首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Methanol 72–81 A + is mapped for the first time in Orion KL. Analysing the observed data and solving the statistical equilibrium and radiative transfer equations, it is concluded that line series ofJ 2–(J+1)1 A + (J=7,8,9) is in quasi-thermal emission rather than the masers in Orion KL. The maser spots of methanolJ 2J 1 E (J=6,7) and 80–71 A + are distributed in the northeast part of the contour plot of 72–81 A +. The physical conditions of the regions of maser seriesJ 0–(J–1)1 A + (J=7,8,9) are discussed. Also from the calculation results another maser seriesJ 1–(J–1)2 A (J=10,11,12) that might coexist with maser seriesJ 2J 1 E, is found. The sizes of the 2-dimension Gaussian fit plots of methanol 72–81 A + and HCOOCH3 10(0,10)–9(0,9)A are almost the same, and the main parts overlap each other.  相似文献   

2.
Extreme ultraviolet spectra of several active regions are presented and analyzed. Spectral intensities of 3 active regions observed with the NRL Skylab XUV spectroheliograph (170–630 Å) are derived. From this data density sensitive line ratios of Mg viii, Si x, S xii, Fe ix, Fe x, Fe xi, Fe xii, Fe xiii, Fe xiv, and Fe xv are examined and typically yield, to within a factor of 2, electron pressures of 1 dyne cm–2 (n e T = 6 × 1015 cm–3 K). The differential emission measure of the brightest 35 × 35 portion of an active region is obtained between 1.4 × 104 K and 5 × 106 K from HCO OSO-VI XUV (280–1370 Å) spectra published by Dupree et al. (1973). Stigmatic EUV spectra (1170–1710 Å) obtained by the NRL High Resolution Telescope and Spectrograph (HRTS) are also presented. Doppler velocities as a function of position along the slit are derived in an active region plage and sunspot. The velocities are based on an absolute wavelength scale derived from neutral chromospheric lines and are accurate to ±2 km s–1. Downflows at 105 K are found throughout the plage with typical velocities of 10 km s–1. In the sunspot, downflows are typically 5 to 20 km s–1 over the umbra and zero over the penumbra. In addition localized 90 and 150 km s–1 downflows are found in the umbra in the same 1 × 1 resolution elements which contain the lower velocity downflows. Spectral intensities and velocities in a typical plage 1 resolution element are derived. The velocities are greatest ( 10 km s–1) at 105 K with lower velocities at higher and lower temperatures. The differential emission measure between 1.3 × 104 K and 2 × 106 K is derived and is found to be comparable to that derived from the OSO-VI data. An electron pressure of 1.4 dynes cm–2 (n e T = 1.0 × 1016 cm–3 K) is determined from pressure sensitive line ratios of Si iii, O iv, and N iv. From the data presented it is shown that convection plays a major role in determining the structure and dynamics of the active region transition zone and corona.  相似文献   

3.
On the basis of Sobolev's method, the population of 30 levels of hydrogen atom is determined allowing for the radiative and collision processes of the heating and ionization of the medium with velocity gradient gradv=10–9–10–11s–1, electron temperatureT e=104 K-2×104 K and electron densityN e=1010 cm–3–1011 cm–3. The central source radiation is characterized by a power spectrum with spectral indices varying from 0 to 2. A region of possible physical conditions is found where the thermal diffuse radiation of the envelope exceeds the emission in the Balmer H line.  相似文献   

