首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Controversies around the Messinian salinity crisis (MSC) are because of the difficulties in establishing genetic and stratigraphic relationships between its deep and shallow‐water record. Actually, the Sicilian foreland basin shows both shallow and deep‐water Messinian records, thus offering the chance to reconstruct comprehensive MSC scenarios. The Lower Gypsum of Sicily comprises primary and resedimented evaporites separated in space and time by the intra‐Messinian unconformity. A composite unit including halite, resedimented gypsum and Calcare di Base accumulated between 5.6 and 5.55 Ma in the main depocentres; it records the acme of the Messinian Salinity Crisis during a tectonic phase coupled with sea‐level falls at glacials TG14‐TG12. These deposits fully post‐date primary gypsum, which precipitated in shallow‐water wedge‐top and foreland ramp basins between 5.96 and 5.6 Ma. This new stratigraphic framework results in a three‐stage MSC scenario characterized by different primary evaporite associations: selenite in the first and third stages, carbonate, halite and potash salt in the second one associated with hybrid resedimented evaporites.  相似文献   

2.
Owing to its expanded stratigraphic sections, the Apennine thrust belt offers the opportunity to better understand the evaporitic and post-evaporitic Messinian events. A physical stratigraphic framework of Messinian deposits, based on facies analysis and basin-wide correlation of key surfaces and sedimentary cycles, is presented. It is shown that the Messinian Apennine foredeep had marginal basins with shallow-water primary evaporites and deeper basins where resedimented evaporites accumulated under relatively deep-water conditions. Like many other Mediterranean examples, primary shallow-water evaporites of Apenninic marginal basins show evidence for subaerial exposure and erosion. However, the development of such an erosional surface does not correspond to the deposition of primary evaporites in the deepest part of the basin(s); here, the unconformity can be traced towards the base of resedimented evaporites or to a level within them, implying that the deeper basins of the Apennine foredeep never underwent desiccation during the Messinian salinity crisis, but rather received the eroded marginal evaporites. This fact, usually overlooked, raises important questions about the deep desiccation model of the Mediterranean.  相似文献   

3.
Messinian evaporites, which resulted from the salinity crisis during the final closure of the Mediterranean Sea, are exposed in SE Turkey. These evaporites formed in two isolated sub-basins, Iskenderun-Arsuz (IA) and Hatay-Samanda? (HS), which belong to different depositional configurations and tectonic structures. The Neogene fill of these sub-basins consists of a thick sedimentary succession that started with Early Miocene terrestrial clastics, followed by reefs (Middle Miocene) and shallow water siliciclastics (Tortonian - Early to Late Miocene) and finally Messinian evaporates. These sub-basins accumulated in a diverse range of depositional environments from very shallow to deeper water. Evaporite facies in the IA sub-basin consist of sabkhas, saline lagoons and ponds. They are mainly represented by chemical deposits such as scattered gypsum nodules and balls, nodular bedded gypsum, laminated gypsum (Type-A) and selenites (Type-S1). Evaporites in the HS sub-basin mainly consist of detrital gypsum composed of gypsum laminae (Type-B, C), gypsum arenite-rudites and deeper water selenites (≤ 20 m), and resedimented selenites (Type-S2), which were deposited on a sulfate platform with a slope-basin transitional zone. Secondary gypsum with alabastrine and porphyroblastic textures as well as satin spar veins is commonly associated with the sabkha-type evaporites of the IA sub-basin. Deeper-water clastic evaporites of the HS sub-basin have generally remained as primary gypsum or have only been slightly affected by diagenetic alterations. The isotope values (87/86Sr; δ18O SMOW; and δ34S CDT) from the different kinds of gypsum lithofacies of the sub-basin are similar to those of the Messinian evaporites in other peri-Mediterranean basins, indicating an origin from marine water without external or basinal contributions.The Messinian evaporites examined in this paper are overlain by Early Pliocene (Zanclean) deposits composed of shallow- and deep-water siliciclastics and carbonates with local intercalations of Lago-Mare-type strata. Throughout the Messinian evaporitic stage, the IA sub-basin was mainly comprised of shallow water evaporites, while the HS sub-basin underwent deepening related to regional tectonics induced by the Dead Sea Fault during the construction of the Hatay Graben.  相似文献   

