首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrapotassic basaltic lavas erupted 3.4–3.6 m.y. ago(K/Ar) in the central Sierra Nevada and originated by partialmelting of a phlogopite-enriched, garnet-bearing upper mantlesource. Ultrapotassic basanites (K2O: 5–9 per cent), whichare spatially related to contemporaneous potassic olivine basalts(K2O: 3–5 per cent) and alkali olivine basalts (K2O: 1–3per cent), contain the K2O-bearing minerals phlogopite, sanidine,and leucite as well as olivine, diopside, apatite, magnetite,and pseudobrookite. The presence and modal abundance of theK2O-bearing minerals closely reflects the east to west increasein K2O throughout the basaltic suite. Many lines of evidence support the derivation of the ultrapotassicbasanites and the related basalts from an upper mantle source:TiO2 in phlogopite phenocrysts and groundmass crystals, 2–3and 7–9 per cent respectively, support phlogopite phenocrystcrystallization at high pressure, whole rock Mg values (100Mg/Mg + 0.85 Fe) range from 66–78, phlogopite-rich pyroxeniticand periodotitic nodules are included in some flows, and geobarometriccalculations indicate depths of generation at 100–125km. Also, model calculations show that the major, rare earth,and trace elements, except for Ba, Rb, and Sr, can be accuratelygenerated by 1.0–2.5 per cent melting of a phiogopite-and garnet-bearing clinopyroxene-rich upper mantle source. Partialmelting occurred after a general upper mantle enrichment beneaththe Sierra Nevada, the phlogopite- and clinopyroxene-rich sourceof the ultrapotassic lavas being the extreme result of the enrichmentprocess. Clinopyroxene enrichment of the upper mantle probablyoccurred by introduction of a partial melting fraction intothe upper mantle source areas. Enrichment of the upper mantlein the alkali and alkali-earth elements was not accomplishedby a partial melt, but resulted from influx of a fluid phaserich in Ba, K, Rb, Sr, and, probably, H2O The continuous rangein K2O of the erupted lavas implies that the upper mantle enrichmentis a cumulative process. The inverse relationship in the SierraNevada between uplift and the K2O content of the erupted basaltsimplies that a critical relationship may exist between upliftand upper mantle enrichment.  相似文献   

2.
The recognition in Skye of olivine tholeiite lava flows, withlow alkali (1·7–1·9 per cent Na2O, 0·04–0·14per cent K2O) and high calcium (12·7 per cent CaO), isreported. An account of their mineralogy and petrology, sevenmajor element analyses, some trace element data, and the resultsof one atmosphere melting experiments are presented. These lavas,quite distinct from the plateau lavas in Skye, are postulatedas representing the early stages of a central cone volcano inS.W. Skye and thought to be closely related to the parentalmagmas of the Cuillins layered basic intrusion complex. * Present address: Department of Earth & Space Sciences, S.U.N.Y. at Stony Brook, N.Y. 11794, U.S.A.  相似文献   

3.
Pelitic xenoliths derived from amphibolite grade basement rocksoccur within a Pleistocene, trachytic, pyroclastic unit of theWehr volcano, East Eifel, West Germany: With increasing temperatureand/or prolonged heating at high temperature, quartz-plagioclaseand micaceous layers of the xenoliths have undergone meltingto form buchites and thermal reconstitution by dehydration reactions,melting and crystallization to form restites respectively. Thexenoliths provide detailed evidence of melting, high temperaturedecomposition of minerals, nucleation and growth of new phasesand P-T-fo2 conditions of contact metamorphism of basement rocksby the Wehr magma. Melting begins at quartz-oligoclase (An17·3Ab82·3Or0·4-An20·0Ab78·1Or1·9)grain boundaries in quartz-plagioclase rich layers and the amountof melting is controlled by H2O and alkalis released duringdehydroxylation/oxidation of associated micas. Initially, glasscompositions are heterogeneous, but with increasing degreesof melting they become more homogeneous and are similar to S-typegranitic minimum melts with SiO2 between 71 and 77 wt. per cent;A/(CNK) ratios of 1·2–1·4; Na2O < 2·95and normative corundum contents of 1·9–4·0per cent. Near micas plagioclase melts by preferential dissolutionof the NaAlSi3O8 component accompanied by a simultaneous increasein CaAl2Si2O8 (up to 20 mol. per cent An higher than the bulkplagioclase composition) at the melting edge. With increasingtemperature the end product of fractional melting is