首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Historically, large and potentially hazardous earthquakes have occurred within the interior of Alaska. However, most have not been adequately studied using modern methods of waveform modeling. The 22 July 1937, 16 October 1947, and 7 April 1958 earthquakes are three of the largest events known to have occurred within central Alaska (M s =7.3,M s =7.2 andM s =7.3, respectively). We analyzed teleseismic body waves to gain information about the focal parameters of these events. In order to deconvolve the source time functions from teleseismic records, we first attempted to improve upon the published focal mechanisms for each event. Synthetic seismograms were computed for different source parameters, using the reflectivity method. A search was completed which compared the hand-digitized data with a suite of synthetic traces covering the complete parameter space of strike, dip, and slip direction. In this way, the focal mechanism showing the maximum correlation between the observed and calculated traces was found. Source time functions, i.e., the moment release as a function of time, were then deconvolved from teleseismic records for the three historical earthquakes, using the focal mechanisms which best fit the data. From these deconvolutions, we also recovered the depth of the events and their seismic moments. The earthquakes were all found to have a shallow foci, with depths of less than 10 km.The 1937 earthquake occurred within a northeast-southwest band of seismicity termed the Salcha seismic zone (SSZ). We confirm the previously published focal mechanism, indicating strike-slip faulting, with one focal plane parallel to the SSZ which was interpreted as the fault plane. Assuming a unilateral fault model and a reasonable rupture velocity of between 2 and 3 km/s, the 21 second rupture duration for this event indicates that all of the 65 km long SSZ may have ruptured during this event. The 1947 event, located to the south of the northwest-southeast trending Fairbanks seismic zone, was found to have a duration of about 11 seconds, thus indicating a rupture length of up to 30 km. The rupture duration of the 1958 earthquake, which occurred near the town of Huslia, approximately 400 km ENE of Fairbanks, was found to be about 9 seconds. This gives a rupture length consistent with the observed damage, an area of 16 km by 64 km.  相似文献   

2.
A systematic search was made for seismicity rate changes in the segment of the Kurile island arc from 45°N to 53°N by studying the cumulative seismicity of shallow (h100 km) earthquakes within 11 overlapping volumes of radius 100 km for the time period 1960 through beginning of 1978. We found that in most parts of this island arc and most of the time the seismicity rate as obtained from the NOAA catalogue and not excluding any events is fairly constant except for increased seismicity in the mid 1960s in the southern portion due to the great 1963 mainshock there, and for seismicity quiescence during part of the time period studied within two well defined sections of the arc. The first of these is a volume of 100 km radius around a 1973 (M s =7.3) mainshock within which the seismicity rate was demonstrated at the 99% confidence level to have been lower by 50% during 2100 days (5.75 years) before this mainshock. The second volume of seismic quiescence coincides with the 400 km long north Kuriles gap. In this gap the seismicity rate is shown (at the 99% confidence level) to be lower by 50% from 1967 to present (1978), in comparison with the rate within the gap befor 1967, as well as with the rate surrounding the gap. We propose that the anomalously low seismicity rate within the Kuriles gap is a precursor to a great earthquake, the occurrence time of which was estimated by the following preliminary relation between precursory quiescence time and source dimensionT=190L 0.545. We predict that an earthquake with source length of 200–400 km (M>8) will occur along the north Kurile island arc between latitude 45.5°N and 49.2°N at a time between now and 1994.  相似文献   

3.
A seismic gap on the Anninghe fault in western Sichuan,China   总被引:10,自引:0,他引:10  
Through integrated analyses of time-varying patterns of regional seismicity, occurrence background of strong and large historical earthquakes along active faults, and temporal-spatial distribution of accu- rately relocated hypocenters of modern small earthquakes, this paper analyzes and discusses the im- plication of a 30-year-lasting seismic quiescence in the region along and surrounding the Anninghe and Zemuhe faults in western Sichuan, China. It suggests that the seismic quiescence for ML≥4.0 events has been lasting in the studied region since January, 1977, along with the formation and evaluation of a seismic gap of the second kind, the Anninghe seismic gap. The Anninghe seismic gap has the background of a seismic gap of the first kind along the Anninghe fault, and has resulted from evident fault-locking and strain-accumulating along the fault during the last 30 years. Now, two fault sections either without or with less small earthquakes exist along the Anninghe fault within the An- ninghe seismic gap. They indicate two linked and locked fault-sections, the northern Mianning section and the Mianning-Xichang section with lengths of 65 km and 75 km and elapsed time from the latest large earthquakes of 527 and 471 years, respectively. Along the Anninghe fault, characteristics of both the background of the first kind seismic gap and the seismicity patterns of the second seismic gap, as well as the hypocenter depth distribution of modern small earthquakes are comparable, respectively, to those appearing before the M=8.1 Hoh Xil earthquake of 2001 and to those emerging in the 20 years before the M=7.1 Loma Prieta, California, earthquake of 1989, suggesting that the Anninghe seismic gap is tending to become mature, and hence its mid- to long-term potential of large earthquakes should be noticeable. The probable maximum magnitudes of the potential earthquakes are estimated to be as large as 7.4 for both the two locked sections of the Anninghe fault.  相似文献   

