首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Chandrayaan-1 X-ray Spectrometer (C1XS) flown on-board the first Indian lunar mission Chandrayaan-1, measured X-ray fluorescence spectra during several episodes of solar flares during its operational period of ∼9 months. The accompanying X-ray Solar Monitor (XSM) provided simultaneous spectra of solar X-rays incident on the Moon which are essential to derive elemental chemistry. In this paper, we present the surface abundances of Mg, Al, Si, Ca and Fe, derived from C1XS data for a highland region on the southern nearside of the Moon. Analysis techniques are described in detail including absolute X-ray line flux derivation and conversion into elemental abundance. The results are consistent with a composition rich in plagioclase with a slight mafic mineral enhancement and a Ca/Al ratio that is significantly lower than measured in lunar returned samples. We suggest various possible scenarios to explain the deviations.  相似文献   

3.
J. D. Kurfess 《Solar physics》1988,118(1-2):347-363
Several instruments on approved space missions will provide coverage of energetic solar flare activity during the next solar maximum. However, only Japan's SOLAR-A is dedicated to observations of solar activity. These planned experiments will provide significant improvements in detection sensitivity for gamma rays and neutrons, generally using similar detection techniques to those employed previously. Improvements in the temporal resolution of energetic flare phenomena will also be realized, but with generally sporadic solar coverage. Important capabilities critically required for advancing our understanding of the solar flare phenomenon, such as dedicated high-resolution gamma-ray spectroscopy, imaging hard X-ray and low-energy gamma-ray detectors, polarimeters, and dedicated high-efficiency neutron detectors, are not included on any of the approved missions.  相似文献   

4.
Jiao  Litao  McClymont  A. N.  MikiĆ  Z. 《Solar physics》1997,174(1-2):311-327
Studies of solar flares indicate that the mechanism of flares is magnetic in character and that the coronal magnetic field is a key to understanding solar high-energy phenomena. In our ongoing research we are conducting a systematic study of a large database of observations which includes both coronal structure (from the Soft X-ray Telescope on the Yohkoh spacecraft) and photospheric vector magnetic fields (from the Haleakala Stokes Polarimeter at Mees Solar Observatory). We compare the three-dimensional nonlinear force-free coronal magnetic field, computed from photospheric boundary data, to images of coronal structure. In this paper we outline our techniques and present results for active region AR 7220/7222. We show that the computed force-free coronal magnetic field agrees well with Yohkoh X-ray coronal loops, and we discuss the properties of the coronal magnetic field and the soft X-ray loops.  相似文献   

5.
For more than 45 years the building of X-ray telescopes for solar and astronomical observations has been practised with significant performance improvement. The various techniques applied are reviewed emphazising the impact of proper mirror material choice, grinding and polishing improvements and the role of metrology.  相似文献   

6.
施建荣  赵刚 《天文学进展》1999,17(3):244-255
扼要介绍了类太阳恒星星晚射线辐射的研究历史,综述了X射线辐射与恒星参量的关系,并对星冕的加热机制作了介绍。类太阳恒星的X射线辐射与表面磁场有关,因此测定晚型星表面的磁场很重要。  相似文献   

7.
A multi-wavelength spatial and temporal analysis of solar high-energy electrons is conducted using the August 20, 2002 flare of an unusually flat (γ1 = 1.8) hard X-ray spectrum. The flare is studied using RHESSI, Hα, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model-independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below ∼100 keV. The positions of the Hα emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Hα emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Hα intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.  相似文献   

8.
AXIOM: advanced X-ray imaging of the magnetosphere   总被引:1,自引:0,他引:1  
Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth’s magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth’s magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth’s magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose ‘AXIOM: Advanced X-ray Imaging of the Magnetosphere’, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth–Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission.  相似文献   

9.
太阳软X射线观测进展   总被引:1,自引:0,他引:1  
太阳软x射线观测在太阳物理的研究中,特别在日冕结构、磁场和日冕等离子体活动等物理现象的研究中起着重要的作用。太阳软x射线观测主要有光谱和成像观测两种.随着观测技术、方法和内容的发展,太阳软x射线观测揭示了太阳物理的许多重要的科学现象,并在预报、监测空间天气变化,预警空间灾变天气等方面也有着重要的应用.  相似文献   

10.
The RESIK instrument is an X-ray spectrometer with bent crystals onboard the CORONAS-F satellite. It was used to observe the spectra of solar flares, active regions, and quiet corona. During the period of the instrument’s operation, many spectra were collected in four energy channels covering the wavelength range from 3.2 to 6.1 Å. For the present analysis, we selected solar flares of various X-ray classes (B, C, and M in the GOES notation), which were observed during moderate level of solar activity (from January to March 2003). The analysis of the RESIK spectra fulfilled with different techniques allowed us to determine the temperature, emission measure, and temperature distribution of the differential emission measure, as well as to examine their time variability.  相似文献   