the formationand persistence of refractory bytownite (An78–80) in thosexenoliths where extensive melting has taken place. Initial stage decomposition of muscovite involves dehydroxylation(H2O and alkali loss). At higher temperatures muscovite breaksdown to mullite, sillimanite, corundum, sanidine and a peraluminousmelt. Mullite (40–43 mol. per cent SiO2) and sillimanite(49 mol. per cent SiO2) are Fe2O3 and TiO2 rich (up to 6·1–0·84and 3·6–0·24 wt. per cent respectively).Al-rich mullite (up to 77 wt. per cent Al2O3) occurs with corundumwhich has high Fe2O3 and TiO2 (up to 6·9 and 2·1wt. per cent respectively). Annealing at high temperatures andreducing conditions results in the exsolution of mullite fromsillimanite and ilmenite from corundum. Glass resulting fromthe melting of muscovite in the presence of quartz is peraluminous(A/(CNK) = 1·3) with SiO2 contents of 66–69 percent and normative corundum of 4 per cent. Sanidine (An1·9Ab26·0Or72·1-An1·3Ab15·9Or82·9)crystallized from the melt. Dehydroxylation and oxidation of biotite results in a decreaseof K2O from 8·6 to less than 1 wt. per cent and oxidetotals (less H2O + contents) from 96·5 to 88·6,exsolution of Al-magnetite, and a decrease in the Fe/(Fe + Mg)ratio from 0·41 to 0·17. Partial melting of biotitein the presence of quartz/plagioclase to pleonaste, Al-Ti magnetite,sanidine(An2·0Ab34·9Or63·1) and melt takesplace at higher temperatures. Glass in the vicinity of meltedbiotite is pale brown and highly peraluminous (A/CNK = 2·1)with up to 6 wt. per cent MgO+FeO(total iroq) and up to 10 percent normative corundum. Near liquidus biotite with higher Al2O3and TiO2 than partially melted biotite crystallized from themelt. Ti-rich biotites (up to 6 wt. per cent TiO2) occur withinthe restite layers of thermally reconstituted xenoliths. Meltingof Ti-rich biotite and sillimanite in contact with the siliceousmelt of the buchite parts of xenoliths resulted in the formationof cordierite (100 Mg/(Mg+Fe+Mn) = 76·5–69·4),Al-Ti magnetite and sanidine, and development of cordierite/quartzintergrowths into the buchite melt. Growth of sanidine enclosedrelic Ca-plagioclase to form patchy intergrowths in the restitelayers. Cordierite (100 Mg/(Mg+Fe+Mn) = 64–69), quartz,sillimanite, mullite, magnetite and ilmenite, crystallized fromthe peraluminous buchite melt. Green-brown spinels of the pleonaste-magnetite series have awide compositional variation of (mol. per cent) FeAl2O4—66·6–45·0;MgAl2O4—53·0–18·7; Fe3O4—6·9–28·1;MnAl2O4—1·2–1·5; Fe2TiO4—0·6–6·2.Rims are generally enriched in the Fe3O4 component as a resultof oxidation. Compositions of ilmenite and magnetite (single,homogeneous and composite grains) are highly variable and resultfrom varying degrees of high temperature oxidation that is associatedwith dehydroxylation of micas and melting. Oxidation mainlyresults in increasing Fe3+, Al and decreasing Ti4+, Fe2+ inilmenite, and increasing Fe2+, Ti4+ and decreasing Fe3+ in associatedmagnetite. A higher degree of oxidation is reached with exsolutionof rutile from ilmenite and formation of titanhematite and withexsolution of pleonaste from magnetite. Ti-Al rich magnetite(5·1–7·5 and 8·5–13·5wt. per cent respectively) and ilmenite crystallized from meltsin buchitic parts of the xenoliths. Chemical and mineralogic evidence indicates that even with extensivemelting the primary compositions of individual layers in thexenoliths remained unmodified. Apparently the xenoliths didnot remain long enough at high temperatures for desilicationand enrichment in Al2O3, TiO2, FeO, Fe2O3, and MgO that resultsby removal of a ‘granitic’ melt, and/or by interactionwith the magma, to occur. T °C-fo2 values calculated from unoxidized magnetite/ilmenitegive temperatures ranging from 615–710°C for contactmetamorphism and the beginning of melting, and between 873 and1054°C for the crystallization of oxides and mullite/sillimanitefrom high temperature peraluminous melts. fo2 values of metamorphismand melting were between the Ni-NiO and Fe2O3-Fe3O4 buffer curves.The relative abundance of xenolith types, geophysical evidenceand contact metamorphic mineralogy indicates that the xenolithswere derived from depths corresponding to between 2–3kb Pload = Pfluid. The xenoliths were erupted during the latestphreatomagmatic eruption from the Wehr volcano which resultedin vesiculation of melts in partially molten xenoliths causingfragmentation and disorientation of solid restite layers.  相似文献   

4.