4.
It is shown that cosmic radiation almost follows a Planck distribution, because just as matter is formed, its density of energy is negligible in comparison with that of radiation, and that the present age of the Universe does not depend on the particular manner in which the matter is formed.Thus, if the results of the latest observations (which imply a deceleration parameterq=1.6) are combined with the assumption that the present age of the Universe is at least 12×109 yr, they lead to a hyperbolic oscillating universe with a negative cosmological constant (<–1.53×10–56 cm–2) and a present mass-density m of less than 1.2×10–30 g cm–3. If the cosmological constant is taken to be zero, a solution is only possible if we are prepared to admit a rate of evolution of galaxies with a deceleration parameterq<0.52. Three types of oscillating universe are then possible, but the heperbolic type is the most probable. If Hubble's constant is greater than 63.4 km s–1 Mpc–1, the solutions are only hyperbolic universes with <+0.45×10–56 cm–2 and m <4.8×10-30g cm-3.
Sommaire On montre que le rayonnement cosmique général suit pratiquement une loi de Planck parce que la densité d'énergie de la matière au moment de sa formation est négligeable à côté de celle du rayonnement et que l'âge actuel de l'Univers ne dépend pas du mode de formation de la matière.Dans ces conditions, si l'on combine les derniers résultats d'observations (qui impliquent un paramètre de décélérationq=1.6) avec l'hypothèse que l'âge actuel de l'Univers est au moins de 12×109 années on est conduit à un Univers hyperbolique oscillant à constante cosmologique négative (<–1.53×10–56 cm–2) et où l'actuelle densité de matière m est moindre que 1.2×10–30 g cm–3. Si la constante cosmologique est supposée nulle, une solution ne peut être obtenue que si l'on admet un certain taux d'évolution des Galaxies et un paramètre de décélérationq<0.52. Alors, les trois types d'Univers oscillants sont possibles, mains les Univers hyperboliques paraissent plus probables. Enfin, si la constante de Hubble est plus grande que 63.4 km s–1 Mpc–1 les solutions ne peuvent être que des Univers hyperboliques avec <+0.45×10–56 cm–2 et m <4.8×10-30g cm-3.
  相似文献   

5.
J.-René Roy 《Solar physics》1976,48(1):149-158
Observations of a surge prominence event on 31 May 1971 are discussed. The continuum emission observed during the upward acceleration of the surge is attributed to the scattering of photospheric radiation by free electrons. The observed scattered light intensity amounts to a few times 10–5 that of the central disk intensity leading to a column density of n e L1020 cm–2. The actual electron density when taking into account the presence of inhomogeneities is n e 1012 cm–3. The dynamic and morphological behaviour of the surge is considered.  相似文献   

6.
Strong absorption satellite lines of CaI 6572 were found on spectrograms taken on three successive days just after the fourth contact of the 1971–72 eclipse of Zeta Aurigae. The radial velocities of the satellite lines are –88 km s–1, –74 km s–1, and –180 km–1, respectively, relative to the K-type primary star (K4 Ib). These absorptions should be due to a circumstellar cloud in which the column density of neutral calcium atoms is 1×1017 cm–2 and the turbulent velocities come to 20–50 km s–1. It is suggested that the cloud may be formed by the rocket-effect of the Lyman quanta of the B-type component (B6 V). We estimate the density in the cloud to be 2×1011 atoms cm–3 fors=10R K and 2×1010 atoms cm–3 fors=102 R K, wheres denotes the distance of the cloud from the K star andR K the K star's radius. The mass loss rate of the K-type component is also estimated to be about 10–7 M yr–1, assuming that the expansion of the K star occurs isotropically.  相似文献   

