首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吉兰泰盐湖沉积物孢粉记录的季风边缘区全新世气候演化   总被引:2,自引:1,他引:1  
全新世气候具有不稳定性,且存在着区域差异,在季风边缘区尤为显著.因此,本研究选取季风边缘区吉兰泰盐湖沉积物的孢粉记录并结合AMS14C测年结果,对该地区全新世的古植被演化及古气候变化历史进行了重建.结果表明,在全新世阶段,该地区植被类型未发生变化,以干旱的荒漠植被为主.早全新世(10.5 8.5 cal ka BP),以蒿属孢粉为主,伴随出现少量藜科、禾本科及麻黄属孢粉,蒿藜比(A/C比值)相对稳定(4.11左右),指示全新世早期气候逐步转湿的过程,在8.5 cal ka BP,蒿属孢粉数量下降且被藜科孢粉取代,指示一次明显气候干旱事件;中全新世(8.5 3.5 cal ka BP),蒿属孢粉含量增加及藜科孢粉含量降低,A/C比值在7.1 cal ka BP左右达到峰值,指示该地区中全新世气候最为湿润;晚全新世(3.5 cal ka BP至今),藜科孢粉含量增加且超过早全新世,A/C比值低至3.66,区域呈现明显的干旱化趋势.此外,结合吉兰泰盐湖沉积物矿物组成结果,发现中全新世湖泊沉积物中,钙芒硝大量出现,一定程度上指示降水量增多所带来的淡水注入,与孢粉指标指示该阶段湿润的结果一致.通过区域对比,发现吉兰泰地区在全新世时期的气候演化模式与东亚季风区具有较好的一致性,表明该地区受到东亚夏季风的影响较大,尤其是在中全新世,东亚夏季风增强,带来较多的降水,气候湿润.  相似文献   

2.
蒋庆丰  钱鹏  周侗  洪佳  范华  刘静峰 《湖泊科学》2016,28(2):444-454
通过对现代乌伦古湖附近出露的古湖相沉积剖面的AMS~(14)C测年,粒度、总有机碳、总有机氮以及碳酸盐等环境代用指标的分析及其与全新世钻孔沉积记录的对比研究,结果发现:乌伦古湖在MIS-3晚期的33600-22500 cal a BP以及冰后期至早中全新世的16500-6500 cal a BP期间,维持着湖相沉积环境,湖面约比现在湖面高40 m.33600-22500 cal a BP的MIS-3晚期,气候相对温暖,乌伦古湖呈现高湖面特征,湖泊沉积物来源以流水搬运为主;22500-16500 cal a BP的末次冰期冰盛期,气候寒冷干燥,湖泊沉积物来源以风力搬运为主;16500-6500 cal a BP的冰后期以及早、中全新世期间,气候回暖,湖泊沉积物主要来源于河流径流作用.6500-5500 cal a BP,受高温干旱事件的影响,湖面收缩、水位剧降,除沉积中心外的其它钻孔位置出现沉积中断.5500 cal a BP后气候转冷变湿,湖泊重新恢复到现在的状态.乌伦古湖MIS-3晚期以来的古湖相沉积环境变化及其反映的古气候万年尺度上的干湿变化与周边区域气候环境变化记录有很好的一致性,响应了区域环境变化和全球气候突变事件.季风和西风的强度消长变化及其引起的环流条件改变以及温度变化引起的蒸发效应可能是区域气候环境变化的主要原因.这一古湖相沉积记录的研究可为MIS-3晚期以来北疆地区的古湖泊演化以及长时间尺度上西风和季风环流相互关系及其影响区的气候环境演化提供地质证据.  相似文献   

3.
The study of climatic changes since the Late Glacial Age has become one of the hotspots of the PAGES in recent years.Deep-sea cores from the high-latitude area show that the climate was very unstable during the transitional period from the Late Glacial Age to the Holocene[1,2],which has also been testified by the geological records from ocean sediments,ice cores and terrestrial sections in different latitudes of the earth[3—8].What’s more,climatic instability also ex-isted in the Holoce…  相似文献   

