首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
《国际泥沙研究》2020,35(5):455-466
Assessments of a stable channel were done to evaluate the conditions of three rivers in Malaysia, using an analytical method that modifies the stable channel flowchart developed by Chang (1988) and Ariffin (2004). The analytical approach was selected to calculate the suitable dimensions for a stable channel, using equations that describe the physical relation of sediment transport, flow resistance, and dynamic equilibrium. Measured field data were used as the input data for the stable channel program, which then processed the data until the input discharge was equal to the output discharge. However, this method depends on the accuracy of the sediment transport equation that is used in the stable channel design. Existing equations recommended by the Department of Irrigation and Drainage (DID), Malaysia, were found to be unsuitable because of their low discrepancy ratio (DR) values, which were below 42%. These are the equations of Engelund and Hansen (1967) and Yang (1979), as well as existing local equations from Ariffin (2004) and Sinnakaudan et al. (2006). Therefore, revised equations were developed in the current study to increase the accuracy of the total bed material load equations for use in Malaysian rivers. The newly revised Ariffin (2004) and Sinnakaudan et al. (2006) equations yielded better DRs of 66.34 and 64.49%, respectively. River assessments done on the Kurau River (a small river), the Muda River (a medium-size river), and the Langat River (a large river) show that these rivers have experienced different levels of erosion. Only the Kurau River was found to have minimal erosion and sedimentation levels. Conversely, stable channel assessments for the Muda River and the Langat River revealed that both rivers had experienced severe erosion, due to excessive sand mining. Almost all the cross section sampling points on the Muda River and Langat River were deeper than the suggested stable channel heights.  相似文献   

2.
This paper presents a comparison of different fractional bed‐material load computation methods in sand‐bed channels. These methods include the direct computation by size fraction approach of Einstein, Laursen and Toffaleti; the bed material fraction (BMF) approach using equations of Engelund and Hansen, Ackers and White, Yang, and Karim's modified BMF method; and the transport capacity fraction (TCF) approach using the transport capacity distribution functions of Karim and Kennedy, Li, and Wu and Molinas. Over 150 sets of flume and field data in the sand size range containing a total of 1007 data points are used to evaluate and compare the accuracy of these methods. Statistical analysis and graphical comparison are utilized to demonstrate the performance and variations in different methods. Overall, the Einstein method underpredicts the transport rate for finer sizes and overpredicts for the coarser sizes, while the other methods overestimate the finer fractions and underestimate the coarser fractions. The Wu and Molinas method, which was developed to account for these deficiencies, is shown to significantly improve fractional bed‐material load computations. The Karim and Kennedy method is also found to be applicable. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
《国际泥沙研究》2016,(4):376-385
Twenty runs of experiments are carried out to investigate non-equilibrium transport of graded and uniform bed load sediment in a degrading channel. Well-sorted gravel and sand are employed to compose four kinds of sediment beds with different gravel/sand contents, i.e., uniform 100%gravel bed, uniform 100% sand bed, and two graded sediment beds respectively with 53% gravel and 47% sand as well as 22%gravel and 78%sand. For different sediment beds, the experiments are conducted under the same discharges, thereby allowing for the role of sediment composition in dictating the bed load transport rate to be identified. A new observed dataset is generated concerning the flow, sediment transport and evolution of bed elevation and composition, which can be exploited to underpin devel-opments of mathematical river models. The data shows that in a degrading channel, the sand greatly promotes the transport of gravel, whilst the gravel considerably hinders the transport of sand. The promoting and hindering effects are evaluated by means of impact factors defined based on sediment transport rates. The impact factors are shown to vary with flow discharge by orders of magnitude, being most pronounced at the lowest discharge. It is characterized that variations in sand or gravel inputs as a result of human activities and climate change may lead to severe morphological changes in degrading channels.  相似文献   

4.