The recognition in Skye of olivine tholeiite lava flows, withlow alkali (1?7–1?9 per cent Na2O,0?04–0?14 percent K2O) and high calcium (12?7 per cent CaO), is reported.An account of their mineralogy and petrology, seven major elementanalyses, some trace element data, and the results of one atmospheremelting experiments are presented. These lavas, quite distinctfrom the plateau lavas in Skye, are postulated as representingthe early stages of a central cone volcano in S.W. Skye andthought to be closely related to the parental magmas of theCuillins layered basic intrusion complex.  相似文献   

5.
Komatiitic and Iron-rich Tholeiitic Lavas of Munro Township, Northeast Ontario   总被引:12,自引:6,他引:12  
Munro Township, in the Archean Abitibi greenstone belt of northeastOntario, contains volcanic and hypabyssal rocks of two magmaseries: (1) an Fe-rich tholeiitic series of basaltic to daciticlava flows (3–10 m thick), layered peridotite-pyroxenite-gabbroflows (120 m thick), and layered sills (700 m thick); (2) anultramafic-mafic komatiitic series, comprising discrete lavaflows of peridotitic to andesitic composition (1–17 mthick), layered peridotite-gabbro flows (120 m thick), and layeredsills (500 m thick). The komatiitie lavas form a successionabout 1000 m thick that is both underlain and overlain by thickersuccessions of tholeiitic volcanic rocks. Three types of komatiite are recognized: peridotitic, pyroxenitic,and basaltic komatiites. The most ultramafic are peridotiticcumulates rich in forsteritic olivine (Fo89–94), at thebases of flows and sills. Many less mafic peridotitic komatiites(MgO: 20–30 per cent), which typically form the upperparts of flows and the marginal parts of small intrusions, exhibitspinifex textures indicative of their formation from ultrabasicliquids. Pyroxenitic komatiites (MgO: 12–20 per cent)also may contain olivine, but are dominated by clinopyroxene,usually in spinifex textures. Basaltic komatiites (MgO <12per cent) are composed mainly of clino-pyroxene and plagioclaseor devitrified glass, rarely in spinifex texture and more commonlyin equigranular textures. Peridotitic komatiite with roughly30 per cent MgO appears to represent a parental liquid fromwhich the more ultramafic komatiites formed by accumulationof olivine, and the less mafic types were derived by fractionationof olivine, joined and finally succeeded in later stages byclinopyroxene and plagioclase. Komatiites of Munro Township share many of the characteristicsof the komatiites from the Barberton Mountain Land, South Africa(Voljoen & Viljoen, 1969a and b), but lack the high CaO/Al2O3ratios that distinguish the Barberton rocks. The Munro komatiitesare identical in this respect to ultramafic volcanic rocks inAustralia, Canada, Rhodesia, and India. It is proposed thatthe definition of the term komatiite be broadened so that itincludes all members of this ultramafic-mafic rock series, notonly those from Barberton Mountain Land. The proposed criteriaare: (1) highly ultramafic compositions in noncumulate lavas;(2) unusual volcanic structures such as spinifex texture andpolyhedral jointing; (3) low Fe/Mg ratios at given Al2O3 valuesor high CaO/Al2O3 ratios; low TiO2 at given SiO2; and high MgO,NiO, and Cr2O3.  相似文献   

6.