4.
Past hydrological interactions between the Mediterranean Sea and Black Sea are poorly resolved due to complications in establishing a high‐resolution time frame for the Black Sea. We present a new greigite‐based magnetostratigraphic age model for the Mio‐Pliocene deposits of DSDP Hole 380/380A, drilled in the southwestern Black Sea. This age model is complemented by 40Ar/39Ar dating of a volcanic ash layer, allowing a direct correlation of Black Sea deposits to the Messinian salinity crisis (MSC) interval of the Mediterranean Sea. Proxy records divide these DSDP deposits into four intervals: (i) Pre‐MSC marine conditions (6.1–6.0 Ma); (ii) highstand, fresh to brackish water conditions (~6.0–5.6 Ma); (iii) lowstand, fresh‐water environment (5.6–5.4 Ma) and (iv) highstand, fresh‐water conditions (5.4–post 5.0 Ma). Our results indicate the Black Sea was a major fresh‐water source during gypsum precipitation in the Mediterranean Sea. The introduction of Lago Mare fauna during the final stage of the MSC coincides with a sea‐level rise in the Black Sea. Across the Mio‐Pliocene boundary, sea‐level and salinity in the Black Sea did not change significantly.  相似文献   

5.
In principle, garnet growth rates may be calculated from 87Rb/86Sr and 87Sr/86Sr measurements in garnet subsamples and the surrounding rock matrix. Because of low Rb/Sr, garnet should passively record the matrix decay of 87Rb to 87Sr as a progressive increase in 87Sr/86Sr from core to rim. This concept was tested by collecting Rb‐Sr data for five garnet grains from four major orogenic belts: eastern Vermont (c. 380 Ma), western New Hampshire (c. 320 Ma), southern Chile (c. 75 Ma) and northwestern Italy (c. 35 Ma). Both normal Sr isotope zoning (increasing 87Sr/86Sr from core to rim) and inverse Sr zoning (decreasing 87Sr/86Sr from core to rim) were observed. Garnet and matrix isotope data commonly yielded grossly inaccurate model ages. Incomplete Rb and Sr equilibration among matrix minerals is invoked to explain the deviations between theoretical v. measured zoning patterns and the age disparities. Initially, the reactive matrix is dominated by rapidly equilibrating Rb‐rich mica, which imparts high 87Sr/86Sr values in garnet cores. Progressive participation of slower equilibrating Sr‐rich plagioclase buffers or even reduces 87Sr/86Sr, possibly leading to flat or decreasing 87Sr/86Sr from garnet cores to rims. Unusually high 87Sr/86Sr in garnet in combination with bulk matrix compositions causes erroneously young apparent ages, so metamorphic ages, growth rates, and associated heating and loading rates are likely suspect. Although Rb‐Sr may be the most susceptible because of the profound disparities between mica and feldspar, zircon reactivity might influence the Lu‐Hf system by up to a few per cent. The Sm‐Nd system seems generally immune to these effects. Pseudosection analysis and conventional garnet geochronology, which presume complete matrix equilibration during metamorphism, may require modification to account for differences between whole‐rock v. reactive matrix compositions.  相似文献   