Previous analyses have identified the active width of braided rivers, the bed area over which bed load flux and short‐term morphological change occurs, as an important element of braiding dynamics and predictions of bed load flux. Here we compare theoretical predictions of active width in gravel‐bed braided rivers with observations from Sunwapta River, and from a generic physical model of gravel braided rivers, to provide general observations of the variation in active width, and to develop an understanding of the causes of variation. Bed topography was surveyed daily along a 150 m reach of the pro‐glacial Sunwapta River for a total of four weeks during summer when flow was above threshold for morphological activity. In the laboratory, detailed digital elevation models (DEMs) were derived from photogrammetric survey at regular intervals during a constant discharge run. From the field and flume observations there is considerable local and circumstantial variation in active width, but also a general trend in average active width with increasing discharge. There is also a clear relationship of active width with active braiding index (number of active branches in the braided channel network), and with dimensionless stream power, which appears to be consistent across the range of data from field and physical models. Thus there is a link between active width and the river morphology and dynamics, and the possibility of a general relationship for estimating active width from channel pattern properties or reach‐scale stream power values, from which approximate bedload flux calculations may be made. The analysis also raises questions about differences between hydraulically‐based numerical model computations of instantaneous active width and observation of time‐integrated morphological active width. Understanding these differences can give insight into the nature of bedload transport in braided rivers and the relationship to morphological processes of braiding. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This paper evaluates the applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang et al., and van Rijn, together with the Wuhan methods developed in China, to the Yellow River, which has highly concentrated and fine-grained sediment. The sediment data includes over 1000 observations from the Yellow River, 32 sets of data from a canal, and 266 sets of data from laboratory flumes. The best predictions were obtained by the Yang 1996 method, the Wuhan method, and the modified Wuhan method by Wu and Long, while reasonably good predictions were also provided by the van Rijn 2004 method. The Engelund and Hansen, the Ackers and White, and the van Rijn 1984 methods in their original forms are not applicable to the Yellow River. The predicted results for total load concentrations were as good as for bed-material concentrations, even though the total load includes a large portion of wash load.  相似文献   

6.
Previously undocumented deposits are described that store suspended sediment in gravel‐bedded rivers, termed ‘fine‐grained channel margin’ (FGCM) deposits. FGCM deposits consist of sand, silt, clay, and organic matter that accumulate behind large woody debris (LWD) along the margins of the wetted perimeter of the single‐thread, gravel‐bed South River in Virginia. These deposits store a total mass equivalent to 17% to 43% of the annual suspended sediment load. Radiocarbon, 210Pb and 137C dating indicate that sediment in FGCM deposits ranges in age from 1 to more than 60 years. Reservoir theory suggests an average turnover time of 1·75 years and an annual exchange with the water column of a mass of sediment equivalent to 10% to 25% of the annual sediment load. The distribution of ages in the deposits can be fitted by a power function, suggesting that sediment stored in the deposits has a wide variety of transit times. Most sediment in storage is reworked quickly, but a small portion may remain in place for many decades. The presence of FGCM deposits indicates that suspended sediment is not simply transported downstream in gravel‐bed rivers in agricultural watersheds: significant storage can occur over decadal timescales. South River has a history of mercury contamination and identifying sediment sources and sinks is critical for documenting the extent of contamination and for developing remediation plans. FGCM deposits should be considered in future sediment budget and sediment transport modeling studies of gravel‐bed rivers in agricultural watersheds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Channelization of the lowermost part of Vedder River in 1922 initiated a natural experiment relevant to the unresolved question of how abrupt gravel–sand transitions develop along rivers. The new channel (Vedder Canal) had a fine bed and a much lower slope than the gravel‐bed river immediately upstream. Changes in morphology and sedimentology as gravel advanced into and along the Canal are documented using air photos, historical surveys, and fieldwork. The channel aggraded and steepened until stabilized by occasional gravel extraction in recent decades. The deposited material fines progressively along the Canal but the gravel front has retained an abrupt appearance because it has advanced by the sequential development of discrete gravel tops on initially sandy alternate bars. Near the gravel front the bed is highly bimodal and there is a sharper drop in the extent of gravel‐framework surface facies than in bulk gravel content. Ahead of the front, gravel is restricted to thin ribbons which often become buried by migrating sand. Calculations show that even though the gravel bed at the head of the Canal is almost unimodal, size‐selective transport during floods can account for the strong bimodality farther downstream. