northern Chile (Hilaricos and Soledad Formations) are among the few non‐marine evaporites in which aridity not only formed the deposits, but has also preserved them almost unaltered under near‐surface conditions. These deposits are largely composed of displacive Ca sulphate and halite together with minor amounts of glauberite, thenardite and polyhalite. However, at the base and top of these deposits, there are also beds of gypsum crystal pseudomorphs that originally formed as free‐growth forms within shallow brine bodies, rather than as displacive sediments. The halite is present as interstitial cement, displacive cubes and shallow‐water, bottom‐growth chevron crusts. Most of the calcium sulphate is presently anhydrite, pseudomorphous after gypsum, that was the primary depositional sulphate mineral. The secondary anhydrite formed under early diagenetic conditions after slight burial (some metres) resulting from the effect of strongly evolved pore brines. The anhydrite has been preserved without rehydration during late diagenetic and exhumation stages on account of the arid environment of the Atacama Desert. Both the Hilaricos and the Soledad Formations contain geochemical markers indicating that these Neogene evaporites had a largely non‐marine origin. Bromine content in the halite is very low (few p.p.m.), indicating neither a sedimentological relation with sea water nor the likelihood of direct recycling of prior marine halites. Moreover, the δ34S of sulphates (+4·5‰ to +9‰) also reflects a non‐marine origin, with a strong volcanic influence, although some recycling of Mesozoic marine sulphates cannot be ruled out. δ34S of dissolved sulphate from hot springs and streams in the area commonly displays positive values (+2‰ to +10‰). Leaching of oxidized sulphur and chlorine compounds from volcanoes and epithermal ore bodies, very common in the associated drainage areas, have been the main contribution to the accumulation of evaporites. The sedimentary and diagenetic evolution of the Hilaricos and Soledad evaporites (based on lithofacies analysis) provides information about the palaeohydrological conditions in the Central Depression of northern Chile during the Neogene. In addition, the diagenesis and exhumation history of these evaporites confirms the persistence of strongly arid conditions from Late Miocene until the present. A final phase of tectonism took place permitting the internal drainage to change and open to the sea, resulting in dissolution and removal of a significant portion of these deposits. Despite the extensive dissolution, the remaining evaporites have undergone little late exhumational hydration.  相似文献   

16.
Abstract Six evaporite–carbonate sequences are recognized in the terminal Neoproterozoic–Early Cambrian Ara Group in the subsurface of Oman. Individual sequences consist of a lower, evaporitic part that formed mainly during a lowstand systems tract. Overlying platform carbonates contain minor amounts of evaporites and represent transgressive and highstand systems tracts. Detailed sedimentological and geochemical investigation of the evaporites allowed reconstruction of the depositional environment, source of brines and basin evolution. At the beginning of the evaporative phase (prograding succession), a shallow-water carbonate ramp gradually evolved into a series of shallow sulphate and halite salinas. Minor amounts of highly soluble salts locally record the last stage of basin desiccation. This gradual increase in salinity contrasts sharply with the ensuing retrograding succession in which two corrosion surfaces separate shallow-water halite from shallow-water sulphate, and shallow-water sulphate from relatively deeper water carbonate respectively. These surfaces record repeated flooding of the basin, dissolution of evaporites and stepwise reduction in salinity. Final flooding led to submergence of the basin and the establishment of an open-water carbonate ramp. Marine fossils in carbonates and bromine geochemistry of halite indicate a dominantly marine origin for the brines. The Ara Group sequences represent a time of relatively stable arid climate in a tectonically active basin. Strong subsidence allowed accommodation of evaporites with a cumulative thickness of several kilometres, while tectonic barriers simultaneously provided the required restricted conditions. Subsidence allowed evaporites to blanket basinal and platform areas. The study suggests a deep-basin/shallow-water model for the evaporites.  相似文献   

