首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Seventeen comets, having information on sodium D-line emission during their apparition, have been studied. The heliocentric distances corresponding to the sodium emission commencement or termination epoch are found to have a dependence on the phase of the solar cycle. For comets appearing during a solar maximum the sodium emission is detectable out to greater distances than, for the comets appearing during solar minimum. The sodium emission is also found to depend on heliographic latitude of the comet. It is concluded that the spatial properties of the solar wind during a solar maximum and minimum are responsible for the observed dependence.  相似文献   

2.
We present the study of dust environment of dynamically new Comet C/2003 WT42 (LINEAR) based on spectroscopic and photometric observations. The comet was observed before and after the perihelion passage at heliocentric distances from 5.2 to 9.5 AU. Although the comet moved beyond the zone where water ice sublimation could be significant, its bright coma and extended dust tail evidenced the high level of physical activity. Afρ values exceeded 3000 cm likely reaching its maximum before the perihelion passage. At the same time, the spectrum of the comet did not reveal molecular emission features above the reflected continuum. Reddening of the continuum derived from the cometary spectrum is nonlinear along the dispersion with the steeper slop in the blue region. The pair of the blue and red continuum images was analyzed to estimate a color of the comet. The mean normalized reflectivity gradient derived from the innermost part of the cometary coma equals to 8% per 1000 Å that is typical for Oort cloud objects. However, the color map shows that the reddening of the cometary dust varies over the coma increasing to 15% per 1000 Å along the tail axis. The photometric images were fitted with a Monte Carlo model to construct the theoretical brightness distribution of the cometary coma and tail and to investigate the development of the cometary activity along the orbit. As the dust particles of distant comets are expected to be icy, we propose here the model, which describes the tail formation taking into account sublimation of grains along their orbits. The chemical composition and structure of these particles are assumed to correspond with Greenberg’s interstellar dust model of comet dust. All images were fitted with the close values of the model parameters. According to the results of the modeling, the physical activity of the comet is mainly determined by two active areas with outflows into the wide cones. The obliquity of the rotation axis of the nucleus equals to 20° relative to the comet’s orbital plane. The grains occupying the coma and tail are rather large amounting to 1 mm in size, with the exponential size distribution of a−4.5. The outflow velocities of the dust particles vary from a few centimeters to tens of meters per second depending on their sizes. Our observations and the model findings evidence that the activity of the nucleus decreased sharply to a low-level phase at the end of April–beginning of May 2007. About 190 days later, in the first half of November 2007 the nucleus stopped any activity, however, the remnant tail did not disappear for more than 1.5 years at least.  相似文献   

3.
Micha? Drahus  Wac?aw Waniak 《Icarus》2006,185(2):544-557
The article presents results of CCD photometry in R-band of a dynamically new Comet C/2001 K5 (LINEAR), obtained at a heliocentric distance of about 5.6 AU, after the perihelion passage. Being so distant from the Sun, this comet was extremely active (Afρ close to 2000 cm), exhibiting quite well developed dust coma and tail. During the observations, general photometric behavior of the comet with heliocentric distance r was well described by the 2.5nlog(r) function with coefficient n=5. The radial profiles of the coma were found to be undulated, with mean slope of the dependence between cometary magnitude and 2.5log of aperture radius (at comet distance) equal to . The light curve of Comet LINEAR exhibited short-term variability which we attributed to cyclic changes of dust emission, induced by nucleus rotation. Model computations by some authors have revealed that active comets can change their spin status quite substantially even during a single orbital revolution. Thus, attempting to search for a rotation frequency, we have modified the classical PDM approach by including the spin acceleration term. Such DynamicalPDM (DPDM) method revealed the most reliable solution for the frequency f0=0.019048±0.000013 h−1 and its first time-derivative (index “zero” denotes reference to the mid time of the whole observing run), indicating a rapid spin-down of the nucleus. These parameters are equivalent to the rotation period of 52.499±0.036 h and its relative increment of 0.02729±0.00013. We present the most probable evolution of the rotation frequency of Comet LINEAR, based on the results of periodicity analysis and a simple, almost parameter independent, dynamical model of nucleus rotation. It is also shown that the DPDM may be an effective tool for determination of a nucleus radius, which provided us with the value of 1.53±0.25 km for Comet LINEAR.  相似文献   