4.
Many authors have proposed that the study of seismicity rates is an appropriate technique for evaluating how close a seismic gap may be to rupture. We designed an algorithm for identification of patterns of significant seismic quiescence by using the definition of seismic quiescence proposed by Schreider (1990). This algorithm shows the area of quiescence where an earthquake of great magnitude may probably occur. We have applied our algorithm to the earthquake catalog on the Mexican Pacific coast located between 14 and 21 degrees of North latitude and 94 and 106 degrees West longitude; with depths less than or equal to 60 km and magnitude greater than or equal to 4.3, which occurred from January, 1965 until December, 2014. We have found significant patterns of seismic quietude before the earthquakes of Oaxaca (November 1978, Mw = 7.8), Petatlán (March 1979, Mw = 7.6), Michoacán (September 1985, Mw = 8.0, and Mw = 7.6) and Colima (October 1995, Mw = 8.0). Fortunately, in this century earthquakes of great magnitude have not occurred in Mexico. However, we have identified well-defined seismic quiescences in the Guerrero seismic-gap, which are apparently correlated with the occurrence of silent earthquakes in 2002, 2006 and 2010 recently discovered by GPS technology.  相似文献   

5.
According to geological tectonics and seismic activites this paper devided North China (30°–45°N, 105°–130°E) into four areas. We analyzed the North China earthquake catalogue from 1970 to 1986 (from 1965 to 1986 for Huabei, the North China, plain region) and identified forty-two bursts of aftershock. Seven of them occurred in aftershock regions of strong earthquakes and seventeen of them in the seismic swarm regions. The relation between strong earthquakes with the remaining eighteen bursts of aftershocks has been studied and tested statistically in this paper. The result of statistical testing show that the random probabilityp of coincidence of bursts of aftershock with subsequent strong earthquakes is less than six percent. By Xu’sR scoring method the efficacy of predicting strong earthquake from bursts of aftershock is estimated greater than 39 percent. Following the method proposed in the paper we analyzed the earthquake catalogue of China from 1987 to June, 1988. The results show that there was only one burst of aftershock occurred on Jan. 6, 1988 withM=3.6 in Xiuyan of Northeast China. It implicates that a potential earthquake withM S⩽5 might occur in one year afterwards in the region of Northeast China. Actually on Feb. 25, 1988 an earthquake withM S=5.3 occurred in Zhangwu of Northeast China. Another example is Datong-Yanggao shock on October 18, 1989 which is a burst of aftershock. Three hours after an expected shock withM =6.1 took place in the same area. Two examples above have been tested in practical prediction and this shows that bursts of aftershocks are significant in predicting strong earthquakes. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 273–280, 1991. Part of earthquake catalogue is from Jinbiao Chen, Peiyan Chen and Quanlin Li.  相似文献   

6.
A great earthquake of M S=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is located at 36.2°N and 90.9°E. The analysis shows that some main precursory seismic patterns appear before the great earthquake, e.g., seismic gap, seismic band, increased activity, seismicity quiet and swarm activity. The evolution of the seismic patterns before the earthquake of M S=8.1 exhibits a course very similar to that found for earthquake cases with M S≥7. The difference is that anomalous seismicity before the earthquake of M S=8.1 involves in the larger area coverage and higher seismic magnitude. This provides an evidence for recognizing precursor and forecasting of very large earthquake. Finally, we review the rough prediction of the great earthquake and discuss some problems related to the prediction of great earthquakes.  相似文献   