4.
High-resolution peat humification records were obtained from Dajiuhu of the Shennongjia Mountains and Qianmutian of the Tianmu Mountains to study climate changes in East China. The analyses of pollen, organic matters, TOC, and Rb/Sr indicate a high degree of peat humification and thus strong decomposition of organic matter when climate was dry. Conversely, when climate was humid, the degree of humification is low because peat was preserved in a waterlogged condition. Peat humification from Dajiuhu occurred not only during the Younger Dryas (about 11.4–12.6 cal ka BP), the Bølling-Allerød Warm Period (12.6–15.2 cal ka BP), and the Oldest Dryas (about 15.2–16.0 cal ka BP), but also during the early Holocene (about 11.4–9.4 cal ka BP), the 8.2 cal ka BP cold event, and the Holocene Optimum (about 7.0–4.2 cal ka BP). Both peat humification records since nearly 5 ka BP are consistent, showing that mountain peatland has synchronous responses to the East Asia monsoon-induced precipitation. The LOI data confirm the above observation. The monsoon precipitation since nearly 5 ka BP recorded in these two peat profiles can be divided into three phases. During 4.9–3.5 ka BP, precipitation amount was high but fluctuated greatly. During 3.5–0.9 ka BP, precipitation amount was low. During 0.9–0 ka BP, degree of humification reduced gradually, indicating the increase of monsoon precipitation. Contrast to other high-resolution records from East China monsoon region shows that the monsoon precipitation records of the two peat profiles since nearly 16 ka BP are controlled by a common forcing mechanism of summer solar radicalization in the Northern Hemisphere.  相似文献   

5.
One of the goals for paleaoenvironmental research is to predict the tendency of future climate and environmental changes based on the understanding of the past. The key approach is to find similar pictures which happened in the past. By understanding the background and mechanism of the paleaoenvironmen- tal changes, reliable parameters and verifications can be provided for the numerical model to predict the tendency of future climate and environmental changes. The Mid-Holocene as the nearest …  相似文献   

6.
Holocene high lake-levels and pan-lake period on Badain Jaran Desert   总被引:1,自引:0,他引:1  
Many lakes exist in southeastern Badain Jaran Desert and its hinterland, including 110 perennial lakes and some seasonal or extinct lakes. Geomorphological, sedimentological, and bioglyph evidence obtained from field investigations on Badain Jaran Desert lake group, alongside measurements and dating performed on lake relic, prove that these lakes expanded while the climate was relatively wet during early and middle Holocene. The dating results suggest that the pan-lake period of the Badain Jaran Desert began at 10 cal kyr BP, before which the limnic peat period occurred(11–10 cal kyr BP). Many lakes reached their maximal water-level during 8.6–6.3 cal kyr BP and retreated or dried up in the late Holocene(about 3.5–0 cal kyr BP). During that period, the precipitation at Badain Jaran Desert may have reached 200 mm yr~(-1) for 7.7–5.3 cal kyr BP, inferred from both the age and precipitation rate of calcareous root tubes. The water balance calculation shows that wetter and warmer climate and the increase of underground water recharge were key factors in maintaining and developing the lake group at both centennial and millennial time scales. Furthermore, lake surface expansion and the increasing fresh water availability set the background for the prosperous prehistoric culture.  相似文献   