11.
The presence of solar coronal holes can be inferred from one-dimensional east-west scans at 692 and 1415 MHz. The scans indicate that coronal holes are stable structures with low-emissive characteristics and with lifetimes which can span several solar rotations, in agreement with observations using other techniques. This work focuses on the first half of 1973. The 1415 MHz data presented for this period show the radio analogues of two coronal holes, commonly referred to as CH1 and CH3. These holes were observed at soft X-ray and XUV wavelengths with the Skylab satellite and at EUV with the OSO-7 satellite. The analysis is then extended to cover the period from 1968 to 1974 with a central meridian passage date and a subjective classification being assigned to each coronal hole observation. This information is tabulated and provides a consistent set of coronal hole observations during the maximum and declining phases of solar cycle 20.  相似文献   

12.
X-rays should be generated throughout the heliosphere as a consequence of charge transfer collisions between heavy (Z>2) solar wind ions and interstellar neutrals. The high charge state solar wind ions resulting from these collisions are left in highly excited states and emit extreme ultraviolet or soft X-ray photons. This solar wind charge exchange mechanism applied to cometary neutrals has been used to explain the soft X-ray emission observed from comets. A simple model demonstrates that heliospheric X-ray emission can account for about 25%-50% of the observed soft X-ray background intensities. The spatial and temporal variations of heliospheric X-ray emission should reflect variations in the solar wind flux and composition as well as variations in the distribution of interstellar neutrals within the heliosphere. The heliospheric X-ray "background" can perhaps be identified with the "long-term enhancements" in the soft X-ray background measured by ROSAT.  相似文献   

13.
This paper summarizes the results of a program of rocket observations of the solar corona with grazing incidence X-ray telescopes. A series of five flights of a Kanigen-surfaced telescope with a few arc seconds resolution, together with the first flight of a newer telescope have resulted in the identification of six classes of coronal structures observable in the X-ray photographs. These are: active regions, active region interconnections, large loop structures associated with unipolar magnetic regions, coronal holes, coronal bright points, and the structures surrounding filament cavities. Two solar flares have been observed. The methods involved in deriving coronal temperature and density information from X-ray photographs are described and the analysis of a bright active region (McMath plage 11035) observed at the west limb on November 24, 1970 is presented as an example of these techniques.This paper originated in an invited talk presented by one of us (G.V.) at the COSPAR Symposium on High Resolution Astronomical Observations from Space, Seattle, Washington, June 29, 1971. In addition, it includes material presented at the three NASA OSO workshops, as well as more recent work.  相似文献   

14.
X-ray observations of Venus are so challenging that the first detection of Venusian X-rays succeeded only in January 2001, with the Chandra satellite. The X-rays from Venus were found to result from fluorescent scattering of solar X-rays in the Venusian thermosphere. An additional component, caused by charge exchange of highly charged heavy ions in the solar wind with atoms in the Venusian exosphere, was suspected, but could not be unambiguously detected. This was hampered by the fact that the observation occurred during solar maximum, when the solar X-ray flux is highest. In order to investigate the presence of an additional charge exchange component, Venus was observed again in March 2006 and October 2007 with Chandra, taking advantage of the fact that the solar X-ray flux had decreased considerably on its way to solar minimum. In fact, these subsequent observations were able to show that also the Venusian exosphere is emitting X-rays, due to its interaction with the solar wind. Here an overview of all the existing X-ray observations of Venus is presented, including first results from the most recent one, which took place after the arrival of Venus Express, providing the first ever opportunity to combine a remote X-ray observation of a planetary exosphere with simultaneous in situ measurements of the solar wind.  相似文献   

15.
White  S.M. 《Solar physics》1999,190(1-2):309-330
This paper reviews the contrasting properties of radio and EUV/X-ray observations for the study of the solar atmosphere. The emphasis is placed on explaining the nature of radio observations to an EUV/X-ray audience. Radio emission is produced by mechanisms which are well-understood within classical physics. Bremsstrahlung tends to be dominant at low frequencies, while gyro-resonance emission from strong magnetic fields produces bright sources at higher frequencies. At most radio frequencies the images of the Sun are dominated almost everywhere by bremsstrahlung opacity, which may be optically thick or thin depending on circumstances. Where gyro-resonance sources are present they may be used as sensitive probes of the regions above active regions where magnetic field strengths exceed several hundred gauss, and this unique capability is one of the strengths of radio observations. Typically a gyro-resonance radio source shows the temperature on an optically thick surface of constant magnetic field within the corona. Since each radio frequency corresponds to a different magnetic field strength, the coronal structure can be `peeled away' by using different frequencies. The peculiarities of radio observing techniques are discussed and contrasted with EUV/X-ray techniques. Radio observations are strong at determining temperatures and coronal magnetic field strengths while EUV/X-ray observations better sense densities and reveal coronal magnetic field lines: in this way the two wavelength domains are nicely complementary.  相似文献   

