首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ultrahigh-pressure (UHP) eclogites often show strong plastic deformation and anisotropy of seismic properties. We report in this paper the seismic velocity and anisotropy of eclogite calculated from the crystallographic preferred orientations (CPOs) of constituent minerals (garnet, omphacite, quartz and rutile) and single crystal elastic properties. We also compared the calculated results with the measured results in similar eclogites. Our results suggest that (1) Except that garnet is a seismically quasi-isotropic mineral, omphacite, quartz, coesite and rutile all have strong seismic anisotropies (AVp = 23.0%―40.9%, Max. AVs = 18.5%―47.1%). They are the major sources for anisotropy in eclogite. The average seismic velocities are fast in garnet and rutile, moderate in omphacite and coesite, and slow in quartz. (2) The deformed eclogites have the maximum Vp (8.33―8.75 km/s) approximately parallel to foliation and lineation, the minimum Vp (8.25―8.62 km/s) approximately normal to foliation and lineation and the Vp anisotropies of 1.0―1.7%. Their Vs are 4.93―4.97 km/s. The corresponding maximum anisotropies (0.73%―1.78%) of Vs are at 45° to both foliation and lineation and the minimum anisotropies at positions normal to lineation on the foliation plane. The Vs1 polarization planes are approximately parallel to foliation. The mean Vp and Vs of eclogite under UHP peak metamorphism conditions (P = 3―5 GPa, T = 900―1100℃) are estimated to be 3.4%―7.2% and 6.3%―12.1% higher than those at ambient pressure and temperature conditions, respectively. (3) Omphacite component dominates the anisotropy of eclogite while garnet component reduces the anisotropy and increases the seismic velocities. Quartz component has a small effect on the anisotropy but reduces the seismic velocities of eclogite. The effect of rutile component is negligible on seismic properties of eclogite due to its trivial volume fraction. (4) The increase of volume fraction of omphacite in eclogite will reduce the seismic velocities and increase the anisotropy. Omphacitite has seismic velocities reduced by 6%―8% and anisotropies increased to 3%―4% compared to those of garnetite. Our results suggest that the seismic properties calculated with single crystal elastic properties and CPOs are equivalent to those measured in laboratory. Moreover, it provides insights into the mineral physical interpretations of eclogite seismic properties.  相似文献   

2.
Experimental study of spinel-garnet phase transition was carried out using natural mineral and rock specimens from xenolith of mantle rocks in Cenozoic basalt as starting materials. From the result it was found that the condition of spinel Iherzolite-garnet Ihenolite phase transition (T = 1 100°C andP = 1.8–2.0 GPa) is consistent with theP-T equilibrium condition of the five-phase assemblage spinel/garnet Iherzolite in eastern China, suggesting that there may exist a spinel-garnet Iherzolite phase transition zone with the thickness of a few km to several ten km at the depth of 55–70 km in the continental upper mantle of eastern China. The depth of phase transition from spinel pyroxenite to garnet pyroxenite is found to be less than 55 km. Experiment results also show that water promotes metasomatism on one hand but suppresses phase transition on the other. Zoning of mineral composition was also discussed. Project supported by the National Natural Science Foundation of China.  相似文献   

3.
A new method of reconstruction of the temperature profile in the lunar mantle from the velocities of seismic P- and S-waves for different models of chemical composition is developed. The procedure of the solution of an inverse problem is realized with the help of the minimization of the Gibbs free energy and the equations of state of a mantle substance, taking into account phase transformations, anharmonicity, and the effects of inelasticity. The geophysical and geochemical constraints on composition and temperature distribution in Moon’s mantle are established. The upper mantle can be composed of olivine pyroxenite, depleted by low-volatile oxides (∼2 wt % of CaO and Al2O3). On the contrary, the lower mantle must be enriched by low-volatile oxides (∼4–6 wt % of CaO and Al2O3). Its composition can be represented by a mineral association of the olivine + clinopyroxene + garnet or olivine + orthopyroxene + clinopyroxene + garnet type, which is close in composition to pyrolite. The temperature distribution at depths 50–1000 km are approximated by the equation: T(°C) = 351 + 1718[1–exp (−0.00082H)]. The constraints inferred make it possible to conclude that the published values of the velocities of P- and S-waves for the lunar mantle, obtained by processing the data of seismic experiments of the Apollo lunar mission are inconsistent with each other at depths below 300 km. Otherwise, the variations in the velocities of P- and S-waves disturb the symmetry between the petrological model (composition), the temperature profile, and the seismic profile.  相似文献   