7.
The Cocos plate subducts beneath North America at the Mexico trench. The northernmost segment of this trench, between the Orozco and Rivera fracture zones, has ruptured in a sequence of five large earthquakes from 1973 to 1985; the Jan. 30, 1973 Colima event (M s 7.5) at the northern end of the segment near Rivera fracture zone; the Mar. 14, 1979 Petatlan event (M s 7.6) at the southern end of the segment on the Orozco fracture zone; the Oct. 25, 1981 Playa Azul event (M s 7.3) in the middle of the Michoacan gap; the Sept. 19, 1985 Michoacan mainshock (M s 8.1); and the Sept. 21, 1985 Michoacan aftershock (M s 7.6) that reruptured part of the Petatlan zone. Body wave inversion for the rupture process of these earthquakes finds the best: earthquake depth; focal mechanism; overall source time function; and seismic moment, for each earthquake. In addition, we have determined spatial concentrations of seismic moment release for the Colima earthquake, and the Michoacan mainshock and aftershock. These spatial concentrations of slip are interpreted as asperities; and the resultant asperity distribution for Mexico is compared to other subduction zones. The body wave inversion technique also determines theMoment Tensor Rate Functions; but there is no evidence for statistically significant changes in the moment tensor during rupture for any of the five earthquakes. An appendix describes theMoment Tensor Rate Functions methodology in detail.The systematic bias between global and regional determinations of epicentral locations in Mexico must be resolved to enable plotting of asperities with aftershocks and geographic features. We have spatially shifted all of our results to regional determinations of epicenters. The best point source depths for the five earthquakes are all above 30 km, consistent with the idea that the down-dip edge of the seismogenic plate interface in Mexico is shallow compared to other subduction zones. Consideration of uncertainties in the focal mechanisms allows us to state that all five earthquakes occurred on fault planes with the same strike (N65°W to N70°W) and dip (15±3°), except for the smaller Playa Azul event at the down-dip edge which has a steeper dip angle of 20 to 25°. However, the Petatlan earthquake does prefer a fault plane that is rotated to a more east-west orientation—one explanation may be that this earthquake is located near the crest of the subducting Orozco fracture zone. The slip vectors of all five earthquakes are similar and generally consistent with the NUVEL-predicted Cocos-North America convergence direction of N33°E for this segment. The most important deviation is the more northerly slip direction for the Petatlan earthquake. Also, the slip vectors from the Harvard CMT solutions for large and small events in this segment prefer an overall convergence direction of about N20°E to N25°E.All five earthquakes share a common feature in the rupture process: each earthquake has a small initial precursory arrival followed by a large pulse of moment release with a distinct onset. The delay time varies from 4 s for the Playa Azul event to 8 s for the Colima event. While there is some evidence of spatial concentration of moment release for each event, our overall asperity distribution for the northern Mexico segment consists of one clear asperity, in the epicentral region of the 1973 Colima earthquake, and then a scattering of diffuse and overlapping regions of high moment release for the remainder of the segment. This character is directly displayed in the overlapping of rupture zones between the 1979 Petatlan event and the 1985 Michoacan aftershock. This character of the asperity distribution is in contrast to the widely spaced distinct asperities in the northern Japan-Kuriles Islands subduction zone, but is somewhat similar to the asperity distributions found in the central Peru and Santa Cruz Islands subduction zones. Subduction of the Orozco fracture zone may strongly affect the seismogenic character as the overlapping rupture zones are located on the crest of the subducted fracture zone. There is also a distinct change in the physiography of the upper plate that coincides with the subducting fracture zone, and the Guerrero seismic gap to the south of the Petatlan earthquake is in the wake of the Orozco fracture zone. At the northern end, the Rivera fracture zone in the subducting plate and the Colima graben in the upper plate coincide with the northernmost extent of the Colima rupture zone.  相似文献   