Vesicular interstitial glass in four kaersutite-bearing spinel–wehrlitexenoliths from Foster Crater, Antarctica has reacted with hostolivine (Fo75–79) and clinopyroxene (Ca47 Mg45 Fe8) andcontains a microphenocryst assemblage of spinel, olivine, andclinopyroxene together with later rhonite and plagioclase. Electronmicroprobe analyses of the glasses have low SiO2 (46–49wt. per cent) and MgO (2.2–3.7) contents and high contentsof alkalis, TiO2 (3.4–4.8), Al2O3 (18.1–20.6) andP2O5 (1.1–1.3). Olivine microphenocryst cores in glassare magnesian (up to Fo88) and must have precipitated from moreprimitive liquids; rim compositions are Fe-rich (Fo75) and inequilibrium with glass. Continuous core to rim zonation in theolivine microphenocrysts indicate that glass compositions havefractionated due to crystallization of the enclosed mineralassemblage. Mass balance addition calculations, using the compositionsand proportions of the crystals in glass, produce melt compositionsappropriate to primary alkali basaltic magmas. Glasses showlight rare earth element (REE) enrichment relative to chondrites(Ce/YbN = 10.5) and, together with Ba, Rb, Cr, Hf, Ta, and Thare similar to many of the basanites from the Erebus VolcanicProvince. Textural relationships of the kaersutite are complex owing tothe instability of kaersutite in the presence of melt. However,in the association with glass we observe textural evidence suchas olivine and clinopyroxene microphenocrysts, identical tothe liquidus phases of the glasses, enclosed by kaersutite crystals.We believe that relationships such as this link the crystallizationof kaersutite to mafic melt which infiltrated and reacted withthe host wehrlite. Thus, the melt did not form in situ withinthe xenolith but originated elsewhere in the upper mantle.  相似文献   

7.
The major element chemical compositions of lava from four eruptionson the east rift zone of Kilauea between August 1968 and October1971 reflect three petrologic processes:
  1. Production of chemically distinct batches of magma in the mantle.
  2. Separation of olivine, augite, and plagioclase from liquidduringflow in the rift-zone conduits.
  3. Mixing of differentmagmas during ascent to the surface.
Chemically none of the four Kilauea east-rift eruptions matchesthe preceding summit eruption in Halemaumau that ended in July1968. The Mauna Ulu eruption, May 1969 to October 1971 (thelast of flie east-rift eruptions), can be divided into fiveolivine-controlled and chemically distinct variants. Three ofthese characterize the first seven months of the eruption andare closest in composition to the 1967–8 Halemaumau eruption.Variants 4 and 5 were erupted later and have compositions thatare distinctly different from that of the 1967–8 eruption.Major differences are higher Al2O3 (0?15–0?23 per cent),and lower K2O (0?07–0?10 per cent) and TiO2 (0?12–0?23per cent) in variants 4 and 5 at the same MgO content. Somelavas from eruptions in August and October 1968 and February1969, have olivine-controlled magma compositions that are identicalto mixtures of Mauna Ulu variants 1–3 and the 1967–8composition. This observation fits an hypothesis advanced earlierby T. L. Wright and R. S. Fiske that magmas in the central magmachamber become mixed with magmas in the rift zone and can beidentified as mixing components of rift eruption magmas beforethey appear as distinctive magmas in summit eruptions. Lavas representing mixing of olivine-controlled magma with differentiatedmagma were erupted in October 1968, February 1969, and in Mayand December 1969. The changes in amount of K2O and TiO2 during the latter partof the 1969–71 Mauna Ulu eruption are the reverse of theoverall secular change in composition of Kilauea summit lavasfrom pre-1750 through 1967–8. The K2O and TiO2 contentsof the latest overflows during the 1969–71 Mauna Ulu eruption(April 1971) are comparable to that of lava erupted at Kilaueasummit prior to 1750. The changing chemistry of Kilauea magma is found to be of useas a ‘tracer’ in the complex Kilauea conduit system.Application of these data to older lava sequences is difficulbecause of the complexity of the processes controlling lavacomposition and the absence of detailed information about thetime-space chemical variation during individual eruptions.  相似文献   

8.