4.
Receiver function study in northern Sumatra and the Malaysian peninsula   总被引:1,自引:0,他引:1  
In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V S) near the surface in the range of 3.4–3.6 km s − 1 attributed to crystalline rocks and 3.6–4.0 km s − 1 in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30–34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V S of 2.6–2.9 km s − 1 indicate sediment layers. High V S of 4.2 km s − 1 are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V S between 10 and 20 km depth. Within the subducting slab V S ≈ 4.7 km s − 1. At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20° ± 8° in approximately N 60° E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found.  相似文献   

5.
As part of a joint Sino-U.S. research project to study the deep structure of the Tibetan Plateau, 11 broadband digital seismic recorders were deployed on the Plateau for one year of passive seismic recording. In this report we use teleseimic P waveforms to study the seismic velocity structure of crust and upper mantle under three stations by receiver function inversion. The receiver function is obtained by first rotating two horizontal components of seismic records into radial and tangential components and then deconvolving the vertical component from them. The receiver function depends only on the structure near the station because the source and path effects have been removed by the deconvolution. To suppress noise, receiver functions calculated from events clustered in a small range of back-azimuths and epicentral distances are stacked. Using a matrix formalism describing the propagation of elastic waves in laterally homogeneous stratified medium, a synthetic receiver function and differential receiver functions for the parameters in each layer can be calculated to establish a linearized inversion for one-dimensional velocity structure. Preliminary results of three stations, Wen-quan, Golmud and Xigatze (Coded as WNDO, TUNL and XIGA), located in central, northern and southern Plateau are given in this paper. The receiver functions of all three stations show clear P-S converted phases. The time delays of these converted phases relative to direct P arrivals are: WNDO 7.9s (for NE direction) and 8.3s (for SE direction), TUNL 8.2s, XIGA 9.0s. Such long time delays indicate the great thickness of crust under the Plateau. The differences between receiver function of these three station shows the tectonic difference between southern and north-central Plateau. The waveforms of the receiver functions for WNDO and TUNL are very simple, while the receiver function of XIGA has an additional midcrustal converted phase. The S wave velocity structures at these three stations are estimated from inversions of the receiver function. The crustal shear wave velocities at WNDO and TUNL are vertically homogeneous, with value between 3.5–3.6 km/s down to Moho. This value in the lower crust is lower than the normal value for the lower crust of continents, which is consistent with the observed strong Sn attenuation in this region. The velocity structure at XIGA shows a velocity discontinuity at depth of 20 km and high velocity value of 4.0 km/s in the midcrust between 20–30 km depth. Similar results are obtained from a DSS profile in southern Tibet. The velocity under XIGA decreases below a depth of 30 km, reaching the lowest value of 3.2 km/s between 50–55 km. depth. This may imply that the Indian crust underthrusts the low part of Tibetan crust in the southern Plateau, forming a “double crust”. The crustal thickness at each of these sites is: WNDO, 68 km; TUNL, 70 km; XI-GA, 80 km. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 581–592, 1992.  相似文献   

