首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Lymphocystis disease, caused by the lymphocystis disease virus (LCDV), is a significant worldwide problem in fish industry causing substantial economic losses. In this study, we aimed to develop the DNA vaccine against LCDV, using DNA vaccination technology. We evaluated plasmid pEGFP-N2-LCDV1.3 kb as a DNA vaccine candidate. The plasmid DNA was transiently expressed after liposome transfection into the eukaryotic COS 7 cell line. The distribution and expression of the DNA vaccine (pEGFP-N2-LCDV1.3kb) were also analyzed in tissues of the vaccinated Japanese flounder by PCR, RT-PCR and fluorescent microscopy. Results from PCR analysis indicated that the vaccine-containing plasmids were distributed in injected muscle, the muscle opposite the injection site, the hind intestine, gill, spleen, head, kidney and liver, 6 and 25 days after vaccination. The vaccine plasmids disappeared 100 d post-vaccination. Fluorescent microscopy revealed green fluorescence in the injected muscle, the muscle opposite the injection site, the hind intestine, gill, spleen, head, kidney and liver of fish 48 h post-vaccination, green fluorescence did not appear in the control treated tissue. Green fluorescence became weak at 60 days post-vaccination. RT-PCR analysis indicated that the mcp gene was expressed in all tested tissues of vaccinated fish 6–50 days post-vaccination. These results demonstrate that the antigen encoded by the DNA vaccine is distributed and expressed in all of the tissues analyzed in the vaccinated fish. The antigen would therefore potentially initiate a specific immune response. the plasmid DNA was injected into Japanese flounder (Paralichthys olivaceus) intramuscularly and antibodies against LCDV were evaluated. The results indicate that the plasmid encoded DNA vaccine could induce an immune response to LCDV and would therefore offer immune protection against LCD. Further studies are required for the development and application of this promising DNA vaccine.  相似文献   

14.
Starving and re-feeding trials were conducted to evaluate the effects of starvation duration and recovery times on the growth performance and physiological characteristics of juvenile tongue sole Cynoglossus semilaevis, which included growth, body composition, intestinal morphology and digestive enzymes activities. The fish starved for one(D1), two(D2) and four(D4) days, respectively, were recovered for three(R3, R6, R12), seven(R7, R14, R28) and eleven(R11, R22, R44) folds of starvation days while the control fish were fed constantly. The experiment was conducted for 96 days. The fish individuals in D1R11, D2R14 and D2R22 caught up in weight with the control, indicating that complete compensatory growth existed in these fish individuals. The highest body weight gain and total specific growth rates were observed in D2R22. Food intake increased significantly in most treatments in comparison with that of the control except for D1R7 and D2R22(P 0.05). Food conversion efficiency and apparent digest coefficient in D2R22 were significantly promoted, being higher than that of the control(P 0.05). The activities of trypsin and lipase were found to be closely related to the growth performance. The activities of liver and hindgut trypsin, also midgut and hindgut lipase in D2R22 were significantly higher than those of the control(P 0.05). The fold height(HF) of foregut and midgut increased significantly in D2R22, and HF decreased significantly in D1R3, D2R6 and D4R12(P 0.05). On our findings, we may conclude that the optimum starving and re-feeding strategy is starving for 2 days and re-feeding for 22 days. And in this starving and re-feeding strategy, the compensatory growth could be mostly attributed to the promotion of food conversion efficiency and digestibility coefficiency.  相似文献   

15.
16.
用添加质量分数0.00(对照组)、0.10%、0.30%、0.50%和0.70%壳寡糖的饲料饲喂初始体重(3.81±0.23)g的吉富罗非鱼幼鱼(Oreochromis niloticus)10周,研究不同浓度壳寡糖的添加对吉富罗非鱼幼鱼的生长、非特异性免疫功能以及血脂指标的影响。结果表明:与对照组相比,在4个不同浓度添加组中,添加质量分数0.50%壳寡糖能显著提高幼鱼的增重率(P<0.05)、特定生长率(P<0.05),并降低饲料系数(P<0.05);添加质量分数0.3%和0.5%壳寡糖能显著提高幼鱼抗嗜水气单胞菌感染的能力(P<0.01);添加质量分数0.10%、0.30%、0.50%壳寡糖能显著提高幼鱼血清中碱性磷酸酶活性(P<0.05)。同时,各浓度的壳寡糖均能明显提高幼鱼血清中溶菌酶和超氧化物歧化酶活性以及抗嗜水气单胞菌感染的能力(P<0.05),并降低幼鱼血清中总胆固醇和低密度脂蛋白胆固醇水平(P<0.05)。在本实验条件下,添加壳寡糖可提高吉富罗非鱼幼鱼生长性能、饲料利用率、非特异性免疫功能和调节血脂水平,添加量以质量分数0.30%~0.50%为宜。  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号