4.
A comparison of the ultraviolet spectrum of periodic Comet Encke (1980 XI), recorded by the IUE between 24 October and 5 November 1980 with similar spectra of short- and long-period comets shows the gaseous composition of P/Encke to be nearly identical to that of the other comets observed by the IUE. If P/Encke is indeed the remains of a once giant comet, this similarity implies a homogeneous radial structure for the cometary ice nucleus. The OH brightness distribution shows a spatial variation similar to the visible fan-shaped image of the comet, suggestive of a nonuniform distribution of volatile ices on the surface of the nucleus. The total derived water production rate appears to be a factor of 5 higher than that derived from HI Lyman-α observations made during the 1970 apparition and shows a variation with heliocentric distance (r) as r?3.3 over the range 0.81 to 1.02 AU.  相似文献   

5.
Direct sublimation of a comet nucleus surface is usually considered to be the main source of gas in the coma of a comet. However, evidence from a number of comets including the recent spectacular images of Comet 103P/Hartley 2 by the EPOXI mission indicates that the nucleus alone may not be responsible for all, or possibly at times even most, of the total amount of gas seen in the coma. Indeed, the sublimation of icy grains, which have been injected into the coma, appears to constitute an important source. We use the fully-kinetic Direct Simulation Monte Carlo model of Tenishev et al. (Tenishev, V.M., Combi, M.R., Davidsson, B. [2008]. Astrophys. J., 685, 659?677; Tenishev, V.M., Combi, M.R., Rubin, M. [2011]. Astrophys. J., 732) to reproduce the measurements of column density and rotational temperature of water in Comet 73P-B/Schwassmann–Wachmann 3 obtained with a very high spatial resolution of ~30 km using IRCS/Subaru in May 2006 (Bonev, B.P., Mumma, M.J., Kawakita, H., Kobayashi, H., Villanueva, G.L. [2008]. Icarus, 196, 241?248). For gas released solely from the cometary nucleus at a heliocentric distance of 1 AU, modeled rotational temperatures start at 110 K close to the surface and decrease to only several tens of degrees by 10–20 nucleus radii. However, the measured decay of both rotational temperature and column density with distance from the nucleus is much slower than predicted by this simple model. The addition of a substantial (distributed) source of gas from icy grains in the model slows the decay in rotational temperature and provides a more gradual drop in column density profiles. Together with a contribution of rotational heating of water molecules by electrons, the combined effects allow a much better match to the IRCS/Subaru observations. From the spatial distributions of water abundance and temperature measured in 73P/SW3-B, we have identified and quantified multiple mechanisms of release. The application of this tool to other comets may permit such studies over a range of heliocentric and geocentric distances.  相似文献   

6.
The radial distribution of some molecules (CO, H2CO, HNC, …) observed in the coma of some comets cannot be explained only by a direct sublimation from the nucleus, or by the photolysis of a detected parent compound. Such molecules present a so-called extended source in comae. We show in this paper that extended sources can be explained by refractory organic material slowly releasing gas from grains ejected from the cometary nucleus, due to solar UV photons or heat. The degradation products are produced throughout the coma and therefore are presenting an extended distribution. To model this multiphase chemistry we derive new equations, which are applied to Comet 1P/Halley for the case of the production of formaldehyde from polyoxymethylene (POM), the polymer of formaldehyde (-CH2-O-)n. We show that the presence of a few percent of POM on cometary grains (a nominal value of ∼4% in mass of grains is derived from our calculations) is in good agreement with the observed distribution, which so far were not interpreted by the presence of any gaseous parent molecule.  相似文献   

7.
SWAN, the all-sky hydrogen Lyman-alpha camera on the SOHO spacecraft, designed primarily to image the interplanetary neutral hydrogen around the Sun, also observes comets continuously over large portions of their apparitions to the north and south of the ecliptic and at small solar elongation angles. Because of SOHO’s location at the L1 Lagrange point, analysis of SWAN images provides excellent temporal coverage of water production. We report here our results of observations of some interesting target comets selected from the extensive SWAN archive. These include three Oort Cloud Comets C/2002 V1 (NEAT), C/2002 X5 (Kudo–Fujikawa), C/2006 P1 (McNaught) and three apparitions of atypical short-period Comet 96P/Machholz 1. The common aspect of these four comets is their small perihelion distances, which are 0.19, 0.09, 0.17, and 0.12 AU, respectively. Their water production rates over their whole apparitions can be approximated by power laws in heliocentric distance (r in AU) as follows: 1.3 × 1029 r−2.1 s−1 for C/2002 V1 (NEAT), 7.5 × 1028 r−2.0 s−1 for C/2002 X5 (Kudo–Fujikawa), 5.4 × 1029 r−2.4 s−1 for C/2006 (P1 McNaught) and 4.6 × 1027 r−2.1 s−1 for 96P/Machholz 1. We also present daily-average water production rates for the long-period comets over long continuous time periods. We examine these results in light of our growing survey of comets that is yielding some interesting comparisons of water production rate variations with heliocentric distance and taxonomic classes.  相似文献   