8.
The most recent intense earthquake swarm in West Bohemia lasted from 6 October 2008 to January 2009. Starting 12 days after the onset, the University of Potsdam monitored the swarm by a temporary small-aperture seismic array at 10 km epicentral distance. The purpose of the installation was a complete monitoring of the swarm including micro-earthquakes (M L < 0). We identify earthquakes using a conventional short-term average/long-term average trigger combined with sliding-window frequency-wavenumber and polarisation analyses. The resulting earthquake catalogue consists of 14,530 earthquakes between 19 October 2008 and 18 March 2009 with magnitudes in the range of − 1.2 ≤ M L ≤ 2.7. The small-aperture seismic array substantially lowers the detection threshold to about M c = − 0.4, when compared to the regional networks operating in West Bohemia (M c > 0.0). In the course of this work, the main temporal features (frequency–magnitude distribution, propagation of back azimuth and horizontal slowness, occurrence rate of aftershock sequences and interevent-time distribution) of the recent 2008/2009 earthquake swarm are presented and discussed. Temporal changes of the coefficient of variation (based on interevent times) suggest that the swarm earthquake activity of the 2008/2009 swarm terminates by 12 January 2009. During the main phase in our studied swarm period after 19 October, the b value of the Gutenberg–Richter relation decreases from 1.2 to 0.8. This trend is also reflected in the power-law behavior of the seismic moment release. The corresponding total seismic moment release of 1.02×1017 Nm is equivalent to M L,max = 5.4.  相似文献   

9.
Wave-form modelling of body waves has been done to study the seismic source parameters of three earthquakes which occurred on October 21, 1964 (M b =5.9), September 26, 1966 (M b =5.8) and March 14, 1967 (M b =5.8). These events occurred in the Indochina border region where a low-angle thrust fault accommodates motion between the underthrusting Indian plate and overlying Himalaya. The focal depths of all these earthquakes are between 12–37 km. The total range in dip for the three events is 5°–20°. TheT axes are NE-SW directed whereas the strikes of the northward dipping nodal planes are generally parallel to the local structural trend. The total source durations have been found to vary between 5–6 seconds. The average values of seismic moment, fault radius and dislocation are 1.0–11.0×1025 dyne-cm, 7.7–8.4km and 9.4–47.4 cm, respectively whereas stress drop, apparent stress and strain energy are found to be 16–76 bars, 8.2–37.9 bars and 0.1–1.7×1021 ergs, respectively. These earthquakes possibly resulted due to the tension caused by the bending of the lithospheric plate into a region of former subduction which is now a zone of thrusting and crustal shortening.  相似文献   

10.
On April 9, 2001 a M w 6.7 earthquake occurred offshore of the Chilean coast close to the intersection of the subducting Juan Fernández Ridge (JFR) and the trench near 33°S. The mainshock as well as an unprecedented number of aftershocks were recorded on regional broad-band and short-period seismic networks. We obtained a regional moment tensor solution of the mainshock that indcates a tensional focal mechanism consistent with the Harvard CMT solution. Based on waveform modeling and relocation, the depth of the mainshock was found to be 10–12 km. We relocated 142 aftershocks, which are strongly clustered and restricted to 10–30 km in depth. The seismicity distribution indicates a conjugate normal fault system extending into the lithospheric mantle that correlates with ridge-parallel fractures observed by previous seismic and bathymetric surveys. In conjunction with the historic regional distribution of outer-rise and large interplate seismicity, our results indicate that, with the exception of anomalously large thrust events, preexisting fractures associated with large bathymetric features like ridges have to exist to allow the generation of outer-rise seismicity along the Chilean margin. Hence, flexural bending and time-dependent interplate earthquakes can locally affect the nucleation of outer-rise events. The occurrence of the outer-rise seismicity in the oceanic mantle suggests the existence of lithospheric scale faults which might act as conduits to hydrate the subducting slab.Robert Fromm-Rhim passed away July 31st, 2004.  相似文献   

11.
This paper introduces the basic parameters, focal mechanism solutions and earthquake sequence characteristics of the Kalpin MS5.3 earthquake sequence of December 1, 2013, and analyzed seismic activity before the earthquake, the adjacent tectonic features and the precursory anomaly at fixed points within a range of 200km. Research indicates:(1) The earthquake occurred on Kalpin fault, the source rupture type is thrust faulting with sinistral strike-slip component. (2) The earthquake sequence is mainshock-aftershock type, with the aftershock distribution attenuating quickly and trending NE. (3) Abnormal seismic activity before the earthquake was characterized by seismically nesting quiescence of MS2.0-4.0 earthquakes, seismic quiescence of MS4.0 earthquakes and seismic belts of MS3.0 earthquakes in the Kalpin block, abnormal enhancement zone of moderate earthquakes on Puchang fault and seismological parameters. (4) Anomalies of precursory observation data at fixed stations are mainly characterized by mutation. Apart from the borehole tiltmeter in Halajun, the spatial distribution of other abnormal precursors showed a phenomenon of migration from the near field to far field and from the epicenter to the peripheries.  相似文献   