7.
Colliding comets in the Solar System may be an important source of gamma ray bursts. The spherical gamma ray comet cloud required by the results of the Venera Satellites (Mazets and Golenetskii, 1987) and the BATSE detector on the Compton Satellite (Meeganet al., 1992a, b) is neither the Oort Cloud nor the Kuiper Belt. To satisfy observations ofN(>P max) vsP max for the maximum gamma ray fluxes,P max > 10–5 erg cm–2 s–1 (about 30 bursts yr–1), the comet density,n, should increase asn a 1 from about 40 to 100 AU wherea is the comet heliocentric distance. The turnover above 100 AU requiresn a –1/2 to 200 AU to fit the Venera results andn a 1/4 to 400 AU to fit the BATSE data. Then the masses of comets in the 3 regions are from: 40–100 AU, about 9 earth masses,m E; 100–200 AU about 25m E; and 100–400 AU, about 900m E. The flux of 10–5 erg cm–2 s–1 corresponds to a luminosity at 100 AU of 3 × 1026 erg s–1. Two colliding spherical comets at a distance of 100 AU, each with nucleus of radiusR of 5 km, density of 0.5 g cm–3 and Keplerian velocity 3 km s–1 have a combined kinetic energy of 3 × 1028 erg, a factor of about 100 greater than required by the burst maximum fluxes that last for one second. Betatron acceleration in the compressed magnetic fields between the colliding comets could accelerate electrons to energies sufficient to produce the observed high energy gamma rays. Many of the additional observed features of gamma ray bursts can be explained by the solar comet collision source.  相似文献   

8.
The soft X-ray emission of the solar corona is investigated by comparison of the signals of several broad band photometers carried on the Solrad 9 satellite, and sensitive to the region 0.5–20 Å. Temperature from 1.5 × 106 to 25 × 106 K have been measured with emission measure N e 2 dV ranging between 1050 cm–3 to 1047 cm–3.By means of the observational data and assuming magnetic confinement and hydrostatic equilibrium, the model of an active region is investigated. For temperatures larger than 107K the emission is due to flare activity and two sets of emission measure are observed which appear to be related to the evolution of flares.  相似文献   

9.
The analysis of the Th/U ratio in meteorites and the evolutionary ages of globular clusters favour values of the cosmic age of (19±5)×109 yr. This evidence together with a Hubble parameterH 0>70 km s–1 Mpc–1=(14×109 yr)–1 cannot be reconciled in a Friedmann model with =0. It requires a cosmological constant in the order of 10–56 cm–2, equivalent to a vacuum density v =10–29 g cm–3 The Friedmann-Lemaître models (>0) with a hot big-bang have been calculated. They are based on a present value of the baryonic matter density of 0=0.5×10–30 g cm–3 as derived from the primordial4He and2H abundances.For a Hubble parameter ofH 0=75 km s–1 Mpc–1, our analysis favours a set of models which can be represented by a model with Euclidean metric (density parameter 0=1.0, deceleration parameterq 0=–0.93, aget 0=19.7×109 yr) and by a closed model with perpetual expansion (0=1.072,q 0=–1.0, aget 0=21.4×109 yr). A present density parameter close to one can indeed be expected if the conjecture of an exponential inflation of the very early universe is correct.The possible behaviour of the vacuum density is demonstrated with the help of Streeruwitz' formula in the context of the closed model with an inflationary phase at very early times.  相似文献   

10.
We compute the perturbations on the motion of the Moon due to the shape of the Earth. The zonal terms inJ 2,J 3, andJ 4 are considered. The accuracy is estimated at 3×10–5 and the results compared with previous theories.  相似文献   

11.
Elemental abundances of the VH group of cosmic radiation have been measured in the energy interval 250–550 MeV nucl–1 in a balloon exposure at Sioux Falls (South Dakota) of a plastic detector LeXAN stack. The so obtained abundances have been extrapolated to the sources in the frame of the homogeneous model correcting for energy loss. After taking into account solar modulation, the best fit to model values has led to a escape mean free path e = 5E –0.4 g cm–2, whereE is the energy in GeV nucl–1, forE>1 GeV nucl–1, and a constant e = 5 g cm–2 forE1 GeV nucl–1. When turning to the diffusion model, also including an energy loss term, a diffusion coefficientD=3×1028 cm2 s–1 has been estimated.  相似文献   