7.
The ecotone between alpine steppe and meadow in the central Tibetan Plateau is sensitive to climate changes. Here we used the pollen records from three lakes in this region to reconstruct the evolution of local vegetation and climate since 8200 cal. yr BP. The history of temperature and precipitation was reconstructed quantitatively with multi-bioclimatic indexes and a transfer function from pollen records. Results show that the steppe/meadow dominated during the period of 8200–6500 cal. yr BP, especially 8200–7200 cal. yr BP, indicating the central Tibetan Plateau was controlled by strong monsoon. The steppe dominated during the periods of 6000–4900, 4400–3900, and 2800–2400 cal. yr BP. The steppe decreased gradually and the meadow expanded during the period of 4900–4400 cal. yr BP. Three century-scale drought events occurred during 5800–4900, 4400–3900 and 2800 cal. yr BP, respectively. The first time when the regional climate shifted to the present level was at 6500 cal. yr BP in the central Plateau. Since 3000 cal. yr BP, the temperature and precipitation have decreased gradually to the present level. However, the cold climate between 700–300 cal. yr BP likely corresponds to the Little Ice Age. Supported by Chinese Academy of Sciences 100 Talents Project (Grant No. 29082762), National Natural Science Foundation of China (Grant Nos. 40671196, 40372085, 49371068, 49871078), and U.S. National Science Foundation (Grant Nos. ATM-9410491, ATM-008194)  相似文献   

8.
9.
The East Asian monsoon Holocene optimal period has been debated both about duration and whether conditions were a maximum in thermal conditions or in precipitation. In this study we show Holocene climate variability inferred by a forest reconstruction of a subalpine pollen sequence from peat bog deposits in central Taiwan, based on modern analogues of various altitudinal biomes in the region. A warmer interval occurred between 8 and 4 ka BP (calibrated 14C years) when the subtropical forests were more extensive. The Holocene thermal optimum is represented by an altitudinal tropical forest at 6.1–5.9 ka BP and 6.9 ka BP and only the latter was accompanied by wet conditions, indicating decoupling of thermal and precipitation mechanism in the middle Holocene. Abrupt and relative severe cold phases, shown by biome changes, occurred at about 11.2–11.0 ka BP; 7.5 ka BP; 7.2 ka BP; 7.1 ka BP; 5.2 ka BP, 5.0 ka BP and 4.9 ka BP. A spectral analysis of pollen of a relatively cold taxon — Salix, reveals that the time series is dominated by a 1500 yr periodicity and similar to the cold cycle reported in the marine records of Indian and western Pacific Oceans. The cold–warm conditions inferred by the change of forests show close relationship to solar energy in comparison with the production rate of Be-10.  相似文献   

10.
河西走廊花海古湖泊全新世白云石的发现及其环境意义   总被引:4,自引:3,他引:1  
通过对河西走廊花海古湖泊沉积物的X衍射分析发现,全新世期间有明显的白云石沉积.岩性、沉积过程、石膏以及Fe3+含量的变化表明,花海湖全新世白云石沉积环境以还原环境为主,即还原环境利于白云石的形成,为白云石的成因研究提供了新的证据.白云石作为碳酸盐矿物,可以反映湖水盐度,但并非直接指示了湖水的咸化.随着湖水盐度的进一步增加,在硫酸盐型湖泊中,白云石含量随盐度的增加而相应减少,表明利用白云石分析湖水盐度时需要结合其他矿物进行分析.结合石膏含量的变化,花海湖全新世时期白云石含量的变化可以揭示该区域湖水盐度的变化.在10.478.87 cal ka B.P.早全新世时期,湖水的盐度较高,气候由干向湿转变;8.87 cal ka B.P.时期,有大量石膏沉积,显示了湖水盐度的进一步升高,气候干旱;随后湖水相对淡化,气候湿润;5.50 cal ka B.P.至今,沉积出现间断,气候逐渐干旱.  相似文献   

