首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
August Sea Surface Temperatures (aSSTs) based on fossil diatom assemblages are generated with 2?year average resolution from a 230-year-long sediment core (Rapid 21-12B), from the Reykjanes Ridge in the subpolar North Atlantic. The results indicate a warming trend of ~0.5°C of the surface waters at the Reykjanes Ridge for the last 230?years. Superimposed on this warming trend there is a multidecadal to decadal aSST variability of up to 1°C. The interval from the 1770s to the 1830s represents the coldest period, whereas ~1860?C1880 represents the warmest period during the last 230?years. The last 25?years is characterized by a warming trend showing strong decadal aSST variability with several warm years, but also the coldest years since the 1820s. The time of these cold years in the mid-1970s, -1980s and -1990s correspond with the documented great salinity anomalies (GSA) in the North Atlantic suggesting increased fluxes of cold, low-salinity waters from the Arctic during the last decades. The aSST record and the August North Atlantic Oscillation (aNAO) index show similar multidecadal-scale variability indicating a close coupling between the oceanic and atmospheric patterns. The aSST record shows a negative correlation with the aNAO indicating cold aSST during the positive aNAO trend and vice versa. Results suggest that the wind driven variation in volume fluxes of the North Atlantic surface waters could be the major mechanism behind the observed relationship.  相似文献   

2.
The factors controlling equatorial Atlantic winds in boreal spring are examined using both observations and general circulation model (GCM) simulations from the coupled model intercomparison phase 5. The results show that the prevailing surface easterlies flow against the attendant pressure gradient and must therefore be maintained by other terms in the momentum budget. An important contribution comes from meridional advection of zonal momentum but the dominant contribution is the vertical transport of zonal momentum from the free troposphere to the surface. This implies that surface winds are strongly influenced by conditions in the free troposphere, chiefly pressure gradients and, to a lesser extent, meridional advection. Both factors are linked to the patterns of deep convection. Applying these findings to GCM errors indicates, that, consistent with the results of previous studies, the persistent westerly surface wind bias found in most GCMs is due mostly to precipitation errors, in particular excessive precipitation south of the equator over the ocean and deficient precipitation over equatorial South America. Free tropospheric influences also dominate the interannual variability of surface winds in boreal spring. GCM experiments with prescribed climatological sea-surface temperatures (SSTs) indicate that the free tropospheric influences are mostly associated with internal atmospheric variability. Since the surface wind anomalies in boreal spring are crucial to the development of warm SST events (Atlantic Niños), the results imply that interannual variability in the region may rely far less on coupled air–sea feedbacks than is the case in the tropical Pacific.  相似文献   

3.
Proxy and instrumental records reflect a quasi-cyclic 50–80-year climate signal across the Northern Hemisphere, with particular presence in the North Atlantic. Modeling studies rationalize this variability in terms of intrinsic dynamics of the Atlantic Meridional Overturning Circulation influencing distribution of sea-surface-temperature anomalies in the Atlantic Ocean; hence the name Atlantic Multidecadal Oscillation (AMO). By analyzing a lagged covariance structure of a network of climate indices, this study details the AMO-signal propagation throughout the Northern Hemisphere via a sequence of atmospheric and lagged oceanic teleconnections, which the authors term the “stadium wave”. Initial changes in the North Atlantic temperature anomaly associated with AMO culminate in an oppositely signed hemispheric signal about 30?years later. Furthermore, shorter-term, interannual-to-interdecadal climate variability alters character according to polarity of the stadium-wave-induced prevailing hemispheric climate regime. Ongoing research suggests mutual interaction between shorter-term variability and the stadium wave, with indication of ensuing modifications of multidecadal variability within the Atlantic sector. Results presented here support the hypothesis that AMO plays a significant role in hemispheric and, by inference, global climate variability, with implications for climate-change attribution and prediction.  相似文献   