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This paper reports on a first attempt of using the virtual velocity approach to assess sediment mobility and transport in two wide and complex gravel‐bed rivers of northern Italy. Displacement length and virtual velocity of spray‐painted tracers were measured in the field. Also, the thickness of the sediment active layer during floods was measured using scour chains and post‐flood morphological changes as documented by repeated survey of channel cross‐sections. The effects of eight and seven floods were studied on the Tagliamento and Brenta Rivers, where 259 and 277 spray‐painted areas were surveyed, respectively. In the Tagliamento River 36% of the spray‐painted areas experienced partial transport, whereas in the Brenta River this accounted for 20%. Whereas, full removal/gravel deposition was observed on 37% and 26% of these areas on the Tagliamento and Brenta Rivers, respectively. The mean displacement length of particles, the thickness of the active layer and the extent of partial transport are well correlated with the dimensionless shear stress. The virtual velocity approach allowed calculation of bed material transport over a wide range of flood magnitudes. Annual coarse sediment transport was calculated up to 150 for the Tagliamento, and 30 × 103  m3 yr?1 for the Brenta. The outcomes of this work highlight the relevance of partial transport condition, as it could represent more than 70% of the total bed material transported during low‐magnitude floods, and up to 40% for near‐bankfull events. Results confirm that bed material load tends to be overestimated by traditional formulas. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Most rivers in Taiwan are intermittent rivers with relatively steep slopes and carry rapid sediment‐laden flows during typhoon or monsoon seasons. A series of field experiments was conducted to collect suspended load data at the Tzu‐Chiang Bridge hydrological station of the lower Cho‐Shui River, which is a major river with the highest sediment yield in Taiwan. The river reach was aggrading with a high aspect ratio during the 1980s. Because of sand mining and extreme floods, it was incised and has had a relatively narrow main channel in recent years. The experimental results indicated that typical sediment transport equations can correctly predict the bed material load for low or medium sediment transport rates (e.g. less than about 1000 tons/day‐m). However, these equations far underestimate the bed material load for high sediment transport rates. The effects of cross‐sectional geometry change (i.e. river incision) and earthquakes on the sediment load were investigated in this study. An empirical sediment transport equation with consideration of the aspect ratio was also derived using the field data collected before and after river incision. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A reliable estimation of sediment transport in gravel‐bed streams is important for various practical engineering and biological studies (e.g., channel stability design, bed degradation/aggradation, restoration of spawning habitat). In the present work, we report original laboratory experiments investigating the transport of gravel particles at low bed shear stresses. The laboratory tests were conducted under unsteady flow conditions inducing low bed shear stresses, with detailed monitoring of the bed topography using a laser scanner. Effects of bed surface arrangements were documented by testing loose and packed bed configurations. Effects of fine sediments were examined by testing beds with sand, artificial fine sand or cohesive silt infiltrated in the gravel matrix. Analysis of the experimental data revealed that the transport of gravel particles depends upon the bed arrangement, the bed material properties (e.g., size and shape, consolidation index, permeability) and the concentration of fine sediments within the surface layer of moving grains. This concentration is directly related to the distribution of fine particles within the gravel matrix (i.e., bottom‐up infiltration or bridging) and their transport mode (i.e., bedload or suspended load). Compared to loose beds, the mobility of gravel is reduced for packed beds and for beds clogged from the bottom up with cohesive fine sediments; in both cases, the bed shear stress for gravel entrainment increases by about 12%. On the other hand, the mobility of gravel increases significantly (bed shear stress for particle motion decreasing up to 40%) for beds clogged at the surface by non‐cohesive sand particles. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Large asymmetric bedforms known as dunes commonly dominate the bed of sand rivers. Due to the turbulence generation over their stoss and lee sides, dunes are of central importance in predicting hydraulic roughness and water levels. During floods in steep alluvial rivers, dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This transition of dunes to upper stage plane bed is associated with high transport of bed sediment in suspension and large decrease in bedform roughness. In the present study, we aim to improve the prediction of dune development and dune transition to upper stage plane bed by introducing the transport of suspended sediment in an existing dune evolution model. In addition, flume experiments are carried out to investigate dune development under bed load and suspended load dominated transport regimes, and to get insight in the time scales related to the transition of dunes to upper stage plane bed. Simulations with the extended model