11.
Sediment pollen samples from the Huola Basin in the northern sector of northeast China, and surface pollen samples from its environs, were analyzed to reconstruct accurately the historical response of vegetation to climate change since 9100 cal yr BP. Pollen analysis of the Huola Section indicates that vegetation experienced a transformation from early-mid Holocene warm-cold mixed vegetation to late Holocene cold-temperate vegetation. From 9100 to 6000 cal yr BP, the study area was warmer and moister than at present, developing Corylus, Carpinus, Pinus, Picea, Betula and Larix-dominated forests. Two cooling events at 6000–5000 and 3500–2500 cal yr BP led to a decrease in Corylus, Carpinus and other warmth-loving vegetation, whereas cold temperate forests composed of Larix and Betula expanded. After 2500 cal yr BP, Larix and Betula dominated cold-temperate vegetated landscapes. The Holocene warm period in NE China(9100–6000 cal yr BP) suggests that such warming could have resulted in a strengthening of the influence from East Asian Summer Monsoon on northernmost NE China and would have benefited the development of warm-temperate forest vegetation and an improved plant load, which also provides the similarity model for the possible global warming in the future.  相似文献   

12.
The clay mineralogy of Tulare Lake sediment was examined to investigate hydroclimatic and environmental changes in the southern Sierra Nevada Mountains (SNM) since the most recent glacial maximum. Evolution of clay mineral assemblages elucidates significant changes in weathering, erosion, and hydroclimatic condition in the catchment. During the last glacial period (24.4–15.1 cal ka BP), low illite content implies less physical erosion of the granitic batholith rocks and a cold and arid environment in the southern SNM. Abrupt increases of illite content at 21.8–20.8 and 17.6 cal ka BP resulted from the glacier advances to the ablation zone and illite-rich glacier flour was transported down to the lake. The gradual increase of smectite induced by progressive depletion of illite-rich glacier flour from 17.6 cal ka BP toward the end of this period indicates climate was beginning to get warm and wet. From 11.9 to 5.3 cal ka BP, two warm and wet periods (10.7–9.4 and 8.2–5.2 cal ka BP) were characterized by high smectite/illite content ratios and low illite crystallinity values, suggesting intensive rainfall precipitation and more physical erosion in the highland and lowland catchment as well as more smectite formation in the terrace soils. Since the last glacial period, physical erosion, in comparison to the chemical weathering, was the dominant process responding to the hydroclimatic change in the Tulare Lake catchment. Moderate to weak chemical weathering was signified by the mostly low illite chemical weathering index of the core sediments. Such results suggest that vegetation cover in the southern SNM was low and limited.  相似文献   

13.
吴旭东  沈吉 《湖泊科学》2012,24(6):943-951
利用漫反射光谱技术得到湖光岩玛珥湖沉积物的叶绿素a浓度.通过与TOC、Sr/Rb比值和磁化率的对比发现,叶绿素a浓度能够忠实地反映湖泊初级生产力的变化,较高的叶绿素a浓度代表季风较强、降雨量较高,反之亦然.湖光岩玛珥湖沉积物多环境代用指标分析结果显示,湛江地区早全新世季风强盛,中全新世季风迅速衰退.这种全新世季风演化模式与北半球季风区的很多地质记录以及北纬30°变化趋势相似,反映了太阳辐射是湛江地区千年尺度季风演化的主要驱动因素,但是湛江地区的季风演化滞后于太阳辐射变化大约2200 a.叶绿素a浓度记录显示6000 a BP左右季风迅速减弱,这与其他记录显示的季风渐变模式不同.一方面,太阳辐射渐变激发了湛江地区植被-大气圈的负反馈作用,这可能是造成6000 a BP左右气候迅速变干的原因之一;另一方面,沉积速率增加导致的稀释作用放大了叶绿素a浓度下降的趋势.3600 a BP以来的沉积环境可能受到了人类活动的影响.  相似文献   

14.
~~Holocene grassland vegetation, climate and human impact in central eastern Inner Mongolia1.Ye,D.Z.,Chou,J.E,Liu,J.Y.et al.,Causes of sand-stormy weather in northern China and control measures,Acta Geographica Sinica(in Chinese),2000,55(5):513-520. 2.Qiu,X.E,Zeng,Y.,Miao,Q.L.,Temporal spatial distribution as well as tracks and source areas of sand dust storms in China,Acta Geographica Sinica(in Chinese),2001,56(3):316-322. 3.Cui,H.T,Kong,Z.C,Preliminary analysis on the cli…  相似文献   

