首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An interpretation of the type, size, and interrelations of sources is proposed for the three large Aleutian earthquakes of March 9, 1957, May 7, 1986, and June 10, 1996, which occurred in structures of the Andreanof Islands. According to our interpretation, the earthquakes were caused by steep reverse faults confined to different structural units of the southern slope of the Andreanof Islands and oriented along the strike of these structures. An E-W reverse fault that generated the largest earthquake of 1957 is located within the Aleutian Terrace and genetically appears to be associated with the development of the submarine Hawley Ridge. The western and eastern boundaries of this source are structurally well expressed by the Adak Canyon in the west (~177°W) and an abrupt change in isobaths in the east (~173°W). The character of the boundaries is reflected in the focal mechanisms. The source of the earthquake of 1957 extends for about 300 km, which agrees well with modern estimates of its magnitude (M w = 8.6). Because the earthquake of 1957 caused, due to its high strength, seismic activation of adjacent areas of the Aleutian island arc, its aftershock zone appreciably exceeded in size the earthquake source. Reverse faults that activated the seismic sources of the earthquakes of 1986 and 1996 were located within the southern slope of the Andreanof Islands, higher than the Aleutian Terrace, outside the seismic source of the 1957 earthquake. The boundaries of these sources are also well expressed in structures and focal mechanisms. According to our estimate, the length of the 1986 earthquake source does not exceed 130–140 km, which does not contradict its magnitude (M w = 8). The length of the 1996 earthquake source is ~100 km, which also agrees with the magnitude of the earthquake (M w = 7.8).  相似文献   

2.
An interpretation of the type, size, and location of the source of the Aleutian earthquake on April 1, 1946, which was characterized by the highest intensity (I = 4), is proposed. The earthquake source is a subvertical reverse fault striking along the island arc and dipping at an angle of 85° toward the deep-sea trench. The reverse fault is located in the lower part of the island slope, within the eastern termination of the Aleutian terrace. The western end of the reverse fault is located in the area of the Krenitsyn Islands (λ ∼ 165°W), where the pattern of isobaths changes, and an abrupt widening of the shelf part of the Fox Islands takes place. Large (M S ∼ 7) shocks, preceding the 1946 earthquake, occurred here in 1940, 1942, and 1944. Structural inhomogeneities in the island slope in the area of the Sanak Islands (λ ∼ 162°W) determine the eastern edge of the source-reverse fault, whose length within the specified boundaries is about 200 km. The mean magnitude of the earthquake corresponding to such a source is ∼8.3. According to the regular relation between the rupture length and the mean movement, the vertical displacement of the ocean floor in the source region could attain 5–6 m. A significant vertical displacement of the ocean floor over its large length (∼200 km) was responsible for the high tsunamigenic ability of this earthquake. A favorable combination in the source area of the topographic and other conditions necessary for the tsunami formation could additionally contribute to an increase in the intensity of the tsunami. The earthquake of April 1, 1946, in the Fox Islands, as well as the tsunamigenic earthquakes of March 9, 1957, in the Andreanof Islands and February 4, 1965, in the Rat Islands, does not belong to the class of “slow” earthquakes.  相似文献   

3.
Parameters of the focal mechanisms of earthquakes, as well as their relations to the characteristics of seismicity and geological structure are analyzed in the regions of the Komandorskie Islands in the west of the Aleutian arc, the Fox Islands, and the Alaska Peninsula coast in the east of the arc. Different types of ruptures are revealed in the western and eastern parts of the Aleutian arc. The leading type of ruptures at the southern slope of the Komandorskie Islands is steep reverse faults crossing the arc at azimuths from submeridional to northeastern. A similar type of rupture occurs in abundance on the Rat Islands and is predominant on the Near Islands. Steep strike-slips with small components of the normal or reverse fault manifest themselves at the northern side of the block uplift of the Komandorskie Islands. Seismogenic ruptures in the region of the Komandorskie Islands do not contradict geological data on the rupture tectonics on Medny and Bering islands. At the southern slope of the Fox Islands, as well as in the Andreanof Islands, steep reverse faults striking longitudinally (along the arc) with the dip toward the deep-sea trench are the predominant type of seismogenic ruptures. This type of seismogenic ruptures is the leading type for the structures of island arcs with present-day volcanism; an example is the Kurile-Kamchatka island. Different types of predominant seismogenic ruptures in the western and eastern parts of the Aleutian island arc probably reflect different stages of the tectonic development of these regions of the arc. Possible positions and sizes of sources of the largest historical earthquakes in the eastern part of the Aleutian island arc are considered  相似文献   