6.
We model the internal structure of the Moon, initially homogeneous and later differentiated due to partial melting. The chemical composition and the internal structure of the Moon are retrieved by the Monte-Carlo inversion of the gravity (the mass and the moment of inertia), seismic (compressional and shear velocities), and petrological (balance equations) data. For the computation of phase equilibrium relations and physical properties, we have used a method of minimization of the Gibbs free energy combined with a Mie-Gr@uneisen equation of state within the CaO-FeO-MgO-Al2O3-SiO2 system. The lunar models with a different degree of constraints on the solution are considered. For all models, the geophysically and geochemically permissible ranges of seismic velocities and concentrations in three mantle zones and the sizes of Fe-10%S core are estimated. The lunar mantle is chemically stratified; different mantle zones, where orthopyroxene is the dominant phase, have different concentrations of FeO, Al2O3, and CaO. The silicate portion of the Moon (crust + mantle) may contain 3.5–5.5% Al2O3 and 10.5–12.5% FeO. The chemical boundary between the middle and the lower mantle lies at a depth of 620–750 km. The lunar models with and without a chemical boundary at a depth of 250–300 km are both possible. The main parameters of the crust, the mantle, and the core of the Moon are estimated. At the depths of the lower mantle, the P and S velocities range from 7.88 to 8.10 km/s and from 4.40 to 4.55 km/s, respectively. The radius of a Fe-10%S core is 340 ± 30 km.  相似文献   

7.
A total of 11 earthquakes with 15 Rayleigh wave paths, recorded at 11 broadband digital PASSCAL seismometers installed in the Tibet Plateau by the Sino-U.S. joint research group, were used to determine the phase velocity and attenuation coefficient of surface waves in periods of 10–130 s. The average shear wave velocity and quality factor {ie271-1} structures in the crust and upper mantle were obtained in this region. The result shows the average {ie271-2} is low and there exists a high attenuation ({ie271-3}=93–141) layer in the crust. The depth range of the low {ie271-4} value layer (16–42 km) is consistent with the range of low velocity layer (21–51 km) in the crust. Below 63 km in the lower crust, {ie271-5} decreases with depth from 114 to 34 at depth of 180 km. The low shear wave velocity and low value of {ie271-6} at the same depth range in the crust indicate that the rocks in the range is probably melted or partially melted. According to the shear wave velocity structure, the average thickness of the crust is about 71 km and a clear velocity discontiniuty appears at the depth of 51 km. The low-velocity zone (4. 26 km/s) at depth of 96–180 km may be corresponding to the asthenosphere. Contribution No. 96A0047, Institute of Geophysics, SSB, China. This study was supported by the National Natural Science Foundation of China.  相似文献   

8.
S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle.  相似文献   

9.
The Baikal is a deep long and narrow basin in East Siberia which follows a huge fault zone adjoining the Siberian Platform. The basin was formed by rapid subsidence of continental crust during the pas 3–4 Ma. It is bounded by normal faults which indicate extension of the crust during the subsidence. According to seismic reflection profiling data, the intensity of extension is not large (3–7%). It is much smaller than the thinning of the crystalline crust under the basin (up to 38%). The thinning and crustal subsidence can be explained by the transformation of gabbro in the lower crust into dense garnet granulites. The latter rocks (with Vp 7.7−7.8 km/sec) are still located under the remnant part of the crust. Rapid transformation took place due to an inflow of catalyzing fluid along the fault zone from the asthenospheric upwelling. This upwelling, which is at a depth of 80–90 km, caused a general uplift of a broad area in the south of East Siberia.  相似文献   

10.
In the PREM seismic model, the boundary between the upper and the lower mantle is accepted at a depth of 670 km, where seismic velocities and density increase. However, until recently there was an obvious inconsistency in this model. The density increases abruptly, and the velocities, in addition to the jumps, have also the subsequent zones of increased gradient. The discontinuity between the upper and the lower mantle is related to the transition of olivine from the ringwoodite phase into the mixture of perovskite and magnesiowustite. However, in the pyrolyte model, the transition zone of the upper mantle consists not wholly of olivine, but partly of olivine (60%) and partly of garnet (40%). The latest data of the garnet measurement at high pressures show that it also experiences phase transition, being converted into magnesium perovskite with the impurity of calcium perovskite. In contrast to the sharp transition in olivine (within a depth interval of only 5 km), the transition in garnet is spread over the interval of depths of 660–710 km. In the widely used PREM and AK135 models, this additional transition corresponds to the zone of the increased gradient in seismic velocities, while in the density distribution it is included in the sharp transition of ringwoodite. Thus, the mineralogy data indicate the need for correction of the PREM and AK135 seismic models: the density jump at a depth of 660 km should be reduced by approximately a factor of two, and a subjacent layer with the increased density gradient should be added at the depth interval of 660–710 km. The phase transition in olivine hampers the mantle flows, although in garnet it accelerates them. Therefore, with an allowance for the smaller jump in density, the decelerating effect of the subducting plates, caused by the phase transition in olivine, decreases, and, furthermore, the effect of their acceleration, caused by the phase transition in garnet, is added. The decrease in the density jump by almost a factor of two will lead to essential changes in the results of the majority of recent works addressing the assessment of the deceleration of convection at the upper/lower mantle discontinuity on the basis of the PREM model.  相似文献   