8.
The observational determination of coma outflow velocity for gaseous species is fairly straightforward using high-resolution spectroscopy. The determination of the outflow speed of the dust is much more difficult. Most sources cite Bobrovnikoff (1954). This brief report is not a strictly refereed publication, however, and mixes data from different comets.We present here a simple analysis of some data from the International Halley Watch (IHW) archive. Differences between continuum images from successive nights show dust jets and shells clearly. Their motion is apparent to first order from the edges of the features. The component of the dust outflow velocity perpendicular to the observer's line of sight may thus be determined. This is of course a lower limit on the dust outflow velocity. Many measurements, at different heliocentric distances (R), allow determination of the heliocentric dependence of the dust outflow velocity.We find that the dust outflow velocity in comet P/Halley varied as R –0.41 . If data from an outburst at 14 AU (Sekanina et al. 1992) is included in the fit, this dependence becomes R –0.55. This confirms the canonical (e.g. Delsemme 1982) inverse-square-root law, and supports the conclusion of Storrs et al. (1992) on the variability of cometary gas-to-dust ratios.Space Telescope Science Institute  相似文献   

9.
Not considering very rare in situ measurements of cometary nuclei, observations of comets at large heliocentric distances are the only direct source of our knowledge on their sizes. Observations of a cometary nucleus in pure reflected sunlight, at the time when coma is absent, are the way in which the nucleus size can be estimated. Probabilities that extreme observations represent non—active stages of cometary nuclei and also reliability of derived cometary nucleus sizes are investigated. Statistical analysis is based on a sample of 2842 photometric observations of 67 long-period comets observed at large heliocentric distances. For any long-period comet, there is a probability of 2:3 that the sizes derived on the basis of observations at extreme distances are in good agreement with the real nucleus sizes. For new comets in Oort's sense the probability is 3:4 independent of investigated arcs of orbits. For old comets a chance to estimate correct sizes is 1:2 but on the pre-perihelion arc only 1:3. It is also demonstrated that a premature start of activity prior to perihelion or a longer fading after perihelion is more frequent than a short-time isolated activity at large heliocentric distances.  相似文献   

10.
Over the past 10 years the isotopic ratios of carbon (12C/13C) and nitrogen (14N/15N) have been determined for a dozen comets, bright enough to allow obtaining the required measurements from the ground. The ratios were derived from high-resolution spectra of the CN coma measured in the B2+−X2+ (0, 0) emission band around 387 nm. The observed comets belong to different dynamical classes, including dynamically new as well as long- and short-period comets from the Halley- and Jupiter-family. In some cases the comets could be observed at various heliocentric distances. All values determined for the carbon and nitrogen isotopic ratios were consistent within the error margin irrespective of the type of comet or the heliocentric distance at which it was observed. Our investigations resulted in average ratios of 12C/13C=91±21 and nitrogen 14N/15N=141±29. Whilst the value for the carbon isotopic ratio is in good agreement with the solar and terrestrial value of 89, the nitrogen isotopic ratio is very different from the telluric value of 272.  相似文献   

11.
P. Oberc 《Icarus》2007,186(2):303-316
In view of the solar nebula models, organics-glued dust aggregates (whose disintegration resulted in the two phenomena found in Halley's coma, the dust boundary and small-scale dust structures) originated due to coagulation of iceless dust particles somewhere within the snow line, and then were incorporated into Halley's nucleus as a consequence of the snow line inward motion. This implies that two types of comets exist: outer comets, formed entirely beyond the snow line, and inner comets, similar to Halley, which are bodies intermediate between outer comets and primitive asteroids. The presence of large iceless dust aggregates in nuclei of inner comets constrains the inward drift velocity of meter-sized dust bodies, which in turn implies that the radial transport of water in the solar nebula was predominantly outward. It is shown that in nuclei of inner comets: both the upper mass limit of iceless dust aggregates and the ice mantle thickness increase with decreasing formation heliocentric distance, while the cumulative mass distribution index decreases; the lower limit of the mass index is ∼0.8, and the upper limit of the ice mantle thickness is ∼10−3 cm (∼200 times the interstellar value); the lower limit of the latent heat of organics in organic mantles of submicron particles increases toward small heliocentric distances; the recondensation of organics combined with the growth of dust bodies leads to a fractionation of organics within iceless dust aggregates; last accreted sub-units of an aggregate are always glued by organics with the lowest value of the latent heat, which somewhat exceeds 60 kJ/mol. Based on in situ observations at Halley, the parameters characterizing iceless dust aggregates in that comet are calculated. Finally, feasible observational tests of the conclusions drawn are discussed.  相似文献   