4.
Yao Yao  Dehai Luo 《大气科学进展》2015,32(8):1106-1118
Using a two-dimensional blocking index, the cause and effect relationship between European blocking (EB) events and North Atlantic Oscillation (NAO) events is investigated. It is shown that the EB event frequency is enhanced over Northern (Southern) Europe for negative (positive) phases of the NAO. Enhanced EB events over Northern Europe precede the establishment of negative phase NAO (NAO-) events, while the enhanced frequency of EB events over Southern Europe lags positive phase NAO (NAO+) events. The physical explanation for why enhanced EB events over Northern (Southern) Europe lead (lag) NAO- (NAO+) events is also provided. It is found that the lead-lag relationship between EB events in different regions and the phase of NAO events can be explained in terms of the different latitudinal distribution of zonal wind associated with the different phases of NAO events. For NAO+ events, the self-maintained eastward displacement of intensified midlatitude positive height anomalies owing to the intensified zonal wind can enhance the frequency of EB events over Southern Europe, thus supporting a standpoint that EB events over Southern Europe lag NAO+ events. Over Northern Europe, EB events lead NAO- events because NAO- events arise from the self-maintained westward migration of intensified blocking anticyclones due to the weakened zonal wind in higher latitudes.  相似文献   

5.
The extent to which the North Atlantic Oscillation (NAO) is influenced by changes in the ocean state is an issue that has attracted much recent attention. Although there have been counter claims, the weight of evidence clearly suggests that forcing by the ocean of year-to-year changes in the NAO is a weak influence by comparison with atmospheric internal variability. The NAO is thus very different in character to the Southern Oscillation (SO), and its predictability—at least on seasonal-to-interannual timescales—is almost certainly much lower.Although weak, the influence of the ocean on the NAO is not negligible. In a previous study we found that wintertime North Atlantic climate, including the NAO, was significantly influenced by a tripole pattern of North Atlantic SST anomalies. Here we report the results of experiments to further elucidate the nature of this influence. We show that the tripole pattern induces a significant response both in the tropical Atlantic and at mid-to-high latitudes. The low latitude response is forced by the low latitude SST anomalies, but the high latitude response is influenced by the extratropical SST anomalies as well as those in the tropics. Furthermore, we find evidence of nonlinear interaction between the influence of the tropical and extratropical SST anomalies. Lastly, we investigate the feedback from the atmosphere onto the SST tripole. We find that the expected negative feedback is significantly modified at low latitudes by the dynamical response of the atmosphere.  相似文献   

6.
《大气与海洋》2013,51(4):445-463
Abstract

A regional model of the sub‐polar North Atlantic has been developed for use in process and variability studies of this important high‐latitude area. Open boundary conditions handle connections with the rest of the Atlantic Ocean at 38°N, while buffer zones are used in the northern boundary regions. Extensive testing and experimentation has led to a model which can reproduce major elements of the hydrography and circulation in the region, although limitations exist. A key model feature is the inclusion of a finite volume partial cell topographic representation that significantly improves the structure of the underlying bottom topography. Improvements include a tighter and sharper gyre structure, increased transports, sub‐polar mode water formation sites linked to the topographic slope along the outside of the gyre and a more reasonable representation of Labrador Sea water properties and dispersal pathways. The choice of inflow conditions for the open southern boundary affects the deep western boundary current, as well as the representation of Mediterranean Water, which has a significant effect on Labrador Sea water in the eastern basin.  相似文献   

7.
8.
Little is known about the influence of hurricanes on precipitation extremes (PEs) in Southern Ontario, Canada. We examine PEs and their spatial–temporal link with hurricanes events in Southern Ontario during the period of 1950–2000. On average, 5.4 PEs or 11 % of the 50 wettest days in the selected five locations occurred under the influence of hurricanes within this 51-year period. Our results indicate hurricane-influenced PEs are most frequent in September and derive from storms that had reached major hurricane status (>50 m/s) at some point during their lifetime. An absence of landfalling hurricanes in Southern Ontario during the 1960s to 1980s suggests either that the direct impact of hurricanes occurs on a multidecadal time scale or that recent years are experiencing unprecedented change.  相似文献   

