首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We study the influence of floating broken ice on the mean nonzero displacements of liquid particles in nonlinear running surface waves. The analysis is performed on the basis of a uniform asymptotic expansion (up to the quantities of the third order of smallness as compared with the potential of the velocity of motion of liquid in a basin of finite depth) obtained by the method of multiple scales. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

2.
3.
In conventional marine seismic exploration data processing, the sea surface is usually treated as a horizontal free boundary. However, the sea surface is affected by wind and waves and there often exists dynamic small-range fluctuations. These dynamic fluctuations will change the energy propagation path and affect the final imaging results. In theoretical research, different sea surface conditions need to be described, so it is necessary to study the modeling method of dynamic undulating sea surface. Starting from the commonly used sea surface mathematical simulation methods, this paper mainly studies the realization process of simple harmonic wave and Gerstner wave sea surface simulation methods based on ocean wave spectrum, and compares their advantages and disadvantages. Aiming at the shortcomings of the simple harmonic method and Gerstner method in calculational speed and sea surface simulation effect, a method based on wave equation and using dynamic boundary conditions for sea surface simulation is proposed. The calculational speed of this method is much faster than the commonly used simple harmonic method and Gerstner wave method. In addition, this paper also compares the new method with the more commonly used higher-order spectral methods to show the characteristics of the improved wave equation method.  相似文献   

4.
Sea ice can attenuate wave energy significantly when waves propagate through ice covers.In this study,a third-generation wave model called simulating wave nearshore(SWAN)was advanced to include damping of wave energy due to friction in the boundary layer below the ice.With the addition of an eddy viscosity wave-ice model,the resulting new SWAN model was applied to simulate wave height in the Bohai Sea during the freezing winter.Its performance was validated with available buoy data near the ice edge,and the new model showed an improvement in accuracy because it considered the ice effect on waves.We then performed a wave hindcast for the Bohai Sea during a freezing period in the winter of 2016 that had the severest ice conditions in recent years and found that the mean significant wave height changed by approximately 16.52%.In the Liaodong Bay,where sea ice concentration is highest,the change reached 32.57%,compared with the most recent SWAN model version.The average influence of sea ice on wave height simulation was also evaluated over a five-year(2013-2017)hindcast during January and February.We found that the wave height decrease was more significant in storm conditions even the eddy viscosity wave-ice model itself showed no advantage on damping stronger waves.  相似文献   

5.
6.
陈迪  孙启振 《海洋学报》2022,44(12):42-54
本文利用1951−2021年哈德莱中心提供的海冰和海温最新资料以及美国国家海洋和大气管理局气候预报中心提供的NCEP/NCAR再分析资料,分析探讨了北极海冰70余年的长期变化特征,进而研究了其快速减少与热带海温场异常变化之间的联系,揭示了在全球热带海洋海温场变化与北极海冰之间存在密切联系的事实。结果表明,北极海冰异常变化最显著区域出现在格陵兰海、卡拉海和巴伦支海。热带不同海区对北极海冰的影响存在明显时滞时间和强度差异,热带大西洋的影响相比偏早,印度洋次之,太平洋偏晚。热带大西洋、印度洋和中东太平洋海温异常影响北极海冰的最佳时间分别是后者滞后26个月、30个月和34个月,全球热带海洋影响北极海冰的时滞时间为33个月。印度洋SST对北极海冰的影响程度最强,其次是太平洋,最弱是大西洋。全球热带海洋对北极海冰的影响过程中,热带东太平洋和印度洋起主导作用。当全球热带海洋SST出现正(负)距平时,北极海冰会出现偏少(多)的趋势,而AO、PNA、NAO对北极海冰变化起重要作用,是热带海洋与北极海冰相系数的重要“纽带”。而AO、PNA和NAO不仅受热带海洋SST的影响,同时也受太平洋年代际振荡PDO和大西洋多年代际AMO的影响,这一研究为未来北极海冰快速减少和全球气候变暖机理的深入研究提供理论支撑。  相似文献   

7.
基于非线性模型的畸形波模拟及其时频能量谱研究   总被引:1,自引:0,他引:1  
采用VOF(volume offluid)方法实现了畸形波的数值模拟.将数值结果与线性理论(方程(5))计算结果进行了对比,发现数值模拟结果更能够反映非线性特征.使用小波分析方法研究了畸形波的时频能量谱,发现形成畸形波的过程中存在很强的波浪非线性相互作用,使得波浪的能量向高频端转化.变水深地形可以加强波浪的非线性相互作用.使得转化到高频端的能量更多,产生畸形程度更大的畸形波.  相似文献   