17.
Comparison of Upper Guadalupian fore-reef, reef and back-reef strata from outcrops in the Guadalupe Mountains with equivalent subsurface cores from the northern and eastern margins of the Delaware Basin indicates that extensive evaporite diagenesis has occurred in both areas. In both surface and subsurface sections, the original sediments were extensively dolomitized and most primary and secondary porosity was filled with anhydrite. These evaporites were emplaced by reflux of evaporitic fluids from shelf settings through solution-enlarged fractures and karstic sink holes into the underlying strata. Outcrop areas today, however, contain no preserved evaporites in reef and fore-reef sections and only partial remnants of evaporites are retained in back-reef settings. In their place, these rocks contain minor silica, very large volumes of coarse sparry calcite and some secondary porosity. The replacement minerals locally form pseudomorphs of their evaporite precursors and, less commonly, contain solid anhydrite inclusions. Some silicification, dissolution of anhydrite and conversion of anhydrite to gypsum have occurred in these strata where they are still buried at depths in excess of 1 km; however, no calcite replacements were noted from any subsurface core samples. Subsurface alteration has also led to the widespread, late-stage development of large- and small-scale dissolution breccias. The restriction of calcite cements to very near-surface sections, petrographic evidence that the calcites post-date hydrocarbon emplacement, and the highly variable but generally ‘light’carbon and oxygen isotopic signatures of the spars all indicate that calcite precipitation is a very late diagenetic (telogenetic) phenomenon. Evaporite dissolution and calcitization reactions have only taken place where Permian strata were flushed with meteoric fluids as a consequence of Tertiary uplift, tilting and breaching of regional hydrological seals. A typical sequence of alteration involves initial corrosion of anhydrite, one or more stages of hydration/dehydration during conversion to gypsum, dissolution of gypsum and precipitation of sparry calcite. Such evaporite dissolution and replacement processes are probably continuing today in near-outcrop as well as deeper settings. This study emphasizes the potential importance of telogenetic processes in evaporite diagenesis and in the precipitation of carbonate cements. The extensive mineralogical and petrophysical transformations which these strata have undergone during their uplift indicates that considerable caution must be exercised in using surface exposures to interpret subsurface reservoir parameters in evaporitic carbonate rocks.  相似文献   

18.
《Sedimentary Geology》1999,123(1-2):31-62
Evaporites of the Cretaceous to early Tertiary Maha Sarakham Formation on the Khorat Plateau of southeast Asia (Thailand and Laos) are composed of three depositional members that each include evaporitic successions, each overlain by non-marine clastic red beds, and are present in both the Khorat and the Sakon Nakhon sub-basins. These two basins are presently separated by the northwest-trending Phu Phan anticline. The thickness of the formation averages 250 m but is up to 1.1 km thick in some areas. In both basins it thickens towards the basin centre suggesting differential basin subsidence preceding or during sedimentation. The stratigraphy, lithological character and mineralogy of the evaporites and clastics are identical in both basins suggesting that they were probably connected during deposition. Evaporites include thick successions of halite, anhydrite and a considerable accumulation of potassic minerals (sylvite and carnallite) but contain some tachyhydrite, and minor amounts of borates. During the deposition of halite the basin was subjected to repeated inflow of fresher marine water that resulted in the formation of anhydrite marker beds. Sedimentary facies and textures of both halite and anhydrite suggest deposition in a shallow saline-pan environment. Many halite beds, however, contain a curious `sieve-like' fabric marked by skeletal anhydrite outlines of gypsum precursor crystals and are the product of early diagenetic replacement by halite of primary shallow-water gypsum. The δ34S isotopic values obtained from different types of anhydrite interbedded with halite range from 14.3‰ to 17.0‰ (CDT), suggesting a marine origin for this sulphate. Bromine concentration in the halite of the Lower Member begins around 70 ppm and systematically increases upward to 400 ppm below the potash-rich zone, also suggesting evaporation of largely marine waters. In the Middle Member the initial concentration of bromine in halite is 200 ppm, rising to 450 ppm in the upper part of this member. The bromine concentration in the Upper Member exhibits uniform upward increase and ranges from 200 to 300 ppm. The presence of tachyhydrite in association with the potassic salts was probably the result of: (1) the large volumes of halite replacement of gypsum, on a bed by bed basis, releasing calcium back into the restricted waters of the basin; and (2) early hydrothermal input of calcium chloride-rich waters. The borates associated with potash-rich beds likely resulted from erosion and influx of water from surrounding granitic terrains; however, hydrothermal influx is also possible. Interbedded with the evaporites are non-marine red beds that are also evaporative, with displacive anhydrite nodules and beds and considerable amounts of displacive halite. The δ34S isotopic values of this anhydrite have non-marine values, ranging from 6.4‰ to 10.9‰ (CDT). These data indicate that the Khorat and Sakhon Nakhon basins underwent periods of marine influx due to relative world sea-level rise but were sporadically isolated from the world ocean.  相似文献   