12.
Broadband P and S waves source spectra of 12 MS5.0 earthquakes of the 1997 Jiashi, Xinjiang, China, earthquake swarm recorded at 13 GDSN stations have been analyzed. Rupture size and static stress drop of these earthquakes have been estimated through measuring the corner frequency of the source spectra. Direction of rupture propagation of the earthquake faulting has also been inferred from the azimuthal variation of the corner frequency. The main results are as follows: ①The rupture size of MS6.0 strong earthquakes is in the range of 10~20 km, while that of MS=5.0~5.5 earthquakes is 6~10 km.② The static stress drop of the swarm earthquakes is rather low, being of the order of 0.1 MPa. This implies that the deformation release rate in the source region may be low. ③ Stress drop of the earthquakes appears to be proportional to their seismic moment, and also to be dependent on their focal mechanism. The stress drop of normal faulting earthquakes is usually lower than that of strike-slip type earthquakes. ④ For each MS6.0 earthquake there exists an apparent azimuthal variation of the corner frequencies. Azimuthally variation pattern of corner frequencies of different earthquakes shows that the source rupture pattern of the Jiashi earthquake swarm is complex and no uniform rupture expanding direction exists.  相似文献   

13.
The characteristics of spatio-temporal seismicity evolution before the Wenchuan earthquake are studied. The results mainly involve in the trend abnormal features and its relation to the Wenchuan earthquake. The western Chinese mainland and its adjacent area has been in the seismically active period since 2001, while the seismic activity shows the obvious quiescence of M≥?7.0, M≥?6.0 and M?≥5.0 earthquakes in Chinese mainland. A quiescence area with M?≥7.0 has been formed in the middle of the North-South seismic zone since 1988, and the Wenchuan earthquake occurred just within this area. There are a background seismicity gap of M?≥5.0 earthquakes and a seismogenic gap of ML?≥4.0 earthquakes in the area of Longmenshan fault zone and its vicinity prior to the Wenchuan earthquake. The seismic activity obviously strengthened and a doughnut-shape pattern of M?≥4.6 earthquakes is formed in the middle and southern part of the North-South seismic zone after the 2003 Dayao, Yunnan, earthquake. Sichuan and its vicinity in the middle of the doughnut-shape pattern show abnormal quiescence. At the same time, the seismicity of earthquake swarms is significant and shows heterogeneity in the temporal and spatial process. A swarm gap appears in the M4.6 seismically quiet area, and the Wenchuan earthquake occurred just on the margin of the gap. In addition, in the short term before the Wenchuan earthquake, the quiescence of earthquake with ML≥?4.0 appears in Qinghai-Tibet block and a seismic belt of ML?≥3.0 earthquakes, with NW striking and oblique with Longmenshan fault zone, is formed.  相似文献   

14.
This article explores the possibility to measure deformations of building foundations from measurements of ambient noise and strong motion recordings. The case under study is a seven-storey hotel building in Van Nuys, California. It has been instrumented by strong motion accelerographs, and has recorded several earthquakes, including the 1971 San Fernando (ML=6.6, R=22 km), 1987 Whittier–Narrows (ML=5.9, R=41 km), 1992 Landers (ML=7.5, R=186 km), 1992 Big Bear (ML=6.5, R=149 km), and 1994 Northridge (ML=6.4, R=1.5 km) earthquake and its aftershocks (20 March: ML=5.2, R=1.2 km; 6 December, 1994: ML=4.3, R=11 km). It suffered minor structural damage in 1971 earthquake and extensive damage in 1994. Two detailed ambient vibration tests were performed following the Northridge earthquake, one before and the other one after the 20 March aftershock. These included measurements at a grid of points on the ground floor and in the parking lot surrounding the building, presented and analyzed in this article. The analysis shows that the foundation system, consisting of grade beams on friction piles, does not act as a “rigid body” but deforms during the passage of microtremor and therefore earthquake waves. For this geometrically and by design essentially symmetric building, the center of stiffness of the foundation system appears to have large eccentricity (this is seen both from the microtremor measurements and from the earthquake recordings). This eccentricity may have contributed to strong coupling of transverse and torsional responses, and to larger than expected torsional response, contributing to damage during the 1994 Northridge, earthquake.  相似文献   