including the transport of suspended sediment show significant improvement in the prediction of equilibrium dune parameters (e.g. dune height, dune length, dune steepness, dune migration rate, dune lee side slope) both under bed load dominant and suspended load dominant transport regimes. The chosen modeling approach also allows us to model the transition of dunes to upper stage plane bed which was not possible with the original dune evolution model. The extended model predicts change in the dune shapes as was observed in the flume experiments with decreasing dune heights and dune lee slopes. Furthermore, the time scale of dune transition to upper stage plane bed was quite well predicted by the extended model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The papers in this special issue reflect several of the major themes and topics from the 7th International Workshop on Gravel‐Bed Rivers. The papers focus primarily on aspects of bed material transport in gravel‐bed rivers and larger scale morpho‐dynamics. Research in gravel‐bed rivers is increasingly integrating processes over a wide range of temporal and spatial scales by combining field observation, lab experimentation, numerical modeling and theory testing in a range of river types, aided by new technological developments in particle tracking, computational modeling and high resolution spatial data. This is leading to greater understanding of the processes leading to distinctive morpho‐dynamics of river types and a more reliable basis for river management. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
We explore the link between channel‐bed texture and river basin concavity in equilibrium catchments using a numerical landscape evolution model. Theory from homogeneous sediment transport predicts that river basin concavity directly increases with bed sediment size. If the effective grain size on a river bed governs its concavity, then natural phenomena such as grain‐size sorting and channel armouring should be linked to concavity. We examine this hypothesis by allowing the bed sediment texture to evolve in a transport‐limited regime using a two grain‐size mixture of sand and gravel. Downstream ?ning through selective particle erosion is produced in equilibrium. As the channel‐bed texture adjusts downstream so does the local slope. Our model predicts that it is not the texture of the original sediment mixture that governs basin concavity. Rather, concavity is linked to the texture of the sorted surface layer. Two different textural regimes are produced in the experiments: a transitional regime where the mobility of sand and gravel changes with channel‐bed texture, and a sand‐dominated region where the mobility of sand and gravel is constant. The concavity of these regions varies depending on the median gravel‐ or sand‐grain size, erosion rate, and precipitation rate. The results highlight the importance of adjustments in both surface texture and slope in natural rivers in response to changes in ?uvial and sediment inputs throughout a drainage network. This adjustment can only be captured numerically using multiple grain sizes or empirical downstream ?ning rules. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Grain‐size distributions of bed material sediment in large alluvial rivers are required in various scientific and management applications, but characterizing gravel beds in navigable rivers is hampered by difficulties in sediment extraction. The newly developed and preliminarily tested sampler reported here can extract sediment from a range of riverbeds. The 36 × 23 × 28 cm stainless steel toothed sampler is deployed from and dragged downstream by the weight of a jet boat, and it improves upon previous samplers that are unable to penetrate gravel bed surfaces, have small apertures, and/or cannot retain fine sediment. The presented sampler was used to extract 167 bed material sediment samples of up to 16 kg (dry weight) with an average sample size of ~6 kg from 67 cross‐sections spanning 160 river kilometres along the Sacramento River. It was also tested at three sites on a subaerial bar to compare surface, subsurface, and sampler distributions. Sampler penetration is ~5 cm. The device collects individual samples that satisfy the criterion for bed material sediment whereby the largest particle comprises no more than 5% of the total sample mass in gravel and sand beds, except where the degree of surface armouring is large (e.g. armor ratios >> 2) and where more than 10% of bed material sediment is composed of grains larger than 64 mm. When aggregated samples exceed 15 kg, all satisfy the criterion whereby the largest particle comprises no more than 1% of the total sample mass. Samples closely resemble surface size distributions, except where armouring is strong. The sampler should be subject to more rigorous field testing, but many of its current limitations are expected to become negligible with the advent a larger, heavier version of the sampling device. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The local reach gradient of small gravel bed rivers (drainage area 0-8-110 km2) in the Eifel, West Germany, is adjusted to transport the river bed sediments. Transport of gravel becomes possible under high flow conditions (Shields entrainment factor ≈-03). Mean bed material size for riffle sections increases with distance downstream. For small drainage areas channel slope is a negative exponential function of drainage area, while for the larger region the additional influence of bedload size has to be considered. Good agreement with Hack's data (1957) for Virginia and Maryland, U.S.A., is achieved (S = 0.0066 (D50/A)- 40., r = 0.67).  相似文献   

17.