4.
The interpretation of the nature and parameters of the source for the earthquake that occurred in Sumatra on December 26, 2004 is suggested. Our study relies on a variety of data on the geological structure of the region, long-term seismicity, spatial distribution of the foreshocks and aftershocks, and focal mechanisms; and the pattern of shaking and tsunami, regularities in the occurrence of the earthquakes, and the genetic relationship between the seismic and geological parameters inherent in various types of seismogenic zones including island arcs. The source of the Sumatran earthquake is a steep reverse fault striking parallel to the island arc and dipping towards the ocean. The length of the fault is ~450 km, and its probable bedding depth is ~70–100 km. The magnitude of this seismic event corresponding to the length of its source is 8.9–9.0. The vertical displacement in the source probably reached 9–13 m. The fault is located near the inner boundary of the Aceh Depression between the epicenter of the earthquake and the northern tip of the depression. The strike-slip and strike-slip reverse the faults cutting the island arc form the northern and southern borders of the source. The location and source parameters in the suggested interpretation account quite well for the observed pattern of shaking and tsunami. The Aceh Depression and its environs probably also host other seismic sources in the form of large reverse faults. The Sumatran earthquake, which was the culmination of the seismogenic activation of the Andaman-Sumatra island arc in the beginning of XXI century, is a typical tsunamigenic island-arc earthquake. By its characteristics, this event is an analogue to the M W = 9 Kamchatka earthquake of November 4, 1952. The spatial distribution of the epicenters and the focal mechanisms of the aftershocks indicate that the repeated shocks during the Sumatran event were caused by the activation of a complex system of geological structures in various parts of the island arc and Andaman Sea instead of the slips on a single rupture (a subduction thrust about 1200–1300 km in length).  相似文献   

5.
The paper addresses the interpretation of the location, type, and size of the source for the earth-quake of March 11, 2011. The source—a subvertical reverse fault trending in the azimuth of ∼25° along the island arc—is located in the middle part of the Pacific slope of Honshu Island, between 38°–38.5°N and 35.5°N. The length of the source, about 350 km, approximately corresponds to a magnitude ∼8.7 earthquake. In the north, the source is bounded by a sublatitudinal reverse fault, which generated an earthquake with magnitude 7.2–7.5 in 1978. On this segment of the Pacific slope of Honshu Island, there are probably another one or a few other large seismic sources, which are still latent. They are longitudinal reverse faults, which are comparable in scale with the source of the March, 2011 earthquake. The recurrence period of the maximal earthquakes in such sources is more than 1000 years.  相似文献   

6.
An interpretation of the occurrence conditions and source parameters is proposed for the catastrophic earthquake of December 26, 2004, in the northwestern part of the Sunda island arc. The interpretation is based on the analysis of spatial distributions of aftershock epicenters and regions subjected to destructive tsunamis, seismicity manifestations in the NW part of the Sunda island arc in the past century, and locations of large tsunami sources of historical earthquakes off the Sumatra Island coast. The source parameters of the December 26, 2004, earthquake are compared with the reliably established main characteristics of sources of the largest tsunamigenic earthquakes in island arcs of the Pacific Ocean. According to the proposed interpretation, the December 26, 2004, earthquake source is a steep reverse fault striking NW and dipping toward the Indian Ocean. The source, ~450 km long, is located in front of the NW termination of Sumatra Island, in the southern part of the Nicobar Islands. Possible positions and sizes of large potential seismic sources in the NW part of the Sunda island arc are suggested.  相似文献   