12.
We present an analysis of the results of photometric investigations of two distant comets, C/2002 VQ94 (LINEAR) and 29P/Schwassmann-Wachmann-1, obtained with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. The comets under study demonstrate sufficient activity out of the zone of water ice sublimation (at heliocentric distances longer than 5 AU). In the spectra of the investigated comets, we found the CO+ and N2+ emission. The presence of this emission may say that the comets were formed in the outer parts of the Solar System, in a protoplanetary cloud at a temperature ≤25 K. We found that the photometric maximum of the ionosphere (in the CO+ filter) of the comet C/2002 VQ94 (LINEAR) is shifted relative to the photometric center of the dust coma by 1.4″ (7.44 × 103 km) in the direction deflected by 63° from the direction to the Sun. Using special filters to process the images, we picked out active structures (jets) in the dust coma of the 29P/Schwassmann-Wachmann-1 comet.  相似文献   

13.
Sodium In Comets     
A great deal of attention has been given to the production and spatial distribution of sodium in comets after the discovery of the sodium tail, by Cremonese et al. (1997a), on Hale-Bopp. The sodium has been observed in several comets in the past, but the Hale-Bopp represent the first time where it will be deeply analyzed considering the several data and scientists working on that. The sodium tail stimulated different studies trying to explain the mechanism source and provided the new lifetime for photoionization of the neutral sodium atom. We took into account other sodium observations performed in this century and we focalized our attention to comet Hale-Bopp to understand the main sources responsible for the sodium features observed. We analyzed the sodium tail observations performed by Cremonese et al. (1997b) and Wilson et al. (1998) finding that the Hale-Bopp had four different tails. The wide field images and the high resolution spectroscopy performed along the sodium tail provided very important clues to distinguish the two sodium tails observed and their possible sources. Considering most of the data reported in several papers has been possible to draw a real sketch on what has occurred to the comet during March and April 1997. We are going to demonstrate that the sodium tail observed by Wilson et al. (1998) was not the same reportedby Cremonese et al. (1997a) and in the images taken by the European Hale-Bopp Team there were two distinct sodium tails. The observations allowed us to define “narrow sodium tail” the tail reported by Cremonese et al. (1997a), and “diffuse sodium tail” the tail overimposed to the dust tail. We suggest that the narrow sodium tail was due to a molecular process instead of the diffuse one due to the release of sodium atoms by the dust particles. Such a conclusion is supported by the spatial distribution of sodium on the nucleus and in the coma as reported from other authors. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The Wide Field Camera (WFC) on the Hubble Space Telescope and the Low Resolution Imaging Spectrograph (LRIS) on the Keck II telescope have been used to image 21 distant dynamically new, long-period (LP) and short-period (SP) Jupiter-family (JF) comet nuclei (near aphelion), as part of a long-term program to search for physical differences between short-period comets and Oort cloud comets. WFC data were obtained on Comets C/1987 H1 (Shoemaker) and C/1984 K1 (Shoemaker) during Cycle 5 (1995 December) and on C/1988 B1 (Shoemaker), C/1987 F1 (Torres), and C/1983 O1 (?ernis) during Cycle 6 (1997 April, May, and June). The HST comets were at heliocentric distances 20.4 < r[AU] < 29.5. Each comet observation was allocated 7 orbits, for ≈3.6 hrs of integration. The most difficult part of the image reduction was the removal of cosmic rays. We present our scheme for cosmic ray removal. None of the HST comet nuclei was detected to the 3-σ level at mR∼27. The inferred upper limits to the nucleus radii are . The SP comets range in radius between , with a median value of RN∼1.61 km. The LP comets ranged in size between <4.0-56 km. Over a range of radii between 1-10 km, the nuclei can be fit with a cumulative distribution N(>RN)∝RNα with α=1.45±0.05, and for nuclei in the range 2-5 km, α=1.91±0.06. Statistical analysis and modeling shows that the slopes of the observed TNO and JF comet distributions are not compatible, suggesting that the intrinsic distribution of JF comet nuclei is a differential a−3.5 power law truncated at small nucleus radii between 0.3 and 2.0 km.  相似文献   