9.
Observations indicate that the Atlantic zonal mode influences El Ni?o Southern Oscillation (ENSO) in the Pacific, as already suggested in previous studies. Here we demonstrate for the first time using partial coupled experiments that the Atlantic zonal mode indeed influences ENSO. The partial coupling experiments are performed by forcing the coupled general circulation model (ECHAM5/MPI-OM) with observed sea surface temperature (SST) in the Tropical Atlantic, but with full air-sea coupling allowed in the Pacific and Indian Ocean. The ensemble mean of a five member simulation reproduces the observational results well. Analysis of observations, reanalysis, and coupled model simulations all indicate the following mechanism: SST anomalies associated with the Atlantic zonal mode affect the Walker Circulation, driving westward wind anomalies over the equatorial Pacific during boreal summer. The wind stress anomalies increase the east-west thermocline slope and enhance the SST gradient across the Pacific; the Bjerknes positive feedback acts to amplify these anomalies favouring the development of a La Ni?a-like anomalies. The same mechanisms act for the cold phase of Atlantic zonal mode, but with opposite sign. In contrast to previous studies, the model shows that the influence on ENSO exists before 1970. Furthermore, no significant influence of the Tropical Atlantic on the Indian Monsoon precipitation is found in observation or model.  相似文献   

10.
年代际环球遥相关型(ID-CGT)是夏季北半球大气环流年代际变化的主导模态,其位相的时间演变与大西洋多年代际振荡(AMO)基本同步。本研究利用5个大气环流模式的敏感性试验,研究给定AMO型的海表面温度异常能否强迫出ID-CGT型响应。结果显示,5个模式中的2个模拟出了沿西风急流分布的波列状响应,表明ID-CGT至少部分是由AMO型的海温异常所激发。此外,模式模拟的结果显示,在年代际尺度上,AMO可能通过ID-CGT影响夏季北半球陆表气温。  相似文献   

11.
The observed meridional overturning circulation (MOC) and meridional heat transport (MHT) estimated from the Rapid Climate Change/Meridional Circulation and Heat Flux Array (RAPID/MOCHA) at 26.5°N are used to evaluate the volume and heat transport in the eddy-resolving model LASG/IAP Climate system Ocean Model (LICOM). The authors find that the Florida Current transport and upper mid-ocean transport of the model are underestimated against the observations. The simulated variability of MOC and MHT show a high correlation with the observations, exceeding 0.6. Both the simu-lated and observed MOC and MHT show a significant seasonal variability. According to the power spectrum analysis, LICOM can represent the mesoscale eddy characteristic of the MOC similar to the observation. The model shows a high correlation of 0.58 for the internal upper mid-ocean transport (MO) and a density difference between the western and eastern boundaries, as noted in previous studies.  相似文献   

12.
The occurrence of first hurricane in early summer signifies the onset of an active Atlantic hurricane season. The interannual variation of this hurricane onset date is examined for the period 1979-2013. It is found that the onset date has a marked interannual variation. The standard deviation of the interannual variation of the onset day is 17.5 days, with the climatological mean onset happening on July 23.A diagnosis of tropical cyclone (TC) genesis potential index (GPI) indicates that the major difference between an early and a late onset group lies in the maximum potential intensity (MPI). A further diagnosis of the MPI shows that it is primarily controlled by the local SST anomaly (SSTA). Besides the SSTA, vertical shear and mid-tropospheric relative humidity anomalies also contribute significantly to the GPI difference between the early and late onset groups.It is found that the anomalous warm (cold) SST over the tropical Atlantic, while uncorrelated with the Niño3 index, persists from the preceding winter to concurrent summer in the early (late) onset group. The net surface heat flux anomaly always tends to damp the SSTA, which suggests that ocean dynamics may play a role in maintaining the SSTA in the tropical Atlantic. The SSTA pattern with a maximum center in northeastern tropical Atlantic appears responsible for generating the observed wind and moisture anomalies over the main TC development region. A further study is needed to understand the initiation mechanism of the SSTA in the Atlantic.  相似文献   