7.
Maximum earthquake size varies considerably amongst the subduction zones. This has been interpreted as a variation in the seismic coupling, which is presumably related to the mechanical conditions of the fault zone. The rupture process of a great earthquake indicates the distribution of strong (asperities) and weak regions of the fault. The rupture process of three great earthquakes (1963 Kurile Islands, MW = 8.5; 1965 Rat Islands, MW = 8.7; 1964 Alaska, MW = 9.2) are studied by using WWSSN stations in the core shadow zone. Diffraction around the core attenuates the P-wave amplitudes such that on-scale long-period P-waves are recorded. There are striking differences between the seismograms of the great earthquakes; the Alaskan earthquake has the largest amplitude and a very long-period nature, while the Kurile Islands earthquake appears to be a sequence of magnitude 7.5 events.The source time functions are deconvolved from the observed records. The Kurile Islands rupture process is characterized by the breaking of asperities with a length scale of 40–60 km, and for the Alaskan earthquake the dominant length scale in the epicentral region is 140–200 km. The variation of length scale and MW suggests that larger asperities cause larger earthquakes. The source time function of the 1979 Colombia earthquake (MW = 8.3) is also deconvolved. This earthquake is characterized by a single asperity of length scale 100–120 km, which is consistent with the above pattern, as the Colombia subduction zone was previously ruptured by a great (MW = 8.8) earthquake in 1906.The main result is that maximum earthquake size is related to the asperity distribution on the fault. The subduction zones with the largest earthquakes have very large asperities (e.g. the Alaskan earthquake), while the zones with the smaller great earthquakes (e.g. Kurile Islands) have smaller scattered asperities.  相似文献   

8.
The 2022 Menyuan MS6.9 earthquake, which occurred on January 8, is the most destructive earthquake to occur near the Lenglongling (LLL) fault since the 2016 Menyuan MS6.4 earthquake. We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method. The total length and width of the aftershock sequence are approximately 32 km and 5 km, respectively, and the aftershocks are mainly concentrated at a depth of 7–12 km. The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock, where aftershocks are sparse. The east and west fault structures revealed by aftershock locations differ significantly. The west fault strikes EW and inclines to the south at a 71º–90º angle, whereas the east fault strikes 133º and has a smaller dip angle. Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes. Based on surface traces of faults, the distribution of relocated earthquake sequence and surface ruptures, the mainshock was determined to have occurred at the conjunction of the Tuolaishan (TLS) fault and LLL fault, and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault, respectively. Aftershocks migrate in the early and late stages of the earthquake sequence. In the first 1.5 h after the mainshock, aftershocks expand westward from the mainshock. In the late stage, seismicity on the northeast side of the east fault is higher than that in other regions. The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.  相似文献   

9.
The 10 January 2018 MW7.5 Swan island, Honduras earthquake occurred on the Swan island fault, which is a transform plate boundary between the North American and Caribbean plates. Here we back-project the rupture process of the earthquake using dense seismic stations in Alaska, and find that the earthquake ruptured at least three faults (three stages) for a duration of ~40 s. The rupture speed for the longest fault (stage 3) is as fast as 5 km/s, which is much faster than the local shear wave velocity of ~4 km/s. Supershear rupture was incidentally observed on long and straight strike-slip faults. This study shows a supershear rupture that occured on a strike-slip fault with moderate length, implying that supershear rupture might commonly occur on large strike-slip earthquakes. The common occurrence of supershear rupture on strike-slip earthquakes will challenge present understanding of crack physics, as well as strong ground motion evaluation in earthquake engineering.  相似文献   

10.
2008年5月12日我国四川省汶川地区发生了震惊世界的MS8.0地震.历史上,同类地震在大陆内部极为罕见.该地震深部构造背景的研究对理解其成因极为重要.本文利用中国地震局地质研究所地震动力学国家重点实验室在川西地区布设的大规模密集流动宽频带地震台阵记录的远震P波波形数据和接收函数非线性反演方法,得到了沿北纬31°线的19个台站下方120 km深度范围内的S波速度结构及台站下方地壳的平均泊松比.该观测剖面穿越了主震区,总长度约为420 km. 我们的结果揭示了川滇地块、松潘-甘孜地块和四川盆地三个不同地块构造差异.上述三个地块的地壳结构特征可以概括为:(1)四川盆地前陆壳幔界面向西侧倾斜并有较为明显的横向变形,地壳厚度存在46~52 km的横向变化,中下地壳S波速度存在横向变化,地壳平均泊松比值较高(0.28~0.31),但在龙门山断裂带附近,显示了坚硬地壳的特征,地壳平均泊松比仅为0.2;(2)松潘-甘孜地块地壳厚度由西侧靠近鲜水河断裂的60 km,向东减薄为52 km,在14~50 km深度范围内存在S波速度2.75~3.15 km/s的楔状低速区,其厚度由西侧的~30 km向东逐渐减薄为~15 km,相应区域的地壳平均泊松比高达0.29~0.31; (3)鲜水河断裂西侧,川滇地块地壳结构相对简单,地壳厚度为58 km,并在26 km深度存在约10 km厚度的高速层,地壳内平均泊松比约为0.25;(4)汶川大震区在12~23 km深度上具有近乎4.0 km/s的S波高速结构,而其下方的地壳为低速结构,地壳平均泊松比0.31~0.32,汶川大震的余震序列主要分布在高速介质区域内. 本文的结果表明松潘-甘孜地块的地壳相对软弱;而且并不存在四川盆地向西侧的俯冲.我们认为在青藏高原东向挤压的长期作用下,四川盆地强硬地壳的阻挡作用可导致松潘-甘孜地块内部蓄积很大的应变能量以及上、下地壳在壳内低速层顶部边界的解耦,在龙门山断裂带附近形成上地壳的铲形逆冲推覆.汶川大地震及其邻近区域所具有的坚硬上地壳和四川盆地的阻挡作用为低应变率下的高强度应力积累创造了必要条件,而松潘-甘孜地块长期变形积累的高应变能构成了孕育汶川大地震的动力来源.  相似文献   