16.
《Planetary and Space Science》2007,55(9):1135-1189
During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies.At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-rays have been detected from Saturn's disk, but no convincing evidence of an X-ray aurora has been observed. The first soft (0.1–2 keV) X-ray observation of Earth's aurora by Chandra shows that it is highly variable. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, those from the disk of Mars, Venus, and Moon, and from the rings of Saturn, are mainly produced by scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, the heliosphere, the geocorona, and the Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. X-rays from the Galilean satellites and the IPT are mostly driven by impact of Jovian magnetospheric particles.This paper reviews studies of the soft X-ray emission from the solar system bodies, excluding the Sun. Processes of production of solar system X-rays are discussed and an overview is provided of the main source mechanisms of X-ray production at each object. A brief account on recent development in the area of laboratory studies of X-ray production is also provided.  相似文献   

17.
S. D. Bouwer 《Solar physics》1992,142(2):365-389
Using a dynamic power spectral analysis technique, the time-varying nature of solar periodicities is investigated for background X-ray flux, 10.7 cm flux, several indices to UV chromospheric flux, total solar irradiance, projected sunspot areas, and a sunspot blocking function. Many prior studies by a host of authors have differed over a wide range on solar periodicities. This investigation was designed to help resolve the differences by examining how periodicities change over time, and how the power spectra of solar data depend on the layer of the solar atmosphere. Using contour diagrams that show the percent of total power over time for periods ranging from 8 to 400 days, the transitory nature of solar periodicities is demonstrated, including periods at 12–14, 26–28, 51–52, and approximately 154 days. Results indicate that indices related to strong magnetic fields show the greatest variation in the number of periodicities, seldom persist for more than three solar rotations, and are highly variable in their frequency and amplitude. Periodicities found in the chromospheric indices are fewer, persist for up to 8–12 solar rotations, and are more stable in their frequency and amplitude. An additional result, found in all indices to varying degrees and related to the combined effects of solar rotation and active region evolution, is the fashion in which periodicities vary from about 20 to 36 days. I conclude that the solar data examined here are both quasi-periodic and quasistationary, with chromospheric indices showing the longest intervals of stationarity, and data representing strong magnetic fields showing the least stationarity. These results may have important implications to the results of linear statistical analysis techniques that assume stationarity, and in the interpretation of time series studies of solar variability.  相似文献   

18.
ASO-S卫星HXI量能器探测单元的标定   总被引:1,自引:0,他引:1       下载免费PDF全文
先进天基太阳天文台卫星(Advanced Space-based Solar Observatory, ASO-S)是中国科学院第2批空间科学先导专项之一,其主要目标是同时观测太阳磁场、耀斑和日冕物质抛射,并对3者之间的相互关系和内在联系进行研究.硬X射线成像仪(HXI)是ASOS卫星的3大载荷之一,它通过对太阳活动发射的硬X射线进行傅里叶调制成像,实现高空间分辨率和高时间分辨率的太阳能谱成像观测.量能器单机是HXI的关键单机之一,其主要任务是精准测量通过每对光栅后太阳硬X射线的能量和通量.主要介绍了量能器单机的工作原理及其关键指标要求、标定设备及标定方案,最后给出了标定结果,从而验证了量能器单机方案设计的合理性.  相似文献   

19.
The RT-2 Experiment onboard the CORONAS-PHOTON satellite is designed to study the spectral, temporal, and spatial details of solar hard X-ray flares in the 15–150 keV range. Above this energy (and upto 1000 keV), it also acts as an omni-directional gamma-ray detector with a capability to study gamma-ray bursts (GRB), bright solar flares, and X-ray pulsars. With an ensemble of hard X-ray detectors with different fields of view and coding devices, it also has the capability to investigate the spectrum of Cosmic Diffuse X-ray Background. The performance of the detectors from 2009 February to November is described in this paper. Results obtained on a few GRBs and solar flares are also briefly discussed.  相似文献   

20.
Temperature and emission measure from goes soft X-ray measurements   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号