8.
9.
10.
Sea ice differs significantly from that formed by frozen fresh water in its abundance of pores. The pores are filled either by liquid, i.e., by brine, or by gas, i.e., by air. The gas permeability of the pore visibly exceeds the gas permeability of continuous solid ice with no pores. Expressions for the diffusion coefficients of oxygen and CO2 through sea ice at a given ice temperature and salinity are obtained. Calculations of the gas transfer for the central part of the Chukchi Sea are fulfilled. Numerical experiments have shown that gas fluxes through thin sea ice are not negligibly small. The fluxes significantly decrease only if one-year ice thickness exceeds about 100 cm.  相似文献   

11.
A parameterization of subgridscale surface fluxes over the marginal sea ice zone which has been used earlier in several studies is modified and applied to a nonhydrostatic mesoscale model. The new scheme accounts for the form drag of ice floes and is combined with a so-called flux averaging method for the determination of surface fluxes over inhomogeneous terrain. Individual fluxes over ice and water are calculated as a function of the blending height. It is shown by comparison with observations that the drag coefficients calculated with the new parameterization agree well with data. The original scheme strongly overestimates the form drag effect. An improvement is mainly obtained by an inclusion of stratification and by use of a more adequate coefficient of resistance for individual ice floes. The mesoscale model is applied to off-ice flows over the polar marginal sea ice zone. The model results show that under certain meteorological conditions the form drag can have a strong influence on the near-surface wind velocity and on the turbulent fluxes of momentum. Four case studies are carried out. The maximum influence of form drag occurs in the case with strong unstable stratification and with wind oblique to the ice edge. Under these conditions the wind stress on sea ice is modified by at least 100% for ice concentrations less than 50% if form drag is taken into account.  相似文献   

12.
本文利用1950-2015年间Hadley环流中心海冰和海温资料及NCEP/NCAR再分析资料,研究了热带太平洋海温异常对北极海冰的可能影响,并从大气环流和净表面热通量两个角度探讨了可能的物理机制。结果表明,在ENSO事件发展年的夏、秋季节,EP型与CP型El Niño事件与北极海冰异常的联系无明显信号。而La Niña事件期间北极海冰出现显著异常,并且EP型与CP型La Niña之间存在明显差异。EP型La Niña发生时,北极地区巴伦支海、喀拉海关键区海冰异常减少,CP型La Niña事件则对应着东西伯利亚海、楚科奇海地区海冰异常增加。在EP型La Niña发展年的夏、秋季节,热带太平洋海温异常通过遥相关波列,使得巴伦支海、喀拉海海平面气压为负异常并与中纬度气压正异常共同构成类似AO正位相的结构,形成的风场异常有利于北大西洋暖水的输入,同时造成暖平流,偏高的水汽含量进一步加强了净表面热通量收入,使得巴伦支海、喀拉海海冰异常减少。而在CP型La Niña发展年的夏季,东西伯利亚海、楚科奇海关键区受其东侧气旋式环流的影响,以异常北风分量占主导,将海冰从极点附近由北向南输送到关键区,海冰异常增加,而净表面热通量的作用较小。  相似文献   

13.
The purpose of this study is to provide a quality-checking tool for the evaluation of wind-wave data from buoys deployed by the National Data Buoy Center (NDBC). In particular, an algorithm is sought that will compare measured wind speed with spectral data in a chosen range. In the past, anemometers have been known to fail without failing completely, returning data that are bad, but not obviously bad. The aim here is to provide an automated test that will flag such data, as well as detecting certain malfunctions of the wave-measuring system. Towards this end, large quantities of data are studied and several approaches to the problem are described before an algorithm is finally recommended. The algorithm takes account of physical properties of the ocean (as observed from this data set) as well as the statistical relationships determined between wind speed and wave energy. The implementation and testing of the algorithm are described.  相似文献   