6.
How the Messinian Salinity Crisis (MSC) ended is still a matter of intense debate. The Terminal Carbonate Complex (TCC) is a late Messinian carbonate platform system that recorded western Mediterranean hydrological changes from the final stages of evaporite deposition till the advent of Lago-Mare fresh- to brackish water conditions at the very end of Messinian times. A multidisciplinary study has been carried out in three localities in south-eastern Spain to reconstruct the history of TCC platforms and elucidate their significance in the MSC. Overall, this study provides evidence that the TCC formed following a regional 4th order water level rise and fall concomitant with an opening-restriction trend. It can be subdivided into four 5th order depositional sequences (DS1 to DS4) recording two phases: (1) from DS1 to DS3, a tide-dominated ooidic to oobioclastic system with stenohaline faunas developed as a result of a 70 m water level rise. During this period, the TCC developed in a shallow sea with close to normal marine salinity; (2) in depositional sequence 4, a microbialite-dominated platform system developed. This is indicative of a significant environmental change and is attributed to a 30 to 40 m water level fall in the basins under study. These restricted conditions were coeval with intense evaporite deformation and brine recycling. The syn-sedimentary deformation of evaporites had a major impact on platform architecture and carbonate production, affecting the Messinian series throughout south-eastern Spain at the end of the TCC history. At that time, the TCC developed in a lake with fluctuating, brackish- to hypersaline water. These findings suggest a temporary restoration of marine conditions in the western Mediterranean marginal basins due to Atlantic water influxes prompted by a global sea level rise around 5.6 Ma. Whether marine conditions extended to the entire western Mediterranean still needs to be investigated.  相似文献   

7.
The period spanning from 825 to 540 Ma is characterized by major changes in the surficial Earth system. This extraordinary interval starts with the breakup of the Rodinia supercontinent and eruption of a series of large igneous provinces and ends with the assembly of Gondwana, giving rise to the Pan-African orogenies. This paleogeographic reorganization is accompanied by a global climatic cooling, including the paroxysmal Cryogenian “snowball” glacial events. The 87Sr/86Sr of seawater displays a major long-term rise over this interval that is punctuated by episodic, smaller declines and inflections. We use a coupled deep time climate-carbon numerical model to explore the complex role of tectonics and climate on this distinct evolution in seawater 87Sr/86Sr. We show that the modulation of the weathering of the erupted large igneous provinces by continental drift explains the changes in seawater 87Sr/86Sr from 800 to 635 Ma. The subsequent sharp rise in seawater 87Sr/86Sr from 635 to 580 Ma is the result of erosion of radiogenic crust exposed in the Pan-African orogens. Coeval evolution of atmospheric CO2 displays a decrease from about 80 times the pre-industrial level around 800 Ma to 5 times just before the beginning of the Phanerozoic.  相似文献   

8.
Several gateways connected the Mediterranean with the Atlantic during the late Miocene but the timing of closure and therefore their role prior to and during the Messinian Salinity Crisis (5.97–5.33 Ma) is still under debate. The timing of closure of the Guadalhorce Corridor is especially disputed as the common lack of marine microfossils hampers precise age determination. Here we present new biostratigraphic age constraints on the sediments of the Ronda, Antequera and Arcos regions, which formed the northern part of the Guadalhorce Corridor. The general presence of Globorotalia menardii 4 in the youngest deep‐marine sediments of all three regions indicates a late Tortonian age, older than 7.51 Ma. We conclude that the Guadalhorce Corridor closed during the late Tortonian, well before the onset of the Messinian Salinity Crisis and that the late Tortonian tectonic uplift of the eastern Betics extended into the western Betics.  相似文献   

9.
We studied the Sr isotope composition of shells of modern shallow-water mollusks and coral fragments. Twenty five of the studied samples were collected in beach zones of open oceans and marginal seas; twelve and eight additional samples are from saline and freshened inland seas respectively. The 87Sr/86Sr ratio in samples from the Atlantic, Indian, and Pacific oceans and their marginal seas corresponds on average to 0.709202 ± 0.000003 and coincides with the average ratio in the standard USGS EN-1 sample. The average 87Sr/86Sr ratio in inner parts of evaporite subbasins of the Mediterranean and Red seas is identical to that of the oceanic water. In shells of shallow-water mollusks from the Black Sea and Sea of Azov, where the degree of seawater dilution by riverine runoff is as high as 50 to 70%, the 87Sr/86Sr ratio is lower than that in the oceans by only a value of 0.00002 on average. As oceanic waters penetrated into these freshwater basins no earlier than in the Holocene, we conclude that the Sr isotopic equilibration with the oceanic water is realized very rapidly in the epicontinental seas even under conditions of restricted water exchange with the World Ocean. The established uniformity of the Sr isotope composition in all geographic types of currently existing sea basins open to the World Ocean proves the efficiency of the Sr isotope stratigraphy in correlation of contemporaneous chemogenic sediments.  相似文献   