15.
A swarm of earthquakes of magnitudes up to M L = 3.8 stroke the region of West Bohemia/Vogtland (border area between Czechia and Germany) in October 2008. It occurred in the Novy Kostel focal zone, where also all recent earthquake swarms (1985/1986, 1997, and 2000) took place, and was striking by a fast sequence of macroseismically observed earthquakes. We present the basic characteristics of this swarm based on the observations of a local network WEBNET (West Bohemia seismic network), which has been operated in the epicentral area, on the Czech territory. The swarm was recorded by 13 to 23 permanent and mobile WEBNET stations surrounding the swarm epicenters. In addition, a part of the swarm was also recorded by strong-motion accelerometers, which represent the first true accelerograms of the swarm earthquakes in the region. The peak ground acceleration reached 0.65 m/s2. A comparison with previous earthquake swarms indicates that the total seismic moments released during the 1985/1986 and 2008 swarms are similar, of about 4E16 Nm, and that they represent the two largest swarms that occurred in the West Bohemia/ Vogtland region since the M L = 5.0 swarm of 1908. Characteristic features of the 2008 swarm are its short duration (4 weeks) and rapidity and, consequently, the fastest seismic moment release compared to previous swarms. Up to 25,000 events in the magnitude range of 0.5 < M L < 3.8 were detected using an automatic picker. A total of nine swarm phases can be distinguished in the swarm, five of them exceeding the magnitude level of 2.5. The magnitude–frequency distribution of the complete 2008 swarm activity shows a b value close to 1. The swarm hypocenters fall precisely on the same fault portion of the Novy Kostel focal zone that was activated by the 2000 swarm (M L ≤ 3.2) in a depth interval from 6 to 11 km and also by the 1985/1986 swarm (M L ≤ 4.6). The steeply dipping fault planes of the 2000 and 2008 swarms seem to be identical considering the location error of about 100 m. Furthermore, focal mechanisms of the 2008 swarm are identical with those of the 2000 swarm, both matching an average strike of 170° and dip of 80° of the activated fault segment. An overall upward migration of activity is observed with first events at the bottom and last events at the top of the of the activated fault patch. Similarities in the activated fault area and in the seismic moments released during the three largest recent swarms enable to estimate the seismic potential of the focal zone. If the whole segment of the fault plane was activated simultaneously, it would represent an earthquake of M L ~5. This is in good agreement with the estimates of the maximum magnitudes of earthquakes that occurred in the West Bohemia/Vogtland region in the past.  相似文献   

16.
The Stone Canyon earthquake sequence started during August 1982 and lasted for about four months. It contained four mainshocks withM L 4, each with an aftershock zone about 4 km long. These mainshocks, progressing from southeast to northwest, ruptured a segment of the fault approximately 20 km long leaving two gaps, which were later filled by theM L =4.6 mainshocks of January 14, and May 31, 1986. The equivalent magnitude of the sequence isM L =5.0.Precursory seismic quiescence could be identified in: (1) the northernmost 10 km of the aftershock zone which contained three of the mainshocks; and (2) the southern gap in the aftershock zone. The fault segment containing the first mainshock and its aftershocks did not show quiescence. This pattern of precursory quiescence is very similar to two cases in Hawaii where the rupture initiation points of the mainshocks (M S =7.2 and 6.6, respectively) were located in volumes of constant seismicity rate, surrounded by volumes with pronounced precursory quiescence.The precursory quiescence before the August 1982 Stone Canyon earthquakes lasted for 76 weeks, amounted to a reduction in rate of about 60%, and could be recognized without any false alarms. That is, the anomaly was unique within the 60 km study segment of the fault and in the years 1975 through August 1982. Eighteen foreshocks occurred between July 27 and August 7, 1982. We conclude that the August 1982 mainshocks could have been predicted, based on seismic quiescence and foreshocks.  相似文献   

17.
Long-term seismic activity prior to the December 26, 2004, off the west coast of northern Sumatra, Indonesia, M W=9.0 earthquake was investigated using the Harvard CMT catalogue. It is observed that before this great earthquake, there exists an accelerating moment release (AMR) process with the temporal scale of a quarter century and the spatial scale of 1 500 km. Within this spatial range, the M W=9.0 event falls into the piece-wise power-law-like frequency-magnitude distribution. Therefore, in the perspective of the critical-point-like model of earthquake preparation, the failure to forecast/predict the approaching and/or the size of this earthquake is not due to the physically intrinsic unpredictability of earthquakes. Foundation item: Ministry of Science and Technology Project (2004CB418406). Contribution No. 05FE3010, Institute of Geophysics, China Earthquake Administration.  相似文献   