Suspended load transport can strongly impact ecosystems, dam filling and water resources. However, contrary to bedload, the use of physically based predicting equations is very challenging because of the complexity of interactions between suspended load and the river system. Through the analysis of extensive data sets, we investigated extent to which one or several river bed or flow parameters could be used as a proxy for quantifying suspended fluxes in gravel bed rivers. For this purpose, we gathered in the literature nearly 2400 instantaneous field measurements collected in 56 gravel bed rivers. Among all standard dimensionless parameters tested, the strongest correlation was observed between the suspended sediment concentration and the dimensionless bedload rate. An empirical relation between these two parameters was calibrated. Used with a reach average bedload transport formula, the approach allowed to successfully reproduce suspended fluxes measured during major flood events in seven gravel bed alpine rivers, morphodynamically active and distant from hillslope sources. These results are discussed in light of the complexity of the processes potentially influencing suspended load in a mountainous context. The approach proposed in this paper will never replace direct field measurements, which can be considered the only confident method to assess sediment fluxes in alpine streams; however, it can increment existing panel tools that help river managers to estimate even rough but not unrealistic suspended fluxes when measurements are totally absent. © 2019 John Wiley & Sons, Ltd.  相似文献   

18.
Laboratory flume experiments were done to investigate bed load sediment transport by both steady and unsteady flows in a degrading channel. The bed, respectively composed of uniform sand, uniform gravel, or sand-gravel mixtures, always undergoes bulk degradation. It is found that both uniform and non-uniform bed load transport is enhanced greatly by unsteady flows as compared to their volume-equivalent steady flows. This enhancement effect is evaluated by means of an enhancement factor, which is shown to be larger with a coarser bed and lower discharges. Also, the fractional transport rates of gravel and sand in non-uniform sand-gravel mixtures are compared with their uniform counterparts under both steady and unsteady flows. The sand is found to be able to greatly promote the transport of gravel, whilst the gravel considerably hinders the transport of sand. Particularly, the promoting and hindering impacts are more pronounced at lower discharges and tend to be weakened by flow unsteadiness.  相似文献   

19.
Theoretical, modeling, experimental and monitoring of sediment transport in gravel bed rivers are introduced. The key findings of 27 papers on this theme were published in Earth Surface Processes and Landforms during the past year. Among these, 18 papers were published by attendants of the 8th Gravel Bed River Workshop held in Japan in 2015. This Commentary introduces the main themes associated with these papers including innovations in sediment transport conceptualization and modeling and monitoring, and also three wider themes: the importance of sediment supply; relationships between gravel bed river science and restoration; and the growing recognition of the critical role played by wood in gravel bed rivers. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

20.
Bed load transport rate was measured in ten self-formed small-scale gravel braided streams developed in a laboratory flume at several different values of steady discharge and flume gradient. The streams are approximate Froude models of typical prototype braided streams but of no particular river. Slight viscous effects may be present in the models because particle Reynolds numbers are close to 70. Total bed load discharge was measured every fifteen minutes throughout each 60 hour run. In addition, 80 channel cross-sections were measured in each run to establish the average channel geometry. Total bed load transport rate correlates well with total discharge and total stream power, although at a given stream power bed load discharge is greater when braiding is less intense and the width/depth ratio is lower. Analysis using unit stream power and cross-section average bed shear stress reveals that the laboratory data conform to existing empirical bed load transport relationships. However, comparison with field data from gravel-bed rivers shows discrepancies that may be due to differences in bed material size gradation and bed sediment structure. At constant discharge, wide fluctuations in bed load discharge occur with some regularity. Periods range from 2 to 10 hours in the models, which is equivalent to several tens of hours in a prototype. The presence of these long-period fluctuations compounds the problems of field measurement of bed load in braided streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号