15.
We investigated comets active at large heliocentric distances using observations obtained at the 6-m BTA telescope (SAO RAS, Russia). Long-slit and photometric modes of the focal reducer SCORPIO were used. Two of the comets, 29P/Schwassmann-Wachmann 1 (SW1) and C/2002 VQ94 (LINEAR) were observed to be emission rich. Detection of CO+ and N+2 emissions in the comae of these comets is evidence that they were formed in the outer regions of the Solar System or in a pre-solar interstellar cloud in a low temperature environment with T?25 K. The ratio of N+2/CO+ is equal to 0.011 and 0.027 for SW1 and LINEAR, respectively. Comet LINEAR is the most distant object in the Solar System (7.332 AU) for which CO+ and N+2 are measured. The photometric maximum of the isolated CO+ coma in Comet LINEAR is shifted by 1.4 arcsec (7.44×103 km) relative to the photometric maximum of the dust coma. This shift deviates from the sunward direction by 63 degrees.  相似文献   

16.
Very-high spectral resolution observations of the neutral Na emission have enabled measurements of the velocity dispersions of the Na atoms within ∼40,000 km of the opto center of Hale-Bopp. Asymmetric Na D line profiles imply both an in situ or core Na source and a secondary Na source at locations within the inner coma. The core velocity distribution had a FWHM of 2 km s-1. The extended source FWHM increased with distance from the nucleus (up to ∼6 km s-1, but appeared smaller in the more dusty regions (∼2.5–3.0 km s-1) of the inner coma. The D2/D1 line strength ratio was consistent with an optically thin inner coma. Within 5,000 km of the opto center the continuum spatial intensity profiles decreased as ∼r-1 while the Na D emission decreased at less than r-1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Magnitudes of comets P/Giacobini-Zinner (1984e), P/Halley (1982i), P/Hartley-Good (1985 1), and Thiele (1985 m) in the bandpasses of the standard IHW comet filters are presented. For comet P/Halley production rates for CN, C3, C2, and solids were derived. For the gaseous components these show a strong dependence on heliocentric distance. The dependence is less steep for the solids which may be due to relatively pronounced backscattering properties in case of comet P/Halley. During one night (1985 Dec. 22/23) intensity profiles along three sections through the coma of comet P/Halley were measured. Compared with theoretical profiles they show a global anisotropy of the coma and possibly local structure.  相似文献   

18.
Post-perihelion observed emission fluxes at 388 nm (CN) and 516 nm (C2) of the coma of comets Austin (1982g) and Bradfield (1980t) are analysed in the framework of the Haser model. Ratios of Haser model CN and C2 parent production rates with expansion velocity show that each comet behaves normally. For comet Austin (1982g), the Q CN/v and Q c2/v values decrease with increase of heliocentric distance of comet. For an assumed %; activity of the total spherical surface area of the nucleus, the water vaporization theory coupled with derived water production rates from the International Ultraviolet Explorer H and OH flux data yields a nuclear diameter of about 6 km for comet Austin (1982g). For comet Bradfield (1980t), the derived nuclear diameter is expected to be of about 1 km. In each comet, the dust mass production rates as well as ratio of dust-to-gas mass production rates decrease with increase of heliocentric distance of comet.  相似文献   

19.
Edward P. Ney 《Icarus》1974,23(4):551-560
Observations of Comets Kohoutek (1973f), Bradfield (1974b), and P/Encke have been made at a number of wavelengths between 0.55 and 18 μm. The silicate feature first observed in Comet Bennett (1969i) seems to be a common characteristic of cometary material. The comas of these comets radiate infrared with an effective temperature higher than the black-body temperature at the given distance from the Sun. The albedo of the dust particles is between 0.10 and 0.20. The particles in the coma and tail are small (diameter less than 2 μm), but the particles in the anti-tail of Comet Kohoutek must be larger than about 10 μm diameter. The observations give an absolute upper limit to the diameter of Comet Kohoutek of 30 km. A consistent interpretation would indicate that Comets Kohoutek and Bradfield have nuclear diameters of 5 to 10km, that Bennett was several times larger, and that P/Encke is 10 times smaller. The peculiar behavior of Bradfield showed that the coma of a single comet can abruptly change its dust composition.  相似文献   

20.
Photodissociation lifetime of 32s2in comets is calculated by absorption of solar photons into the B3 state and velocity distributions of sulphur atoms are determined. Absorption of solar photons of wavelength ~ 280 nm leads to a photodissociation lifetime of about 250 s for 32S2 molecule in comets when sun-comet distance is 1 AU. Forbidden lines corresponding to 1D-3P transitions of neutral sulphur atom may be detectable at about 11 306 and 10 821 Å in comets. The production rate of 32S2 dimer in comet IRAS-Araki-Alcock 1983d compares well with the production rate of CS, observed in comet Bradfield, when compared at the same heliocentric distance. The chemistry of 32S2 dimer formation in the inner coma of a comet is discussed in the framework of some gas phase reactions.Work partially supported by the CNPq, Brasilia, Brasil under contract No. 30.4076/77.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号