15.
Holocene peat sediment has been attached impor-tance to reconstruct the Holocene climatic variations because it can provide much palaeoclimatic informa-tion with high resolution. Analysis on the plant mac-rofossil[1], pollen[2―4], isotope ratio[5―9], element con-tent[10,11], total organic carbon (TOC)[12], humifica-tion[13,14] and grayscale[12] for peat sediment has shown its superiorities as a recorder medium for reconstruct-ing the Holocene climate. Hong et al. have done great fruitful w…  相似文献   

16.
It is shown that, over the past ~10000 years (the Holocene), deep Maunder type solar minima have been accompanied by sharp climate changes. These minima occurred every 2300–2400 years. It has been established experimentally that, at ca 4.0 ka BP, there occurred a global change in the structure of atmospheric circulation, which coincided in time with the discharge of glacial masses from Greenland to North Atlantic and a solar activity minimum. The climate changes that took place at ca 4.0 ka BP and the deep solar activity minimum that occurred at ca 2.5 ka BP affected the development of human society, leading to the degradation and destruction of a number of ancient civilizations.  相似文献   

17.
In order to reveal the changes of vegetation in southern China since the Last Glacial Maximum, we have established high-resolution time scales and palynological sequences of borehole profiles by drilling cores in some weak areas of the research to restore vegetation changes over the past 20,000 years on the basis of previous work. This paper gives the vegetation zoning maps of 18, 9 and 6 ka BP respectively in southern China, and describes the distribution characteristics of plants in different zones/subzones. The results show that the vegetation zonations around 18 ka BP were significantly different from that at present.It appeared in turn with Cold-temperate coniferous forest and alpine meadow steppe zone, and Temperate mixed coniferous and broad-leaved forest zone/warm temperate deciduous broad-leaved forest zone from northwest to southeast in the west, and Temperate mixed coniferous and broad-leaved forest zone, Warm temperate deciduous broad-leaved forest zone, and Northern subtropical mixed evergreen and deciduous broad-leaved forest zone from north to south in the central and east. The vegetation distribution around 9 ka BP changed distinctively. Except that the northwest part was located in Mountain temperate mixed coniferous and broad-leaved forest zone, the vegetation in other areas occurred in turn with North subtropical mixed evergreen and deciduous broad-leaved forest subzone, Mid-subtropical typical evergreen broad-leaved forest subzone, and South subtropical monsoon evergreen broad-leaved forest subzone/Tropical seasonal rainforest and rainforest zone from north to south.There was little change in the appearance of vegetation zonations between 6 and 9 ka BP, but the northern edge of each vegetation belt moved a little northward, reflecting that the overall climate became warmer around 6 ka BP. The vegetation changes in southern China over the past 20,000 years were largely driven by environmental changes. Climate change was the main factor affecting the vegetation distribution. The impact of human activities became more and more remarkable in the later period. In the lower reaches of the Yangtze River and the delta region, sea level changes also influenced the vegetation distribution.  相似文献   