11.
A strong earthquake with magnitude MS6.2 hit Hutubi, Xinjiang at 13:15:03 on December 8th, 2016(Beijing Time). In order to better understand its mechanism, we performed centroid moment tensor inversion using the broadband waveform data recorded at stations from the Xinjiang regional seismic network by employing gCAP method. The best double couple solution of the MS6.2 mainshock on December 8th, 2016 estimated from local and near-regional waveforms is strike:271°, dip:64ånd rake:90° for nodal plane I, and strike:91°, dip:26ånd rake:90°for nodal plane Ⅱ; the centroid depth is about 21km and the moment magnitude(MW)is 5.9. ISO, CLVD and DC, the full moment tensor, of the earthquake accounted for 0.049%, 0.156% and 99.795%, respectively. The share of non-double couple component is merely 0.205%. This indicates that the earthquake is of double-couple fault mode, a typical tectonic earthquake featuring a thrust-type earthquake of squeezing property.The double difference(HypoDD)technique provided good opportunities for a comparative study of spatio-temporal properties and evolution of the aftershock sequences, and the earthquake relocation was done using HypoDD method. 486 aftershocks are relocated accurately and 327 events are obtained, whose residual of the RMS is 0.19, and the standard deviations along the direction of longitude, latitude and depth are 0.57km, 0.6km and 1.07km respectively. The result reveals that the aftershocks sequence is mainly distributed along the southern marginal fault of the Junggar Basin, extending about 35km to the NWW direction as a whole; the focal depths are above 20km for most of earthquakes, while the main shock and the biggest aftershock are deeper than others. The depth profile shows a relatively steep dip angle of the seismogenic fault plane, and the aftershocks dipping northward. Based on the spatial and temporal distribution features of the aftershocks, it is considered that the seismogenic fault plane may be the nodal plane I and the dip angle is about 271°. The structure of the Hutubi earthquake area is extremely complicated. The existing geological structure research results show that the combination zone between the northern Tianshan and the Junggar Basin presents typical intracontinental active tectonic features. There are numerous thrust fold structures, which are characterized by anticlines and reverse faults parallel to the mountains formed during the multi-stage Cenozoic period. The structural deformation shows the deformation characteristics of longitudinal zoning, lateral segmentation and vertical stratification. The ground geological survey and the tectonic interpretation of the seismic data show that the recoil faults are developed near the source area of the Hutubi earthquake, and the recoil faults related to the anticline are all blind thrust faults. The deep reflection seismic profile shows that there are several listric reverse faults dipping southward near the study area, corresponding to the active hidden reverse faults; At the leading edge of the nappe, there are complex fault and fold structures, which, in this area, are the compressional triangular zone, tilted structure and northward bedding backthrust formation. Integrating with geological survey and seismic deep soundings, the seismogenic fault of the MS6.2 earthquake is classified as a typical blind reverse fault with the opposite direction close to the southern marginal fault of the Junggar Basin, which is caused by the fact that the main fault is reversed by a strong push to the front during the process of thrust slip. Moreover, the Manas earthquake in 1906 also occurred near the southern marginal fault in Junggar, and the seismogenic mechanism was a blind fault. This suggests that there are some hidden thrust fault systems in the piedmont area of the northern Tianshan Mountains. These faults are controlled by active faults in the deep and contain multiple sets of active faults.  相似文献   