11.
Using the P-and S-wave arrivals from the 150 earthquakes distributed in Tibetan Plateau and its neighboring areas, recorded by Tibetan seismic network, Sichuan seismic network, WWSSN and the mobile network situated in Tibetan Plateau, we have obtained the average P-and S-wave velocity models of the crust and upper mantle for this region:
(1)  The crust of 70 km average thickness can be divided into two main layers: 16 km thick upper crust with P-wave velocity 5.55 km/s and S-wave velocity 3.25 km/s; and 54 km thick lower crust with P-wave velocity 6.52 km/s and S-wave velocity 3.76 km/s.
(2)  The p-wave velocity at the upper most mantle is 7.97 km/s, and the S-wave 4.55 km/s. The low velocity layer in the upper mantle occurs approximately at 140 km deep with a thickness of about 55–62 km. The prominent velocity gradient beneath the LVZ is comparable to the gradient above it.
The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, Supp., 573–579, 1992.  相似文献   

12.
Lower crustal xenoliths brought up rapidly by basaltic magma onto the earth surface may provide di-rect information on the lower crust. The main purpose of this research is to gain an insight into the rheology of the lower crust through the detailed study of lower crustal xenoliths collected from the Hannuoba basalt, North China. The lower crustal xenoliths in this area consist mainly of two pyroxene granulite, garnet granulite, and light-colored granulite, with a few exception of felsic granulite. The equilibration temperature and pressure of these xenoliths are estimated by using geothermometers and geobarometers suitable for lower crustal xenoliths. The obtained results show that the equilibration temperature of these xenoliths is within the range of 785―900℃, and the equilibrium pressure is within the range of 0.8―1.2 GPa, corresponding to a depth range of 28―42 km. These results have been used to modify the previously constructed lower crust-upper mantle geotherm for the studied area. The dif-ferential stress during the deformation process of the lower crustal xenoliths is estimated by using recrystallized grain-size paleo-piezometer to be in the range of 14―20 MPa. Comparing the available steady state flow laws for lower crustal rocks, it is confirmed that the flow law proposed by Wilks et al. in 1990 is applicable to the lower crustal xenoliths studied in this paper. The strain rate of the lower crust estimated by using this flow law is within the range of 10-13―10-11 s-1, higher than the strain rate of the upper mantle estimated previously for the studied area (10-17―10-13 s-1); the equivalent viscosity is estimated to be within the range of 1017―1019Pa·s, lower than that of the upper mantle (1019―1021 Pa·s). The constructed rheological profiles of the lower crust indicate that the differential stress shows no significant linear relation with depth, while the strain rate increases with depth and equivalent vis-cosity decrease with depth. The results support the viewpoint of weak lower continental crust.  相似文献   