10.
This study provides 87Sr/86Sr, δ13C and δ18O data from the best-preserved limestone and dolomite of the Ediacaran carbonate-dominated Khorbusuonka Group of the Olenek Uplift, NE Siberian Craton, as well as detrital zircon geochronological data from both underlying and overlying sandstones. The Maastakh Formation is characterized by 87Sr/86Sr ratios of ca. 0.70822 and δ13C values between + 4.8 and + 6.0‰. 87Sr/86Sr ratios in limestones of the Khatyspyt Formation are fairly uniform, ranging from 0.70783 to 0.70806. The carbon isotopic composition slowly decreases from bottom (+ 3.7‰) to top (− 0.2‰) of section. The Sr isotopic composition of the Turkut Formation varies from 0.70824 to 0.70914, value of δ13C is about zero: − 0.7…+0.7 ‰. The youngest population of detrital zircons from Maastakh Formation indicates that these rocks were formed not later than 630 Ma. U–Pb detrital zircons data of Kessyusa Group has a single peak at about 543 Ma, which is almost identical to the earlier dating. Based on biostratigraphy and isotopic data, the Sr isotopic compositions from the Khatyspyt Formation (87Sr/86Sr = 0.70783–0.70806) represent the composition of seawater at 560–550 Ma. Such low values of 87Sr/86Sr ratio in Ediacaran water were probably caused by the quick opening of Iapetus Ocean.  相似文献   

11.
K-Ar dating on a suite of volcanic rocks from the island of Principe gives the following chronology.
  1. Basal palagonite breccia (30.6 ± 2.1 Ma).
  2. Older Lava Series (OLS) basalt (23.6±0.7 Ma) and hawaiite (19.1±0.5 Ma).
  3. Younger Lava Series (YLS) nephelinite (5.60±0.32 Ma) and basanite (3.51 ±0.15).
  4. Intrusive phonolite (5.32±0.17 Ma, 5.48±0.19 Ma), tristanite (4.89±0.15 Ma) and trachyphonolite (6.93±0.68 Ma) plugs.
Phonolites and YLS samples plot on a 5.9±0.3 Ma Rb-Sr isochron. The tristanite-trachy-phonolite suite samples also lie on this isochron. This lends support to the suggestion that the YLS basanite magmas were parental to the phonolites but rules out a similar relationship between the OLS magmas and the tristanite-trachyphonolite suite. The mean initial 87Sr/86Sr ratio for the YLS nephelinites and basanites is 0.70297. The basalts and hawaiites of the OLS show a positive 87Sr/86Sr vs. Rb/Sr correlation which may be interpreted as a 244±43 Ma pseudoisochron. This could be the result of a large-scale heterogeneity generated in the mantle during the early stages in the break-up of Gondwanaland. The mean initial 87Sr/ 86Sr ratio (at 21 Ma) for the OLS (0.70326) is significantly higher than that for the YLS and implies an isotopically distinct mantle source.  相似文献   