12.
陈文彬  徐锡伟 《地震地质》2006,28(2):319-324
阿拉善地块南缘发育了由5条走向近EW、向西收敛、向东撒开的断裂组成的断裂束,每条断裂长度一般>100km,控制第四纪盆地呈EW向长条状展布,卫片上线性影像清晰,晚第四纪以来表现出左旋走滑活动的特点。断裂束西段的金塔南山断裂与阿尔金断裂带东段的宽滩山段趋于交会,并与文殊山构造隆起之间构成构造转换关系。分析认为金塔南山断裂以及整个阿拉善南缘断裂束是阿尔金断裂左旋运动的东延部分,断裂束在平面上“帚状”的、向东撒开的构造样式有利于走滑运动量的分解、消减和吸收,符合走滑断裂末端的构造特点。阿拉善南缘断裂束的左旋走滑活动有可能是阿尔金断裂带进一步向东扩展的结果,其时代可能发生于早更新世末—中更新世初  相似文献   

13.
2016年1月21日01时13分13.0秒(北京时间),青海省海北州门源县发生MS6.4地震.为了更好地认识这次地震的发震构造,本文利用青海省地震台网和甘肃省地震台网的省级固定地震台站及部分流动地震台站记录到的波形资料,通过重新拾取震相和联合HYPOINVERSE 2000与HypoDD定位方法,对2016年1月21日青海门源地震序列ML≥1.8的189个地震事件进行了重新定位,并采用gCAP方法分别反演了主震的双力偶机制解和全矩张量解. 定位结果显示,主震位置为37.67°N、101.61°E,震源深度为11.98 km;余震序列展布方向为SE和NW两个方向、长度约16 km,震源深度优势分布为4~14 km,断层面倾向为SW方向. 利用gCAP方法得到的矩心深度在8~9 km之间. 结合野外地质调查结果,认为该次地震事件为一次逆冲型事件,其发震断层可能为北西向冷龙岭断裂与北西向民乐—大马营断裂之间的一条盲断层,推测由于印度板块与欧亚板块的碰撞挤压使得青藏高原北缘与阿拉善地块之间的东西向挤压而造成的断层应力失稳,从而形成门源地震.  相似文献   

14.
福建地区地震活动空间分布及活动断裂特点研究   总被引:6,自引:0,他引:6  
陈晨 《地震》2005,25(3):102-108
分析了1604年发生在泉州海外的8级大地震, 将所获结果结合其后400年间发生在该地区的地震活动作进一步的探讨。 在获取对该大地震的认识的基础上, 结合现代地震观测数据资料, 对福建地区的地震活动性进行再研究。 结果表明, 由于菲律宾板块向西挤压, 导致大陆东南沿海的应力积累, 从而诱发了当年泉州海外8级特大地震; 重要的是, 在震源区附近有一条近NE向活动断裂贯穿而过, 它在这400年间释放出的地震活动能量占福建地区(含近邻)所释放地震活动能量的绝大部分。 分析结果认为: 牛山岛-兄弟屿断裂这条基本平行于长乐-诏安主干断裂东约50 km海中的断裂才是福建地区近几百年来地震活动主要区域, 也是福建地区现今和今后一段时间易发生地震的构造部位, 是控制东南沿海近海地震带的主要活动断裂。  相似文献   

15.
利用2010~2016年阳江地区小震资料,对围绕广东阳江6.4级地震发震构造的NEE走向平冈断层的西南段及NW走向的程村断层展布的密集地震,经双差定位方法重新进行震源位置的修定,获得了1411个精定位震源资料。依据成丛地震发生在断层附近的原则,采用模拟退火算法及高斯-牛顿算法相结合的方式,较精确地获得了2个断层面的详细参数:即平冈断层西南段走向258°、倾角85°、倾向NW,与6.4级地震的震源机制解结果十分一致,断层长度约15km并穿过了其西南端海域抵达了对岸;程村断层走向331°、倾角88°、倾向NE,长度约28km,较已有结果更长、走向也朝NE向偏转了约15°。2条陡直断层近乎垂直相交于近海,在构造应力作用下均以走滑错动为主。  相似文献   