13.
The Doroud segment of the Main Recent Fault (“MRF”) is studied by installing a local seismic network of 35 short-period stations for a period of 13 weeks from 21 June 2007 to 19 September 2007 in the Silakhur region of the Zagros continental collision zone, close to the epicenter of the 31 March 2006 Silakhur earthquake (M w  ∼ 6.1). Our seismic network also covers the Qale-Hatam and Vanaei segments of the MRF and part of the Nahavand fault. We investigate the geometry and mechanism of the causative fault(s) of the 2006 Silakhur earthquake using aftershocks recorded by the dense local network. Most of the aftershocks in this region are located at a depth of 4–11 km, shallower depth than usual for other seismic zones in the Zagros. The distribution of the aftershocks along the course of the river indicates that older faults in the Silakhur region have been activated during the 2006 earthquake and only a few aftershocks have occurred on the Doroud fault. Tensional and compressional components in the northern part of the Doroud fault are interpreted as a pull-apart basin which has been activated by the right-lateral strike-slip movement of the Doroud fault.  相似文献   

14.
We report results from a detailed study of seismicity in central Kamchatka for the period from 1960 to 1997 using a modified traditional approach. The basic elements of this approach include (a) segmentation of the seismic region concerned (the Kronotskii and Shipunskii geoblocks, the continental slope and offshore blocks), (b) studying the variation in the rate of M = 4.5–7.0 earthquakes and in the amount of seismic energy release over time, (c) studying the seismicity variations, (d) separate estimates of earthquake recurrence for depths of 0–50 and 50–100 km. As a result, besides corroborating the fact that a quiescence occurred before the December 5, 1997, M = 7.9 Kronotskii earthquake, we also found a relationship between the start of the quiescence and the position of the seismic zone with respect to the rupture initiation. The earliest date of the quiescence (decreasing seismicity rate and seismic energy release) was due to the M = 4.5–7.0 earthquakes at depths of 0–100 km in the Kronotskii geoblock (8–9 years prior to the earthquake). The intermediate start of the quiescence was due to distant seismic zones of the Shipunskii geoblock and the circular zone using the RTL method, combining the Shipunskii and Kronotskii geoblocks (6 years). Based on the low magnitude seismicity (M≥2.6) at depths of 0–70 km in the southwestern part of the epicentral zone (50–100 km from the mainshock epicenter), the quiescence was inferred to have occurred a little over 3 years (40 months) before the mainshock time and a little over 2 years (25 months) in the immediate vicinity of the epicenter (0–50 km). These results enable a more reliable identification of other types of geophysical precursors during seismic quiescences before disastrous earthquakes.  相似文献   

15.
In order to investigate crustal structure beneath the eastern Marmara region, a seismic refraction survey was conducted across the North Anatolian Fault (NAF) zone in north west Turkey. Two reversed profiles across two strands of the NAF zone were recorded in the Armutlu Highland where a tectonically active region was formed by different continents. We used land explosions in boreholes and quarry blasts as seismic sources. A reliable crustal velocity and depth model is obtained from the inversion of first arrival travel times. The velocity-depth model will improve the positioning of the earthquake activities in this active portion of the NAF. A high velocity anomaly (5.6–5.8 km s−1) in the central highland of Armutlu block and the low velocity (4.90 km s−1) pattern north of Iznik Lake are the two dominant features. The crustal thickness is about 26 ± 2 km in the north and increases to about 32 ± 2 km beneath the central Armutlu block in the south. P-wave velocities are about 3.95 km s−1 to 4.70 km s−1 for the depth range between about 1 km and 5 km in the upper crust. The eastern Marmara region has different units of upper crust with velocities varying with depth to almost 8 km. The high upper crust velocities are associated with Armutlu metamorphic rocks, while the low velocity anomalies are due to unconsolidated sedimentary sequences. The western side of Armutlu block has complex tectonics and is well known for geothermal sources. If these sources are continuous throughout the portions of the crust, it may be associated with a granitic intrusion and deformation along the NAF zone. That is, the geothermal sources associated with the low velocity may be due to the occurrence of widespread shear heating, even shear melting. The presence of shear melting may indicate the presence of crustal fluid imposed by two blocks of the NAF system.  相似文献   