Blue Mountain is a central-type alkali ultrabasic-gabbro ringcomplex (lxl7middot;5 km) introducing Upper Jurassic sediments,Marlborough, New Zealand. The ultrabasic-gabbroic rocks containlenses of kaersutite pegmatite and sodic syenite pegmatite andare intruded by ring dykes of titanaugite-ilmenite gabbro andlamprophyre. The margin of the intrusion is defined by a ringdyke of alkali gabbro. The plutonic rocks are cut by a swarmof hornblendebiotite-rich lamprophyre dykes. Thermal metamorphismhas converted the sediments to a hornfels ranging in grade fromthe albite-epidote hornfels facies to the upper limit of thehornblende hornfels facies. The rocks are nepheline normative and consist of olivine (Fo82–74),endiopside (Ca45Mg48Fe7–Ca36Mg55Fe9), titanaugite (Ca40Mg50Fe10–Ca44Mg39Fe17),plagioclase (An73–18), and ilmenitetitaniferous magnetite,with various amounts of titaniferous hornblende and titanbiotite.There is a complete gradation between endiopside and titanaugitewith the coupled substitution Ry+2+Si;;(Ti+4+Fe+3+Al+3 and asympathetic increase in CaAl2SiO6 (0·2–10·2percent) and CaTiAl2O6 (2·1–8·1 per cent)with fractionation. Endiopside shows a small, progressive Mgenrichment along a trend subparallel to the CaMgSi2O6–Mg2Si2O6boundary, and titanaugite is enriched in Ca and Fe+2+Fe+3 withdifferentiation. Oscillatory zoning between endiopside and titanaugiteis common. Exsolved ilmenite needles occur in the most Fe-richtitanaugites. The amphiboles show the trend: titaniferous hornblende(1·0–57middot;7 per cent TiO2) kaersutite (6·4per cent TiO2) Fe-rich hastingsite (18·0–19·1per cent FeO as total Fe). Biotite is high in TiO2 (6·6–7·8per cent). Ilmenite and titaniferous magnetite (3·5–10·6per cent TiO2) are typically homogeneous grains; their compositioncan be expressed in terms of R+2RO3:R+2O:R2+3O4. The intrusion of igneous rocks was probably controlled by subterraneanring fracturing. Subsidence of the country rock within the ringfracture provided space for periodic injections of magma froma lower reservoir up the initial ring fracture to form the BlueMountain rocks at a higher level. Downward movement of the floorof the intrusion during crystallization caused inward slumpingof the cumulates which affected the textural, mineralogical,and chemical evolution of the rocks in different parts of theintrusion. The order of mineral fractionation is reflected by the chemicalvariation in the in situ ultrabasic-gabbroic rocks and the successiveintrusions of titanaugite-ilmenite gabbro and lamprophyre ringdykes, marginal alkali gabbro and lamprophyre dyke swarm. Aninitial decrease, then increase in SiO2; a steady decrease inMgO, CaO, Ni, and Cr: an initial increase, then decrease inFeO+Fe2O3, TiO2, MnO, and V; almost linear increase in A12O3and late stage increase in alkalis and P2O3, implies fractionationof olivine and endiopside, followed by titanaugite and Fe-Tioxides, followed by plagioclase, hornblende, biotite, and apatite.Reversals in the composition of cumulus olivine and endiopsideand Solidification Index, indicate that the ultrabasic-gabbroicsequence is composed of four main injections of magma. The ultrabasic rocks crystallized under conditions of high PH2Oand fairly high, constant  相似文献   

9.
The aluminous pyroxene, fassaite, occurs in two small tabularbodies within mafic plutonites of the Boulder Batholith nearits north-east margin twelve miles east of Helena, Montana.First described by Knopf & Lee (1957), the bodies are contact-metasomatizedlimestone septa, now magnesian-tactites, consisting chieflyof fassaite, spinel, garnet, vesuvianite, and clintonite. Lesscommon minerals include pargasite, diopside, wollastonite, sphene,perovskite, anorthite, forsterite, calcite and chlorite. Sometwenty-five microprobe analyses of the fassaite show it is variablein composition and largely consists of the components CaMgSi2O6(53–83 per cent), CaAl2SiO6 (7–25 per cent), CaFeAlSiO6(8–28 per cent), and CaTiAl2O6 (0–7 per cent). Thestoichiometry generally requires that most of the iron is ferric,consistent with Mössbauer data taken on a typical sample.If fassaite analyses from these and other contact metamorphicrocks are plotted on a triangular diagram with Ca(Mg,Fe)Si2O6,CaAl2SiO6 and CaFeAlSiO6 as end-members, the distribution ofpoints offers no positive evidence for a solvus gap betweenfassaite and diopside as proposed by Ginzburg (1969). The mostaluminous fassaites occur with spinel-clintonite ± grossularand have 25 per cent of the Si replaced by Al, making them truepolymorphs of a garnet (i.e. Gr42And23Pp35). No unusual cationordering is detected in these fassaites by single-crystal X-rayphotographs or Mössbauer measurements. Smede's (1966) estimate of 3–4 km of stratigraphic coverfor the Boulder Batholith indicates pressures of approximately1 kb, in agreement with the occurrence of andalusite + K-feldsparin a hornfels at the Kokaruda Ranch complex. The partial assemblagesof grossular, epidote, perovskite, anorthite-wollastonite, anorthite-calcite,and fassaite-calcite require XCO2 = 0·12 ± 0·08and T = 570 ± 10 °C at these pressures. These pressuresand temperatures place this occurrence in the upper portionsof the hornblende-hornfels facies after Turner (1968), althoughthe low pressures and water-rich fluids permit assemblages (wollastonite,calcite-forsterite-diopside) that Turner lists as characteristicof the pyroxene-hornfels facies.  相似文献   

10.