12.
Estimates for the timing of the arrival of Danube sediment to the Black Sea range from Messinian to Pleistocene; the river is currently the largest sediment contributor, supplying 88 MT/yr. We identify two changes in siltstone provenance‐sensitive heavy mineral abundances at DSDP site 380/380A in the southwest Black Sea. Comparison with modern river sediment compositions indicates that siltstones above 571.5 mbsf (metres below sea floor) were supplied by the Danube, while sediments below 651.0 m were sourced by other supply systems. Palaeo‐magnetic, 40Ar/39Ar and biostratigraphic data reveal that the influx of Danube‐supplied sediment to the southwest Black Sea began between 4.36 ± 0.19 Ma and 1 Ma ago (Zanclean–Calabrian). Our results provide an independent time constraint on palaeogeographic reconstructions of the Pannonian and Dacian basins, which acted as upstream sediment sinks, and suggest that significant volumes of Danube‐supplied sediment only started to reach the Black Sea at least 1 Ma after the Messinian Salinity Crisis (5.971–5.33 Ma) had ended.  相似文献   

13.
Outcrops, offshore wells, electric logs and seismic profiles from northern Tunisia provide an opportunity to decipher the Messinian Salinity Crisis in the Strait of Sicily. Messinian deposits (including gypsum beds) near the Tellian Range reveal two successive subaerial erosional surfaces overlain by breccias and marine Zanclean clays, respectively. In the Gulf of Tunis, Messinian thick evaporites (mostly halite) are strongly eroded by a fluvial canyon infilled with Zanclean clays. The first erosional phase is referred to the intra-Messinian tectonic phase and is analogous to that found in Sicily. The second phase corresponds to the Messinian Erosional Surface that postdates the marginal evaporites, to which the entire Sicilian evaporitic series must refer. The Western and Eastern Mediterranean basins were separated during deposition of the central evaporites.  相似文献   

14.
We propose a revised age calibration of the Messinian salinity crisis onset in the Mediterranean at 5.971 Ma based on the recognition of an extra gypsum cycle in the transitional interval of the Perales section (Sorbas basin, Spain) and the revision of the magnetostratigraphy of the Monticino section (Vena del Gesso basin, Italy). This age re‐calibration allows to state more accurately that: (i) the interval encompassing the MSC‐onset is continuous, thus ruling out any erosional feature or stratigraphic hiatus related to a major sea‐level fall affecting the Mediterranean; (ii) the first gypsum was deposited during the summer insolation peak at 5.969 Ma associated with an eccentricity minimum and roughly coincident with glacial stage TG32; (iii) the MSC‐onset was preconditioned by the tectonically‐driven reduction of the hydrological exchanges with the Atlantic Ocean and finally triggered by glacial conditions in the northern hemisphere and by arid conditions in northern Africa.  相似文献   

15.
Ancient evaporite deposits are geological archives of depositional environments characterized by a long‐term negative precipitation balance and bear evidence for global ocean element mass balance calculations. Here, Cretaceous selenite pseudomorphs from western Anatolia (‘Rosetta Marble’) — characterized by their exceptional morphological preservation — and their ‘marine’ geochemical signatures are described and interpreted in a process‐oriented context. These rocks recorded Late Cretaceous high‐pressure/low‐temperature, subduction‐related metamorphism with peak conditions of 1·0 to 1·2 GPa and 300 to 400°C. Metre‐scale, rock‐forming radiating rods, now present as fibrous calcite marble, clearly point to selenitic gypsum as the precursor mineral. Stratigraphic successions are recorded along a reconstructed proximal to distal transect. The cyclical alternation of selenite beds and radiolarian ribbon‐bedded cherts in the distal portions are interpreted as a two type of seawater system. During arid intervals, shallow marine brines cascaded downward into basinal settings and induced precipitation. During more humid times, upwelling‐induced radiolarian blooms caused the deposition of radiolarite facies. Interestingly, there is no comparable depositional setting known from the Cenozoic world. Meta‐selenite geochemical data (δ13C, δ18O and 87Sr/86Sr) plot within the range of reconstructed middle Cretaceous seawater signatures. Possible sources for the 13C‐enriched (mean 2·2‰) values include methanogenesis, gas hydrates and cold seep fluid exhalation. Spatially resolved component‐specific analysis of a rock slab displays isotopic variances between meta‐selenite crystals (mean δ13C 2·2‰) and host matrix (mean δ13C 1·3‰). The Cretaceous evaporite‐pseudomorphs of Anatolia represent a basin wide event coeval with the Aptian evaporites of the Proto‐Atlantic and the pseudomorphs share many attributes, including lateral distribution of 600 km and stratigraphic thickness of 1·5 to 2·0 km, with the evaporites formed during the younger Messinian salinity crisis. The Rosetta Marble of Anatolia may represent the best‐preserved selenite pseudomorphs worldwide and have a clear potential to act as a template for the study of meta‐selenite in deep time.  相似文献   