16.
The paper presents some results of seismic experiments carried out on the territory of northern Moravia and Silesia, roughly delimited by the coordinates 16°E–19°E and 49°N–51°N. The experiments were aimed at compiling a velocity model of the uppermost Earth’s crust using the database of arrival times of Pg and Sg waves recorded at a fairly large number of seismic stations, which enabled us to produce a simple 1D-layered velocity model of the region. The velocity model was computed using the traditional tomographic iterative process composed of consecutive solutions of linear equations. Based on the analysis of velocity distribution, it was found that the velocities of Pg and Sg waves increase from about 5.9 and 3.3 km/s at the surface, to about 6.1 and 3.5 km/s at a depth of 11 km, respectively.  相似文献   

17.
During the Pamir Himalayan project in the year 1975 seismic refraction and wide-angle reflection data were recorded along a 270 km long Lawrencepur-Astor (Sango Sar) profile in the northwest Himalayas. The profile starts in the Indus plains and crosses the Main Central Thrust (MCT), the Hazara Syntaxis, the Main Mantle Thrust (MMT) and ends to the east of Nanga Parbat. The seismic data, as published by Guerra et al. (1983), are reinterpreted using the travel-time ray inversion method of Zelt and Smith (1992) and the results of inversion are constrained in terms of parameter resolution and uncertainty estimation. The present model shows that the High Himalayan Crystallines (HHC, velocity 5.4 km s−1) overlie the Indian basement (velocity 5.8–6.0 km s−1). The crust consists of four layers of velocity 5.8–6.0, 6.2, 6.4 and 6.8 km s−1 followed by the upper mantle velocity of 8.2 km s−1 at a depth of about 60 km.  相似文献   

18.
The structure of the crust and the crust-mantle boundary in the Vogtland/West Bohemian region have been a target of several seismic measurements for the last 25 years, beginning with the steep-angle reflection seismic studies (DEKORP-4/KTB, MVE-90, 9HR), the refraction and wide-angle experiments (GRANU’95, CELEBRATION 2000, SUDETES 2003), and followed by passive seismic studies (receiver functions, teleseismic tomography). The steep-angle reflection studies imaged a highly reflective lower crust (4 to 6 km thick) with the Moho interpreted in a depth between 30 and 32 km and a thinner crust beneath the Eger Rift. The refraction and wide-angle reflection seismic studies (CELEBRATION 2000) revealed strong wide-angle reflections in a depth of 26–28 km interpreted as the top of the lower crust. Long coda of these reflections indicates strong reflectivity in the lower crustal layer, a phenomenon frequently observed in the Caledonian and Variscan areas. The receiver function studies detected one strong conversion from the base of the crust interpreted as the Moho discontinuity at a depth between 27 and 37 km (average at about 31 km). The discrepancies in the Moho depth determination could be partly attributed to different background of the methods and their resolution, but could not fully explain them. So that new receivers function modelling was provided. It revealed that, instead of a first-order Moho discontinuity, the observations can be explained with a lower crustal layer or a crust-mantle transition zone with a maximum thickness of 5 km. The consequent synthetic ray-tracing modelling resulted in the model with the top of the lower crust at 28 km, where highly reflective lower crustal layer can obscure the Moho reflection at a depth of 32–33 km.  相似文献   

19.
Introduction The Tianshan orogenic belt between the Tarim and Junggar basins has re-uplifted in Cenozoic due to the collision and the northwards push-compression of Asia-India plate. The special active tectonic zones have been formed along both south and north margins of the Tianshan mountains (FENG, et al, 1991). The Tianshan seismic belt is one of the major seismic belts in China. A se-ries of strong earthquakes occurred in two flanks of the Tianshan mountains in 20th century, such as …  相似文献   

20.
A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (∼72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57–64 km in the Bayan Har block, and to 40–45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Moho and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30–60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ = 0.247) in the Lhasa block, 1.78 (σ = 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ = 0.294) in the Bayan Har blocks, and 1.77 (σ = 0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio, indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern Tibetan Plateau. Flowage of the ductile material in lower crust may be attributable to the variation of the gravitational potential energy in upper crust from higher on the plateau to lower off plateau. Supported by the National Natural Science Foundation of China (Grants No. 40334041 and 40774037) and the International Cooperation Program of the Ministry of Science and Technology of China (Grant No. 2003DF000011)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号