Kiglapait Mineralogy I: Apatite, Biotite, and Volatiles   总被引:1,自引:2,他引:1  
Electron microprobe analyses show that Upper Zone apatites inthe Kiglapait intrusion are fluorine rich and contain minorchlorine and hydroxyl (calculated). Apatite from the Outer BorderZone has a higher Cl content. The refractive indices of UZ apatites have the following ranges: = 1.6345–1.6379, = 1.6326–1.6352, and B = 0.0020–0.0028.The birefringence is low for apatites with these refractiveindices. Some Outer and Upper Border Zone apatites have higherindices of refraction and normal birefringence. Fractional crystallization of the basaltic Kiglapait magma producedcumulus apatite beginning at the 94 per cent solidified levelwhen P2O5 reached saturation in the liquid. The amounts of P2O5and modal apatite decreased gradually from the 94 per cent tothe 99.99 per cent solidified level as the liquid was depletedin P2O5. F and Cl appear to be equally partitioned between theliquid and apatite because no fractionation trends are notedbetween the two halogens. There is a slight decrease in thecalculated ratio OH/F in apatite which suggests possible depletionof OH in the liquid with fractionation. Kiglapait apatites appear to be stoichiometric, based on microprobechemistry, refractive index, and unit cell dimensions. However,infrared absorption analyses show no detectable water, whichleaves approximately 11 per cent of the monovalent anion siteunaccounted for. Anion deficiencies in apatites from low-H2Oenvironments may be explained either by substitution of O forF, or domains of tetracalcium phosphate. Non-cumulus biotite occurs in minor quantities in the intrusion.Electron microprobe analyses of Upper Zone biotites show thatthey contain an average (by weight) pf 0.4 per cent F, 0.07per cent Cl, and 4.0 per cent H2O (calculated). The volatile chemistry of the Kiglapait intrusion is calculatedfrom apatite and biotite chemistry. The intrusion contains anestimated 900 ppm P2O5, 166 ppm F, and 12 ppm Cl. There is amaximum of 68 ppm H2O using calculated H2O from microprobe data,or a minimum of 8 ppm using H2O from infrared analysis. It isproposed that the anhydrous basaltic Kiglapait magma was a secondpartial melt of amphibole-bearing mantle rock.  相似文献   

11.
The Jijal complex, covering more than 150 sq. km in the extremenorth of Pakistan, is a tectonic wedge of garnet granulitesintruded in the south by a 10 x 4 km slab of ultramafic rocks.The granulites are divisible into plagioclase-bearing (basicto intermediate) and plagioclase-free (ultrabasic to basic)types, the two types reflecting differences in bulk chemistry.Garnet + plagioclase + clinopyroxene + quartz + rutile ±hornblende ± epidote is the most common assemblage. Theplagioclase-free rocks are composed mainly of two or three ofthe minerals garnet, amphibole, clinopyroxene and epidote. Orthopyroxeneoccurs in websteritic rocks devoid of epidote. Much of the amphiboleand some epidote appear to be prograde products. Although variationdiagrams do not reveal a genetic link between the two typesof granulite, it is considered that they are comagmatic ratherthan the products of two or more unrelated magmas. The compositions of garnet (Py28–46 Alm 27–43Gro16–28),clinopyroxene (Mg44–34Fe5–17Ca51–49, Al2O33·0–9·9 per cent), orthopyroxene (with upto 5·5 per cent Al2O3), amphibole (with up to 16·3per cent Al2O3 and high Alvi/Aliv), and the abundance of garnetsuggest a high-pressure origin for the granulites. The rocksappear to have differentiated from a tholeiitic magma of oceanicaffinity or they may be genetically related to the pyroxenegranulites of Swat considered to have originally crystallizedfrom a calc-alkaline magma of island arc or continental marginaffinity. They probably crystallized in the ancient Tethyancrust/upper mantle (or less likely in a continental margin),later to be metamorphosed to granulites (670–790 °C,12–14 kb) during the collision of the Indian-Asian landmasses,and carried upwards during later Himalayan orogenic episodes. The ultramafic rocks are