16.
应用浅层地震勘探法对宁夏吴忠地区北部的浅部地壳结构和隐伏活动断裂进行研究。结果表明,该区存在2条隐伏断裂,分别为银川主断层南段和新华桥断层。推测银川主断层南段为近SN走向的W倾正断层,断层下盘地层界面一般呈近水平状展布,而在断层上盘,T_Q及其以下的地层界面向断面方向倾伏并显示出逆牵引现象,断层向上错断了第四系内部。钻孔联合地质剖面及浅层地震探测结果共同揭示新华桥断层为一条走向NE,倾向SW的正断层,深、浅地震测线控制的新华桥断层延伸长度9 km左右,向上错断了第四系内部的T_(02)界面。  相似文献   

17.
The Hsingtai, China earthquakes of March 1966 were a series of destructive earthquakes associated with the Shu-lu graben. Five strong shocks of Ms ≥ 6 occurred within a period of less than a month, the largest of which was Ms 7.2. Body and surface waves over the period range from several to 100 s have been modeled for the four largest events using synthetic seismograms in the time domain and spectral analysis in the frequency domain. Data from ground deformation, local geology, regional seismic network, and teleseismic joint epicenter determination have also been used to constrain the source model and the rupture process.The fault mechanism of the Hsingtai sequence was mainly strike-slip with a small component of normal dip-slip. The strikes of the four largest shocks range from ~ N26° to 30°E, approximately along strike of the major faults of the Shu-lu graben and the aftershock distribution. The source mechanisms can be explained with a NNW-SSE extensional stress and a NEE-SWW compressional stress acting in the area. The major shocks all had focal depths ~ 10 km.The four largest shocks in the sequence were characterized by a relatively simple and smooth dislocation time history. The durations of the far-field source time functions ranged from 3.5 to 5 s, while the rise times were all ~ 1 s. The seismic moments of the four largest earthquakes ranged from 1.43 × 1025 to 1.51 × 1026 dyne cm?1. The fault sizes of the four events were very close. Assuming circular faults, the diameters of the four events were determined to be between 10 and 14 km. Stress drops varied from ~ 52 to 194 bars. A trend of increasing stress drop with earthquake size was observed.A survey of stress drop determinations for 15 major intraplate earthquakes shows that on the average the magnitude of stress drop of oceanic intraplate earthquakes and passive continental margin events is higher (~ 200 to several hundred bars) than that of continental intraplate earthquakes (~ 100 bars or less).  相似文献   

18.
The seismogenic fault and the dynamic mechanism of the Ning’er, Yunnan Province MS6.4 earthquake of June 3, 2007 are studied on the basis of the observation data of the surface fissures, sand blow and water eruption, landslide and collapse associated with the earthquake, incorporating with the data of geologic structures, focal mechanism solutions and aftershock distribution for the earthquake area. The observation of the surface fissures reveals that the Banhai segment of the NW-trending Ning’er fault is dominated by right-lateral strike-slip, while the NNE-trending fault is dominated by left-lateral strike-slip. The seismo-geologic hazards are concentrated mainly within a 330°-extending zone of 13.5 km in length and 4 km in width. The major axis of the isoseismal is also oriented in 330° direction, and the major axis of the seismic intensity VIII area is 13.5 km long. The focal mechanism solutions indicate that the NW-trending nodal plane of the Ning’er MS6.4 earthquake is dominated by right-lateral slip, while the NE-trending nodal plane is dominated by left-lateral slip. The preferred distribution orientation of the aftershocks of MS≥2 is 330°, and the focal depths are within the range of 3~12 km, predominantly within 3~10 km. The distribution of the aftershocks is consistent with the distribution zone of the seismo-geologic hazards. All the above-mentioned data indicate that the Banhai segment of the Ning’er fault is the seismogenic fault of this earthquake. Moreover, the driving force of the Ning’er earthquake is discussed in the light of the active block theory. It is believed that the northward pushing of the Indian plate has caused the eastward slipping of the Qinghai-Tibetan Plateau, which has been transformed into the southeastern-southernward squeezing of the southwest Yunnan region. As a result, the NW-trending faults in the vicinity of the Ning’er area are dominated by right-lateral strike-slip, while the NE-trending faults are dominated by left-lateral strike-slip. This tectonic framework might be the main cause of the frequent occurrence of MS6.0~6.9 earthquakes in the area.  相似文献   