16.
The Messinian Salinity Crisis (5.97–5.33 Ma) was caused by the closure of the Atlantic‐Mediterranean gateways that cut through the Gibraltar orogenic system. The geodynamic drivers underlying gateway closure and re‐opening are still debated. Here, we interrogate the gateway successions to find the imprints of surface deformation, infer the timing and nature of associated geodynamic drivers, and test such inferences against numerical simulations of slab dynamics. We find that since the latest Miocene, a tectonic framework was established in the gateway region dominated simultaneously by (a) relative plate convergence, (b) slab tearing under the eastern Betic Cordillera and (c) mantle resistance against north‐northeastward dragging of the Gibraltar slab by the African plate's absolute motion. We propose that mantle‐resisted slab dragging and slab tearing operated in concert closing the gateways that caused the Messinian Salinity Crisis, whereas sinking of heavy oceanic lithosphere located between buoyant continental plates re‐opened the Strait of Gibraltar at 5.33 Ma.  相似文献   

17.
Abundant veins filled by calcite, celestite and pyrite were found in the core of a 719 m deep borehole drilled in Oftringen near Olten, located in the north-western Molasse basin, close to the thrust of the Folded Jura. Host rocks are calcareous marl, argillaceous limestone and limestone of the Dogger and Malm. The δ18O values of vein calcite are lower than in host rock carbonate and, together with microthermometric data from fluid inclusions in vein calcite, indicate precipitation from a seawater-dominated fluid at average temperatures of 56–68°C. Such temperatures were reached at the time of maximum burial of the sedimentary pile in the late Miocene. The depth profile of δ13C and 87Sr/86Sr values and Sr content of both whole-rock carbonate and vein calcite show marked trends towards negative δ13C, high 87Sr/86Sr, and low Sr content in the uppermost 50–150 m of the Jurassic profile (upper Oxfordian). The 87Sr/86Sr of vein minerals is generally higher than that of host rock carbonate, up to very high values corresponding to Burdigalian seawater (Upper Marine Molasse, Miocene), which represents the last marine incursion in the region. No evidence for internally derived radiogenic Sr (clay minerals) has been found and so an external source is required. S and O isotope composition of vein celestite and pyrite can be explained by bacterial reduction of Miocene seawater sulphate. The available data set suggests the vein mineralization precipitated from descending Burdigalian seawater and not from a fluid originating in the underlying Triassic evaporites.  相似文献   

18.
Located on the northeast margin of the Qiangtang terrane between the Jinshajiang suture zone and Bangonghu-Nujiang suture zone, the Dongmozhazhua and Mohailaheng Pb-Zn deposits in the Yushu area of Qinghai Province are representative Pb-Zn deposits of the Pb-Zn-Cu polymetallic mineralization belt in the northern part of the Nujiang-Lancangjiang-Jinshajiang area, which are in the front belt of the Yushu thrust nappe system. The formed environments of these two deposits are different from those of sediment-hosted base metal deposits elsewhere in the world. The authors hold that they were formed during the Indian-Asian continental collision and developed within the foldthrust belt combined with thrust and strike-slip-related Cenozoic basins in the interior of the collisional zone. Studying on the metallogenic epochs of these two deposits is helpful to the understanding of ore-forming regularity of the regional Pb-Zn-Cu mineralization belt and also to the search for new deposits in this region. The age of the Dongmozhazhua deposit has been determined by the Rb-Sr isochron method for sphalerite residues, whereas the age of the Mohailaheng deposit has been determined by the Rb-Sr isochron method for sphalerite residues and the Sm-Nd isochron method for fluorite. The age of the Dongmozhazhua deposit is 35.0±0.0 Ma((87Sr/86Sr)0=0.708807) for sphalerite residues. The age of the Mohailaheng deposit is 32.2±0.4 Ma((87Sr/86Sr)0=0.708514) for sphalerite residues and 31.8±0.3 Ma((143Nd/144Nd)0=0.512362) for fluorite with an average of 32.0 Ma. Together with the regional geological setting during mineralization, a possible tectonic model for metallogeny of the Dongmozhazhua and Mohailaheng Pb-Zn deposits has been established. These two ages are close to the ages of the Pb-Zn deposits in the Lanping and Tuotuohe basins, indicating that it is possible that the narrow 1000-kilometer-long belt controlled by a thrust nappe system on the eastern and northern margins of the Tibetan plateau could be a giant Pb-Zn mineralized belt.  相似文献   