19.
Chott El Jerid in the Zone of Chotts of Tunisia is one of the largest endorheic basins in the world. During the dry period, from May to August, it is generally covered by continental evaporites which result from the desiccation of the lake formed after a flooding event. This lake comprises runoff water from the surrounding relief and also water resurgence. In order to map and monitor these evaporitic surfaces (mineral composition and evolution in space and time), optical multisource, multispectral, and multidate satellite data have been used. Landsat 4–5 TM, Landsat 8 OLI, SPOT 6, and Landsat Surface Reflectance (LSR) constitute the main data set. The central part of the Chott, north and south of the road crossing the Chott over 70 km from Tozeur to Kebili, has been particularly studied, because it corresponds to the major evaporite accumulation zone. These evaporites precipitated as concentric layers (a relatively rare pattern), mainly north of the road, after several recent flooding events during the last 15 years. Winds can play a significant role in the development of the evaporite layers. Image interpretation associated with field data shows that after the final desiccation of the playa lake, the mineralogy of the salt crust comprised an assemblage dominated by halite south of the road and by gypsum north of the road. Halite and gypsum are the only minerals to be identified using satellite remote sensing data. Sulfates such as gypsum can be identified thanks to a drop in reflectance in the short-wave infrared (SWIR) range caused by vibrations of the SO4 group. Gypsum crusts are more widely distributed than halite crusts. LSR data are particularly suitable for multitemporal comparison because they are calibrated and atmospherically corrected. The classical bull’s eye pattern characterizing evaporitic deposits (from carbonates along the rims to halite, gypsum, and finally potassium-magnesium minerals in the center of the basin) is deeply disturbed by the road crossing Chott El Jerid.  相似文献   

20.
The widespread and dissected nature of the Angolan gypsiferous salt residuals offers a uniquely detailed view of the lateral and vertical relations inherent to secondary evaporite textures, which typify exhumed salt masses worldwide. Such secondary textures are sometimes misinterpreted as primary evaporite textures. Thin, metre‐scale and patchy, dome‐like gypsum accumulations are well‐exposed within strongly incised present‐day river valleys along the eastern margin of the Namibe and Benguela basins (south‐west Angola). These sections are time equivalent to the main basinward subsurface evaporites (Aptian Loeme Formation) which mostly consist of halite. The gypsum (here called the Bambata Formation) is interpreted to represent the final residual product of fractional dissolution and recrystallization of the halite mass that occurred during Late Cretaceous margin uplift and continues today. This halite underwent multiple episodes of diagenetic alteration between its deposition and its final exhumation, leading to the formation of various secondary gypsum fabrics and solution‐related karst and breccia textures that typify the current evaporite outcrop. Four different diagenetic gypsum fabrics are defined: thinly bedded alabastrine, nodular alabastrine, displacive selenite rosettes and fibrous satin‐spar gypsum. Current arid conditions are responsible for a thin weathered crust developed at the top of the outcropping gypsum, but the fabrics in the main core of the current at‐surface evaporite unit mostly formed during the telogenetic stage of uplift prior to complete subaerial exposure. Alteration occurred as various dissolving and rehydrating saline minerals encountered shallow aquifers in the active phreatic and vadose zones. Geomorphological and petrographic analyses, mostly based on the cross‐cutting relations and crystallographic patterns in the outcrop, are used to propose a sequence of formation of these different fabrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号