12.
The fluxes and spectra of galactic and extragalactic neutrinos at energy 1011–1019 eV are calculated. In particular, the neutrino flux from the normal galaxies is calculated taking into account the spectral index distribution. The only assumption that seriously affects the calculated neutrino flux atE v 1017 eV is the power-like generation spectrum of protons in the entire considered energy region.The normal galaxies with the accepted parameters generate the metagalactic equivalent electron component (electrons+their radiation) with energy density e8.5×10–7 eV cm–3, while the density of the observed diffuse X-ray radiation alone is 100 times higher. This requires the existence of other neutrino sources and we found the minimized neutrino flux under two limitations: (1) the power-law generation spectrum of protons and (2) production of the observed energy density of the diffuse X-an -radiation. These requirements are met in the evolutionary model of origin of the metagalactic cosmic rays with modern energy density M83.6×10–7 eV cm–3.The possibility of experiments with cosmic neutrinos of energyE v 3×1017 eV is discussed. The upper bound on neutrino-nucleon cross-section <2.2×10–29 cm2 is obtained in evolutionary model from the observed zenith angular distribution of extensive air showers.In Appendix 2 the diffuse X-and -ray flux arising together with neutrino flux is calculated. It agrees with observed flux in the entire energy range from 1 keV up to 100 MeV.  相似文献   

13.
We report the first detection of a water megamaser in a radio-loud galaxy, 3C 403, and present a follow-up study using the VLA. 3C 403 has been observed as a part of a small sample of FR II galaxies with evidence of nuclear obscuration. The isotropic luminosity of the maser is 1200 L. With a recessional velocity of cz 17680 km s–1 it is the most distant water maser so far reported. The line arises from the densest (> 108 cm–3) interstellar gas component ever observed in a radio-loud galaxy. Two spectral features are identified, likely bracketing the systemic velocity of the galaxy. Our interferometric data clearly indicate that these arise from a location within 0.1 (110 pc) from the active galactic nucleus. We conclude that the maser spots are most likely associated with the tangentially seen parts of a nuclear accretion disk, while an association with dense warm gas interacting with the radio jets cannot yet be ruled out entirely.  相似文献   

14.
The data of the line series CH3CN 8(K) – 7(K) K = 0 – 7 and line CS J = 3 – 2 were taken simultaneously. At beam size of 16 the emissions of CH3CN and CS have a common center position located near IRc2 with deviations -8 and 5. The observed data show that in Orion KL core the integrated intensities of the two species have double peaks separated by a space of 14. The 2-dimension Gaussian fitting plots (FWHM) are ellipses ofD maj = 26 andD min = 22 for CH3CN 8(K) – 7(K) K = 3 – 6 andDmaj = 39 Dmin = 31 for CS J = 3 – 2 at a distance about 450 pc. Towards the multiple line emission region of CH3CN 8(K) – 7(K) K = 3 – 6, using a simplified very large velocity gradient model to solve the statistical equilibrium and radiative transfer equations, we find to fit the observed results, the optimum physical parameters and kinetic temperatureT k 120 K, densityn(H a) 1.2 × 105 cm–3, velocity gradientV gr 92 km s–1 pc–1 and the local abundance of CH3CNF ab 3 × 10–8. However towards the region of single line emission of CS J = 3 – 2 we have to use LTE and the optical thin approximation on the assumption ofT k= 120 K to obtain the lower limits of column density and then, an averaged abundance of CS of 6 × 10–8.  相似文献   

15.
The isotropic cumulative burst rate of 7030 –6000 +10000 yr–1 at a fluence ofS=8.47×10–9 erg–1 cm–2 determined by Beurleet al. from their observation of two gamma-ray bursts is shown to be statistically improbable. The difficulty arises from their assumption that the power law cumulative distribution function index equals one. Their observations are rediscussed and an upper limit ofN(>8.47×10–9 erg cm–2)<5400 yr–1 is proposed.  相似文献   