13.
14.
A monthly index based on the persistence of the westerly winds over the English Chanel is constructed for 1685–2008 using daily data from ships’ logbooks and comprehensive marine meteorological datasets. The so-called Westerly Index (WI) provides the longest instrumental record of atmospheric circulation currently available. Anomalous WI values are associated with spatially coherent climatic signals in temperature and precipitation over large areas of Europe, which are stronger for precipitation than for temperature and in winter and summer than in transitional seasons. Overall, the WI series accord with the known European climatic history, and reveal that the frequency of the westerlies in the eastern Atlantic during the twentieth century and the Late Maunder Minimum was not exceptional in the context of the last three centuries. It is shown that the WI provides additional and complementary information to the North Atlantic Oscillation (NAO) indices. The analysis of WI series during the industrial era indicates an overall good agreement with the winter and high-summer NAO, with the exception of several multidecadal periods of weakened correlation. These decoupled periods between the frequency and the intensity of the zonal flow are interpreted on the basis of several sources of non-stationarity affecting the centres of the variability of the North Atlantic and their teleconnections. Comparisons with NAO reconstructions and long instrumental indices extending back to the seventeenth century suggest that similar situations have occurred in the past, which call for caution when reconstructing the past atmospheric circulation from climatic proxies. The robustness and extension of its climatic signal, the length of the series and its instrumental nature make the WI an excellent benchmark for proxy calibration in Europe and Greenland.  相似文献   

15.
This article builds on the previous studies on storminess conditions in the northeast North Atlantic–European region. The period of surface pressure data analyzed is extended from 1881–1998 to 1874–2007. The seasonality and regional differences of storminess conditions in this region are also explored in more detail. The results show that storminess conditions in this region have undergone substantial decadal or longer time scale fluctuations, with considerable seasonal and regional differences. The most notable differences are seen between winter and summer, and between the North Sea area and other parts of the region. In particular, winter storminess shows an unprecedented maximum in the early 1990s in the North Sea area and a steady upward trend in the northeastern part of the region, while it appears to have declined in the western part of the region. In summer, storminess appears to have declined in most parts of this region. In the transition seasons, the storminess trend is characterized by increases in the northern part of the region and decreases in the southeastern part, with increases in the north being larger in spring. In particular, the results also show that the earliest storminess maximum occurred in summer (around 1880), while the latest storminess maximum occurred in winter (in the early 1990s). Looking at the annual metrics alone (as in previous studies), one would conclude that the latest storminess maximum is at about the same level as the earliest storminess maximum, without realizing that this is comparing the highest winter storminess level with the highest summer storminess level in the period of record analyzed, while winter and summer storminess conditions have undergone very different long-term variability and trends. Also, storminess conditions in the NE Atlantic region are found to be significantly correlated with the simultaneous NAO index in all seasons but autumn. The higher the NAO index, the rougher the NE Atlantic storminess conditions, especially in winter and spring.  相似文献   

16.
Past changes in the density and momentum structure of oceanic circulation are an important aspect of changes in the Atlantic Meridional Overturning Circulation and consequently climate. However, very little is known about past changes in the vertical density structure of the ocean, even very extensively studied systems such as the North Atlantic. Here we exploit the physical controls on the settling depth of the dense Mediterranean water plume derived from the Strait of Gibraltar to obtain the first robust, observations-based, probabilistic reconstruction of the vertical density gradient in the eastern North Atlantic during the last 30,000?years. We find that this gradient was weakened by more than 50%, relative to the present, during the last Glacial Maximum, and that changes in general are associated with reductions in AMOC intensity. However, we find only a small change during Heinrich Event 1 relative to the Last Glacial Maximum, despite strong evidence that overturning was substantially altered. This implies that millennial-scale changes may not be reflected in vertical density structure of the ocean, which may be limited to responses on an ocean-overturning timescale or longer. Regardless, our novel reconstruction of Atlantic density structure can be used as the basis for a dynamical measure for validation of model-based AMOC reconstructions. In addition, our general approach is transferrable to other marginal sea outflow plumes, to provide estimates of oceanic vertical density gradients in other locations.  相似文献   