18.
Seismicity and Seismic Hazard in Alexandria (Egypt) and its Surroundings   总被引:3,自引:0,他引:3  
— Alexandria City has suffered great damage due to earthquakes from near and distant sources, both in historical and recent times. Sometimes the source of such damages is not well known. Seismogenic zones such as the Red Sea, Gulf of Aqaba-Dead Sea Hellenic Arc, Suez-Cairo-Alexandria, Eastern-Mediterranean-Cairo-Faiyoum and the Egyptian costal area are located in the vicinity of this city. The Egyptian coastal zone has the lowest seismicity, and therefore, its tectonic setting is not well known. The 1998 Egyptian costal zone earthquake is a moderate complex source. It is composed of two subevents separated by 4 sec. The first subevent initiated at a depth of 28 km and caused a rupture of strike (347°), dip (29°) and slip (125°). The second subevent occurred at a shallower depth (24 km) and has a relatively different focal parameter (strike 334°, dip 60° and slip 60°). The available focal mechanisms strongly support the manifestation of a complex stress regime from the Hellenic Arc into the Alexandria offshore area. In the present study a numerical modeling technique is applied to estimate quantitative seismic hazard in Alexandria. In terms of seismic hazard, both local and remote earthquakes have a tremendous affect on this city. A local earthquake with magnitude Ms = 6.7 at the offshore area gives peak ground acceleration up to 300 cm/sec2. The total duration of shaking expected from such an earthquake is about three seconds. The Fourier amplitude spectra of the ground acceleration reveals that the maximum energy is carried by the low frequency (1–3 Hz), part of the seismic waves. The largest response spectra at Alexandria city is within this frequency band. The computed ground accelerations due to strong earthquakes in the Hellenic Arc, Red Sea and Gulf of Aqaba are very small (less than 10 cm/sec2) although with long duration (up to 3 minutes).  相似文献   

19.
Probabilistic seismic hazard analysis (PSHA) has been carried out for Iraq. The earthquake catalogue used in the present study covers an area between latitude 29°–38.5° N and longitude 39°–50° E containing more than a thousand events for the period 1905–2000. The entire Iraq region has been divided into thirteen seismogenic sources based on their seismic characteristics, geological setting and tectonic framework. The completeness of the seismicity catalogue has been checked using the method proposed by Stepp (1972). The analysis of completeness shows that the earthquake catalogue is not complete below Ms=4.8 for all of Iraq and seismic source zones S1, S4, S5, and S8, while it varies for the other seismic zones. A statistical treatment of completeness of the data file was carried out in each of the magnitude classes. The Frequency Magnitude Distributions (FMD) for the study area including all seismic source zones were established and the minimum magnitude of complete reporting (Mc) were then estimated. For the entire Iraq the Mc was estimated to be about Ms=4.0 while S11 shows the lowest Mc to be about Ms=3.5 and the highest Mc of about Ms=4.2 was observed for S4. The earthquake activity parameters (activity rate , b value, maximum regional magnitude mmax) as well as the mean return period (R) with a certain lower magnitude mmin m along with their probability of occurrence have been determined for all thirteen seismic source zones of Iraq. The maximum regional magnitude mmax was estimated as 7.87 ± 0.86 for entire Iraq. The return period for magnitude 6.0 is largest for source zone S3 which is estimated to be 705 years while the smallest value is estimated as 9.9 years for all of Iraq.The large variation of the b parameter and the hazard level from zone to zone reflects crustal heterogeneity and the high seismotectonic complexity. The seismic hazard near the source boundaries is directly and strongly affected by the change in the delineation of these boundaries. The forces, through which the geological structure along the plate boundary in Eastern and Northeastern Iraq are evolved, are still active causing stress-strain accumulation, deformation and in turn producing higher probabilities of earthquake activity. Thus, relatively large destructive earthquakes are expected in this region. The study is intended to serve as a reference for more advanced approaches and to pave the path for the probabilistic assessment of seismic hazard in this region.  相似文献   

20.
SourceparametersoftheGonghe,QinghaiProvince,China,earthquakefrominversionofdigitalbroadbandwaveformdataLI-SHENGXU(许立生)andYUN...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号