16.
Structures of Newtonian super-massive stars are calculated with the opacity for Comptor effectK 0/(1 + T), whereK 0=0.21(1 +X and =2.2×10–9K–1. The track of the Main-Sequence is turned right in the upper part of the HR diagram. Mass loss will occur in a Main-Sequence stage for a star with mass larger than a critical mass. The cause of mass loss and the expansion of the radius is continuum radiation pressure. The critical mass for mass loss is 1.02×106 M for a Population I star, and 1.23×105 M for Population III star. Mass loss rates expected in these stars are 3.3×10–3 and 4.0×10–3 M yr–1, respectively.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

17.
E. Kirsch 《Solar physics》1973,28(1):233-246
Solar neutron emission during large flares is investigated by using neutron monitor data from the mountain stations Chacaltaya (Bolivia), Mina Aguilar (Argentine), Pic-du-Midi (France) and Jungfraujoch (Switzerland). Registrations from such days on which large flares appeared around the local noon time of the monitor station are superimposed with the time of the optical flare as reference point.No positive evidence for a solar neutron emission was found with this method, However, by using an extrapolation of the neutron transport functions given by Alsmiller and Boughner a rough estimation of mean upper limits for the solar neutron flux is possible. The flux limits are compared with Lingenfelter's model calculations.From the Chacaltaya measurements it follows: N 02.8 × 10–3 N cm–2 s–1 per proton flare, E > 50 MeV, if P0 = 125 MV N 01.4 × 10–2 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 60 MV and from Pic-du-Midi measurements: N 06.7 × 10–3 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 125 MV N 04 × 10–2 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 60 MV P 0 = characteristic rigidity of the producing proton spectrum on the Sun.The flux limits estimated for some special proton flares are consistent with Lingenfelter's predictions for the acceleration phase but are too small for the slowing down phase. Therefore it is believed that Lingenfelter's assumption of isotropic proton emission from the flare region is not fulfilled.  相似文献   

18.
High resolution rotation-vibration spectra of v = 1 and 2 sequences of 24MgH+ are obtained by a differencing process invoking the known structures of electronic bands observed in the region 214–340 nm. A reversal of R branch (band head formation) is noticed in each of the rotation-vibration bands. The J = 1 J = 0 transition is predicted to be at 376098, 365301, 354286 and 342981 MHz for v = 0,1,2 and 3, respectively, in the ground electronic state 1+. The equilibrium rotational constants B e, e and r e for the X 1E+ state are found 6.4637cm–1, 0.1899 cm–1 1.6421 Å, respectively.On leave from Physics Department, Gorakhpur University, Gorakhpur, U.P., India.  相似文献   

19.
We present simple two-layer models of Uranus with rocky core and polytropic envelope satisfying exactly the observed mass, radius and the gravitational moments. The models show that the value of the fourth order zonal harmonic isJ 4 –38×10–6, whileJ 6 10–6. More elaborate threelayer models fail to satisfy the observational constraints of the ice/rock ratio and/or of the rotation period. We conclude that three-layer models with uniform chemical composition in each layer may be too restrictive. More realistic models should account for variable chemical composition within each layer.  相似文献   

20.
The results of observations of the Rosette emission nebula NGC 2237 with the radio telescope UTR-2 at frequencies 12.6, 14.7, 16.7, 20.0 and 25.0 MHz are given in the shape of contours of constant brightness temperature. The half-power beamwidth of the telescope to zenith at 25.0 MHz was 28×38. Density weighted mean values for the non-thermal radio emissivity between the Sun and the source (7.9×10–41 W m–3 Hz–1 ster–1 at 25.0 MHz) and the ratio of the intensity of emissivity generated before the area and the intensity of galactic radio emissivity appearing beyond the area equal to 1.3 have been obtained. The electron temperatureT e=3600 K, the optical depth (about ten at 25 MHz), the measure of emission (ME=3500 cm–6 pc), the electron densityN e=8 cm–3 and the nebular mass 16.6×10+3 M have been determined. A comparison with other observation results has been made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号