19.
基于四川区域地震台网记录的波形资料,利用CAP波形反演方法,同时获取了2013年4月20日芦山M7.0级地震序列中88个M≥3.0级地震的震源机制解、震源矩心深度与矩震级,进而利用应变花(strain rosette)和面应变(areal strain)As值,分析了芦山地震序列震源机制和震源区构造运动与变形特征.获得的主要结果有:(1)芦山M7.0级主震破裂面参数为走向219°/倾角43°/滑动角101°,矩震级为MW6.55,震源矩心深度15 km.芦山地震余震区沿龙门山断裂带走向长约37 km、垂直断裂带走向宽约16 km.主震两侧余震呈不对称分布,主震南西侧余震区长约27 km、北东侧长约10 km.余震分布在7~22 km深度区间,优势分布深度为9~14 km,序列平均深度约13 km,多数余震分布在主震上部.粗略估计的芦山地震震源体体积为37 km×16 km×16 km.(2)面应变As值统计显示,芦山地震序列以逆冲型地震占绝对优势,所占比例超过93%.序列主要受倾向NW、倾角约45°的近NE-SW向逆冲断层控制;部分余震发生在与上述主发震断层近乎垂直的倾向SE的反冲断层上;龙门山断裂带前山断裂可能参与了部分余震活动.P轴近水平且优势方位单一,呈NW-SE向,与龙门山断裂带南段所处区域构造应力场方向一致,反映芦山地震震源区主要受区域构造应力场控制,芦山地震是近NE-SW向断层在近水平的NW-SE向主压应力挤压作用下发生逆冲运动的结果.序列中6次非逆冲型地震均发生在主震震中附近,且主震震中附近P轴仰角变化明显,表明主震对其震中附近局部区域存在明显的应力扰动.(3)序列整体及不同震级段的应变花均呈NW向挤压白瓣形态,显示芦山地震震源区深部构造呈逆冲运动、NW向纯挤压变形.各震级段的应变花方位与形状一致,具有震级自相似性特征,揭示震源区深部构造运动和变形模式与震级无关.(4)不同深度的应变花形态以NW-NWW向挤压白瓣为优势,显示震源区构造无论是总体还是分段均以NW-NWW向挤压变形为特征.但应变花方位与形状随深度仍具有较明显的变化,可能反映了震源区构造变形在深度方向上存在分段差异.(5)芦山地震震源体尺度较小,且主震未发生在龙门山断裂带南段主干断裂上,南段长期积累的应变能未能得到充分释放,南段仍存在发生强震的危险.  相似文献   

20.
Quaternary basalt magmas in the Circum-Pacific belt and island arcs and also in Indonesia change continuously from less alkalic and more siliceous type (tholeiite) on the oceanic side to more alkalic and less siliceous type (alkali olivine basalt) on the continental side. In the northeastern part of the Japanese Islands and in Kamchatka, zones of tholeiite, high-alumina basalt, and alkali olivine basalt are arranged parallel to the Pacific coast in the order just named, whereas in the southwestern part of the Japanese Islands, the Aleutian Islands, northwestern United States, New Zealand, and Indonesia, zones of high-alumina basalt and alkali olivine basalt are arranged parallel to the coast. In the Izu-Mariana, Kurile, South Sandwich and Tonga Islands, where deep oceans are present on both sides of the island arcs, only a zone of tholeiite is represented. Thus the lateral variation of magma type is characteristic of the transitional zone between the oceanic and continental structures. Because the variation is continuous, the physico-chemical process attending basalt magma production should also change continuously from the oceanic to continental mantle. Suggested explanations for the lateral variation assuming a homogeneous mantle are: 1) Close correspondence between the variations of depth of earthquake foci in the mantle and of basalt magma type in the Japanese Islands indicates that different magmas are produced at different depths where the earthquakes are generated by stress release: tholeiite at depths around 100 km, high-alumina basalt at depths around 200 km, and alkali olivine basalt at depths greater than 250 km. 2) Primary olivine tholeiite magma is produced at a uniform level of the mantle (100–150 km), and on the oceanic side of the continental margin, it leaves the source region immediately after its production and forms magma reservoirs at shallow depths, perhaps in the crust, where it undergoes fractionation to produce SiO2-oversaturated tholeiite magma, whereas on the continental side, the primary magma forms reservoirs near the source region and stays there long enough to be fractionated to produce alkali olivine basalt magma, and in the intermediate zone, the primary magma forms reservoirs at intermediate depths where it is fractionated to produce high-alumina basalt magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号