18.
The Relative Pollen Productivities(RPPs)of common steppe species are estimated using Extended R-value(ERV)model based on pollen analysis and vegetation survey of 30 surface soil samples from typical steppe area of northern China.Artemisia,Chenopodiaceae,Poaceae,Cyperaceae,and Asteraceae are the dominant pollen types in pollen assemblages,reflecting the typical steppe communities well.The five dominant pollen types and six common types(Thalictrum,Iridaceae,Potentilla,Ephedra,Brassicaceae,and Ulmus)have strong wind transport abilities;the estimated Relevant Source Area of Pollen(RSAP)is ca.1000 m when the sediment basin radius is set at 0.5 m.Ulmus,Artemisia,Brassicaceae,Chenopodiaceae,and Thalictrum have relative high RPPs;Poaceae,Cyperaceae,Potentilla,and Ephedra pollen have moderate RPPs;Asteraceae and Iridaceae have low RPPs.The reliability test of RPPs revealed that most of the RPPs are reliable in past vegetation reconstruction.However,the RPPs of Asteraceae and Iridaceae are obviously underestimated,and those of Poaceae,Chenopodiaceae,and Ephedra are either slightly underestimated or slightly overestimated,suggesting that those RPPs should be considered with caution.These RPPs were applied to estimating plant abundances for two fossil pollen spectra(from the Lake Bayanchagan and Lake Haoluku)covering the Holocene in typical steppe area,using the"Regional Estimates of Vegetation Abundance from Large Sites"(REVEALS)model.The RPPs-based vegetation reconstruction revealed that meadow-steppe dominated by Poaceae,Cyperaceae,and Artemisia plants flourished in this area before 6500–5600 cal yr BP,and then was replaced by present typical steppe.  相似文献   

19.
福州盆地位于海陆过渡地带,在海陆变迁过程中,沉积物记录了高分辨率的环境信息,是揭示沉积特征对环境变化响应过程及模式的理想区域.本文选择位于福州盆地的FZ5钻孔进行岩石磁学、环境磁学和古地磁学方面的研究,以期阐明该区域沉积物磁学性质对陆源碎屑输入、海平面变化和成岩作用的响应.岩石磁学结果表明钻孔沉积物以低矫顽力的亚铁磁性矿物为主体,但是在不同的环境变化阶段,磁性矿物的类型有较大变化.在9~3 cal. ka BP的海侵过程中,沉积物中以磁铁矿为主体,存在菱铁矿和铁硫化物等还原性矿物.硫化作用使细粒磁铁矿溶解形成胶黄铁矿和黄铁矿,其峰面随碎屑磁性矿物的浓度变化而迁移.但硫化作用没有完全消除磁铁矿携带的特征剩磁和陆源碎屑输入量以及海平面升降对该阶段沉积物磁性的控制.在~3 cal. ka BP以来随着海平面下降、沉积环境向陆相氧化环境转化,虽然早期还原作用仍然存在,但后期氧化作用使磁性矿物向高矫顽力的赤铁矿等矿物转变,氧化作用基本扰乱了磁铁矿携带的剩磁.沉积及其后期成岩作用过程中,发生在约~8.2、~7.7、~7.5、~2.7、~1.5、~0.5 cal. ka BP六次强烈的古氧化界面反映了福州盆地当时异常干旱或湿热的气候事件.  相似文献   

20.
The Thar Desert dune system in north-west India and eastern Pakistan provides a rich archive of past environmental, geomorphological and climatic change. Much of the knowledge about the timing of dune accumulation in the Thar stems from scattered and sporadic records, based on older luminescence dating protocols. If the Thar dune record is to be incorporated within a growing multiproxy framework of past climate and environmental dynamics, it is necessary to generate a systematic record of the timing of dunefield accumulation. From this, relationships to climate and other drivers of dune activity may then be better established. To this end, an intensive programme of field sampling and optically stimulated luminescence (OSL) dating was carried out from a dunefield in the east-central Thar Desert. This study presents the first detailed Holocene dune accumulation history from the region, and sheds light on the development of the multi-generational parabolic dune systems. In contrast to previously published work, we identify the importance of the Holocene and the last millennium as periods with a number of preserved accumulation phases. OSL ages suggest that accumulation was persistent during the early and mid-Holocene (within 11.7-5.5 ka), late Holocene (2-1 ka), as well as two major phases in the last millennium (600 – 200 a and within the last 70 a). Potential drivers of dune mobility in the last century include a strong anthropogenic dimension. Rapid net accumulation is recorded in the last 70 years, with rates varying between 2 and 5 m/year, in an environment where agricultural pressures have increased dramatically with the advent of irrigation schemes expanding into dunefield areas. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号