17.
Vizy  Edward K.  Cook  Kerry H.  Sun  Xiaoming 《Climate Dynamics》2018,51(9-10):3251-3273
Climate Dynamics - High-resolution simulations with a regional atmospheric model coupled to an intermediate-level mixed layer ocean model along with multiple atmospheric and oceanic reanalyses are...  相似文献   

18.
Atlantic and Pacific El Niño are the leading tropical oceanic variability phenomena at interannual timescales. Recent studies have demonstrated how the Atlantic Niño is able to influence on the dynamical processes triggering the development of the Pacific La Niña and vice versa. However, the stationarity of this interbasin connection is still controversial. Here we show for the first time that the Atlantic–Pacific Niños connection takes place at particular decades, coinciding with negative phases of the Atlantic Multidecadal Oscillation (AMO). During these decades, the Atlantic–Pacific connection appears as the leading coupled covariability mode between Tropical Atlantic and Pacific interannual variability. The mode is defined by a predictor field, the summer Atlantic Sea Surface Temperature (SST), and a set of predictand fields which represent a chain of atmospheric and oceanic mechanisms to generate the Pacific El Niño phenomenon: alteration of the Walker circulation, surface winds in western Pacific, oceanic Kelvin wave propagating eastward and impacting on the eastern thermocline and changes in the Pacific SST by internal Bjerknes feedback. We suggest that the multidecadal component of the Atlantic acts as a switch for El Niño prediction during certain decades, putting forward the AMO as the modulator, acting through changes in the equatorial Atlantic convection and the equatorial Pacific SST variability. These results could have a major relevance for the decadal prediction systems.  相似文献   

19.
Hai Lin  Zhiwei Wu 《Climate Dynamics》2012,39(1-2):303-311
Previous studies have shown that climate anomalies over the North Atlantic–Europe (NAE) can influence the Indian summer monsoon (ISM) variability. It is, however, still an outstanding question whether the latter has a significant impact on the former. In this study, observational evidences indicate that the interannual variability of ISM is closely linked to the climate anomalies over NAE. A strong ISM is often associated with significant above normal precipitation over most of western Europe. Meanwhile, positive surface air temperature (SAT) anomalies are usually observed over the Mediterranean, accompanied by below normal SAT in Western Europe during a strong ISM summer. The situation is just opposite during a weak ISM summer. A global primitive equation model is utilized to assess the mechanism of the above observed connection.  相似文献   

20.
《大气与海洋》2013,51(2):81-92
Abstract

Evidence based on numerical simulations is presented for a strong correlation between the North Atlantic Oscillation (NAO) and the North Atlantic overturning circulation. Using an ensemble of numerical experiments with a coupled ocean‐atmosphere model including both natural and anthropogenic forcings, it is shown that the weakening of the thermohaline circulation (THC) could be delayed in response to a sustained upward trend in the NAO, which was observed over the last three decades of the twentieth century, 1970–99. Overall warming and enhanced horizontal transports of heat from the tropics to the subpolar North Atlantic overwhelm the NAO‐induced cooling of the upper ocean layers due to enhanced fluxes of latent and sensible heat, so that the net effect of warmed surface ocean temperatures acts to increase the vertical stability of the ocean column. However, the strong westerly winds cause increased evaporation from the ocean surface, which leads to a reduced fresh water flux over the western part of the North Atlantic. Horizontal poleward transport of salinity anomalies from the tropical Atlantic is the major contributor to the increasing salinities in the sinking regions of the North Atlantic. The effect of positive salinity anomalies on surface ocean density overrides the opposing effect of enhanced warming of the ocean surface, which causes an increase in surface density in the Labrador Sea and in the ocean area south of Greenland. The increased density of the upper ocean layer leads to deeper convection in the Labrador Sea and in the western North Atlantic. With a lag of four years, the meridional overturning circulation of the North Atlantic shows strengthening as it adjusts to positive density anomalies and enhanced vertical mixing. During the positive NAO trend, the salinity‐driven density instability in the upper ocean, due to both increased northward ocean transports of salinity and decreased atmospheric freshwater fluxes, results in a strengthening overturning circulation in the North Atlantic when the surface atmospheric temperature increases by 0.3°C and the ocean surface temperature warms by 0.5° to 1°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号