14.
非线性波浪波面追踪的一种新模式   总被引:1,自引:0,他引:1  
基于Laplace方程的Green积分表达式和波面BemouUi方程所建立的非线性波动数学模型,是一个时域上具有初始值的边值问题,而精确地追踪自由表面的波动位置,给出波面运动瞬时的波面高度和波面势函数,是建立时域内非线性波浪数值模式的基础。本文采用0-1混合型边界元剖分计算域边界并离散Laplace方程的Green积分表达式,采用有限元剖分自由水面并推导满足自由表面非线性边界条件的波面有限元方程,联立计算域内以节点波势函数和波面位置高度的时间增量为未知量的线性方程组,通过时步内的循环迭代,给出每个时步上的波面位置和波面势函数,从而建立了一种新的非线性波浪波面追踪模式。数值造波水槽内的波浪试验表明,其数值模拟结果具有良好的计算精度。  相似文献   

15.
韩晓鹏  宋金宝 《海洋科学》2015,39(12):150-156
基于Longuest-Higgins(1963)非线性海浪模型,在有限水深且存在均匀背景流的条件下,根据Song(2006)给出的波面位移二阶表达式,采用Combi海浪频谱计算了海表面定点波面位移时间序列和波面位移概率统计分布。分析了波面位移统计分布随风速、水深、反波龄和均匀背景流的变化特征和规律以及不同海况条件下二阶非线性项对波面位移统计分布的影响。结果表明:二阶非线性项使波面位移分布偏离正态分布,二阶非线性作用受风速、水深、反波龄和均匀背景流的影响。风速增大、水深降低、反波龄减小或者均匀背景流和风速传播方向相反均使波面位移二阶非线性项的作用加强,无因次波面位移概率密度分布的偏度和峰度随之增大,反之则二阶非线性项作用减弱。当均匀背景流和风速相同时,虽然使非线性项的作用减弱,但平均波面位移反而比静止水平面降低。当均匀背景流和风速相反时,虽然使非线性作用增强,但平均波面位移反而趋于静止水平面。得到如下结论:二阶非线性项对于波面位移有显著影响,数值模拟波面位移需要增加二阶非线性项。通过以上研究,提高了数值模拟波面位移的准确性,而波面位移是海浪最基本的特征量,从而增强了海浪模拟和预报的准确性,对海洋工程、海–气相互作用、上层海洋动力学等具有重要意义。  相似文献   

16.
The problems of wind-induced waves on the sea surface are considered. To this end, the empirical fetch laws that determine variations in the basic periods and heights of waves in relation to their fetch are used. The relation between the fetch and the physical time is found, as are the dependences of the basic characteristics of waves on the time of wind forcing. It is found that about 5% of wind energy dissipated in the near-water air layer contributes to the growth of wave heights, i.e. wave energy, although this quantity depends on the age of waves and the exponent in the fetch laws. With consideration for estimates of the probability distribution functions for the wind over the world ocean [11], it is found that the rate of wind-energy dissipation in the near-water air layer is on the order of 1 W/m2. The calculations of wind waves [19] for the world ocean for 2007 have made it possible to assess the mean characteristics of the cycle of wave development and their seasonal variations. An analysis of these calculations [19] shows that about 20% of wind energy is transferred to the water surface. The remaining amount (80%) of wind energy is spent on the generation of turbulence in the near-water air layer. About 2%, i.e., one tenth of the energy transferred to water, is spent on turbulence generation due to the instability of the vertical velocity profile of the Stokes drift current and on energy dissipation in the surf zones. Of the remaining 18%, 5% is spent directly on wave growth and 13% is spent on the generation of turbulence during wave breaking and on a small-scale spectral region. These annually and globally mean estimates have a seasonal cycle with an amplitude on the order of 20% in absolute values but with a smaller amplitude in relative values. According to [19] and to the results of this study, the annually mean height of waves is estimated as 2.7 m and their age is estimated as 1.17.  相似文献   

17.
Except the commonly selected pressure transfer function derived from the linear wave theory, a previous study on the pressure transfer function for recovering surface wave from underwater pressure transducer suggested that the pressure transfer function is a function of frequency parameter only. With careful analysis, this study showed that the pressure transfer function should include a transducer submergence parameter as that given by the linear theory. It was found that the previously suggested empirical formula should be restricted to measurements with the pressure transducer close to the surface; otherwise overestimation of wave height would result. Field measurements were carried out with an acoustic wave gauge and a synchronized pressure transducer located at various depths with submergence parameter close to 1 (near the sea floor). It was shown that the previous one-parameter empirical formula might overestimate the significant wave height by more than 30%. This study found that with deep-water wave bursts excluded, the transfer function based on the linear wave theory provided a fairly good estimation on the significant wave heights, with an average deviation of 3.6%.  相似文献   