19.
Strontium isotope compositions of ancient sulphate deposits not only provide chemostratigraphic information but also offer insight into the system in which the evaporites precipitated. Primary gypsum from two Middle Miocene (Badenian) sections in southern Poland shows steadily higher 87Sr/86Sr ratios than those expected from a marine‐derived formation. The ratios are interpreted as the result of increasing inflow into the basin at the time of gypsum precipitation. Palaeogeographic reconstructions suggest that riverine runoff sources were situated in the West and East European platforms (to the north and east, respectively) and the Carpathians (to the south), which are mostly composed of Mesozoic sedimentary rocks; their dissolution cannot be responsible for the higher 87Sr/86Sr ratios recorded. We conclude that Archaean and Palaeoproterozoic igneous and supracrustal rocks of the Ukrainian Shield were the source of the higher 87Sr/86Sr ratios recorded in the Badenian primary gypsum. A distinctive decreasing trend of 87Sr/86Sr ratios from western Ukraine to southern Poland is explained by a consistent direction of brine inflow during gypsum crystallization (typical cyclonic circulation controlled by the Coriolis effect).  相似文献   

20.
《Applied Geochemistry》2002,17(3):163-183
The combined chemical composition, B and Sr isotopes, and the basic geologic setting of geothermal systems from the Menderes Massif in western Turkey have been investigated to evaluate the origin of the dissolved constituents and mechanisms of water–rock interaction. Four types of thermal water are present: (1) a Na–Cl of marine origin; (2) a Na–HCO3 type with high CO2 content that is associated with metamorphic rocks of the Menderes Massif; (3) a Na–SO4 type that is also associated with metamorphic rocks of the Menderes Massif with H2S addition; and (4) a Ca–Mg–HCO3–SO4 type that results from interactions with carbonate rocks at shallow depths. The Na–Cl waters are further subdivided based on Br/Cl ratios. Water from the Cumalı Seferihisar and Bodrum Karaada systems are deep circulated seawater (Br/Cl=sea water) whereas water from Çanakkale–Tuzla (Br/Cl<sea water) are from dissolution of Messinian evaporites. Good correlations between different dissolved salts and temperature indicate that the chemical composition of the thermal waters from non-marine geothermal systems is controlled by: (1) temperature dependent water–rock interactions; (2) intensification of reactions due to high dissolved CO2 and possibly HCl gasses; and (3) mixing with overlying cold groundwater. All of the thermal water is enriched in B. The B isotopic composition (δ11B=2.3‰ to 18.7‰; n=6) can indicate either leaching of B from the rocks, or B(OH)3 degassing flux from deep sources. The large ranges in B concentrations in different rock types as well as in thermal waters from different systems suggest the water-rock mechanism. 87Sr/86Sr ratios of the thermal water are used to differentiate between solutes that have interacted with metamorphic rocks (87Sr/86Sr ratio as high as 0.719479) and carbonate rocks (low 87Sr/86Sr ratio of 0.707864).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号