18.
南极海冰和陆架冰的变化特征   总被引:8,自引:1,他引:8       下载免费PDF全文
利用美国冰中心和雪冰中心提供的海冰资料和我国南极考察现场的海冰观测资料,对南极海冰的长期变化进行了研究.研究表明20世纪70年代后期是多冰期;80年代是少冰期;90年代南极海冰属于上升趋势,后期偏多,区域性变化差别大,东南极海冰偏多,西南极海冰即南极半岛两侧尤其是威德尔海区和别林斯高晋海的冰明显偏少.东南极和西南极海冰的变化趋势总是反相的.90年代后期普里兹湾的海冰明显偏多,南极大陆陆架冰外缘线总体没有明显的收缩,有崩解也有再生的自然变化现象.西南极威德尔海的龙尼冰架和罗斯海冰架东部崩解和收缩趋势明显,东南极的冰架也有崩解和收缩,但没有西南极明显.陆架冰崩解向海洋输送的冰山对全球海平面升高有一定的影响.目前南极冰盖断裂崩解形成的冰山,向海洋输入的水量可使全球海平面上升约14mm.南极海冰没有随着全球气候温暖化而明显减少,而是按照东南极和西南极反相的变化规律进行周期性的变化、调整和制约.  相似文献   

19.
I feel greatly honoured to be awarded the Oceanographical Society of Japan Prize for 1989, and to be given this opportunity to look back at my past activities in research and education, and to present them as an example for younger members of our Society. Taking this opportunity, I acknowledge with sincere thanks many persons who guided me or who have collaborated with me since I was a young student up to the present.My past academic history may be divided into three periods. In the first period (1955–71) at Kyoto University which included and eighteen month visit to the University of Chicago, I studied the production of air bubbles and droplets at the sea surface by wind-wave breaking, and the supply and distribution of the sea-salt particles from the sea to the atmosphere. The first nondimensional formulation of the form of single air bubbles floating at liquid surfaces was also presented. In the second period (1971–1981) I pursued, at the new Physical Oceanography Laboratory of Tohoku University, the concept of wind waves which are coupled with the wind. I proposed the 3/2-power law of wind waves and the high frequency part of the wind-wave spectral form which is proportional to the friction velocity of air and to the –4th power of frequency. Detailed investigations of wind-wave phenomena were also performed in wind-wave tunnels by introducing quantitative flow visualization techniques and together with my students, we elucidated ordered motions in the flows below and above wind waves. The Tohoku Wave Model was also developed in which the similarity laws of wind waves, which are strongly coupled with the air flow, were explicitly used. In the third period (1982-present), my area of interest has become broader and, togerther with my students and my overseas collaboratos, we are studying the connection of local physical processes at the air-sea boundary with studies of larger scale ocean-atmosphere interactions. One aspect of this has led to the organization of the Ocean Mixed Layer Experiment (OMLET, 1987–91), as part of the Japanese national programmes of the World Climate Research Programme. Another interest is the ongoing fundamental study of the use of satellite data for the estimation of air-sea fluxes over a broad area. Pursuit of the roots of the similarity laws of the windsea remains one of my present tasks.  相似文献   

20.
Studies on climate change typically consider temperature and precipitation over extended periods but less so the wind. We used the Cross-Calibrated Multi-Platform (CCMP) 24-year wind fi eld data set to investigate the trends of wind energy over the South China Sea during 1988-2011. The results reveal a clear trend of increase in wind power density for each of three base statistics (i.e., mean, 90 th percentile and 99 th percentile) in all seasons and for annual means. The trends of wind power density showed obvious temporal and spatial variations. The magnitude of the trends was greatest in winter, intermediate in spring, and smallest in summer and autumn. A greater trend of increase was found in the northern areas of the South China Sea than in southern parts. The magnitude of the annual and seasonal trends over the South China Sea was larger in extreme high events (i.e., 90 th and 99 th percentiles) compared to the mean conditions. Sea surface temperature showed a negative correlation with the variability of wind power density over the majority of the South China Sea in all seasons and annual means, except for winter (41.7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号