alpine-type in nature and devoid ofgarnet. They are dominated by diopsidites; dunites, peridotites,and harzburgites together form <50 per cent of the area ofoutcrop. The chemistry of the rocks, and their olivines (Fo92–89)and clinopyroxenes (Mg49.5–48Fe2.8–5.2Ca47.4–46.8)are similar to those of alpine complexes of the harzburgitesubtype. It is not clear whether they represent a faulted slabof suboceanic crust/upper mantle, mantle diapirs in deep orogenicroots, or dismembered ultramafic rocks differentiated from abasaltic magma. They seem to have a complex history; their presentmineralogy is suggestive of high grade metamorphism (800–850°C, 8–12 kb). They are magmatically unrelated to thegarnet granulites and were probably intruded into the latteras plastic crystalline material after both had been independentlymetamorphosed, but before the entire complex was carried tectonicallyinto its present surroundings. The abundances of the diopsiditesis in marked contrast to other alpine-type complexes and thepossibility of Ca and Si metasomatism during or before theirmetamorphism should not be totally ruled out.  相似文献   

12.
Continental flood basalts from the Parana plateau are of LowerCretaceous age and are represented by abundant (c. 45 per centby volume) two-pyroxene tholeiites characterized by relativelylow-TiO2 (< 2 wt. percent) and incompatible (e.g., P, Ba,Sr, La, Ce, Zr) element contents. Low-Ti basalts are distributedthroughout the Parana Basin and predominate in the southernregions, where they represent over 90 per cent by volume ofthe basic activity. Major and trace elements and Sr-Nd isotope ratios were analysedin 43 low-Ti basalts selected so as to cover the entire Paranabasin. In general, low-Ti basalts with initial 87Sr86Sr ratios (R0)lower than O7060 may be divided into two groups: (A) those relativelyenriched in incompatible elements (e.g., average K2O = O.85and P2O5 = 0.27 wt. per cent, and Ba = 346, Sr =289, Rb=16;La =18; Zr=132 p.p.m.) and SiO2 (average 51.1 wt. per cent);and (B) depleted in incompatible elements (e.g., average K2O= 0.31, P2O5 =0.17 wt. per cent, and Ba=178, Sr= 179, Rb= 11,La = 9, Zr = 93 p.p.m.) and SiO2 (average 49.7 wt. per cent).Low-Ti basalts of Group A are typical of northern Paran? {Ro= O70550–O70596), but a few are also present in centralParan? (Ro = 070577–0–70591), while those of GroupB are exclusive to central Paran– {Ro = 070463–0–70580) Low-Ti basalts with R0> O7060 are typical of southern Paran?(R0 = O7O639 –O71137), but are also present in centralParana (Ro = 070620–070890). These low-Ti basalts havechemical similarity (e.g., Ti, P, Sr) with low-Ti basalts depletedin incompatible elements (Group B) from which, however, theydiffer-in possessing significantly higher concentrations ofSiO2, K2O, Rb, and Ba. Such chemical diversity, accompaniedby important Ro variations (070463–071137) suggests thatthe low-Ti basalts from southern and part of central Paranamay result from crustal contamination. On the contrary, low-Ti basalts from northern, and part of central, Parana (GroupA) may be considered virtually uncontaminated. Results indicate that crustal contamination by granitic material(s)may be in the range 7–17 per cent. Such contaminationin central Paran? appears compatible with an assimilation-fractionalcrystallization process (AFC), while in southern Parana, othercontamination processes (e.g., mixing of magmasfrom crustaland mantle sources, assimilation of wall rock while magmas flowthrough dykes, etc.) were probably superimposed on AFC. Thedegree of crustal contamination generally decreases from southernto northern Parana. Sr and Nd isotope ratios suggest that mantle source materialfor low-Ti basalts depleted in incompatible elements (GroupB: southern and part of central Parana) had a lower R0 value(c. O.7046) and a higher l43Nd/144Nd ratio (Nd + c. 0.51274)than that for low-Ti basalts enriched in incompatible elements(Group A: northern and part of central Parana), namely R0 c.O.7059 and Nd+ c. 0.51242. These Sr-isotopic differences alsoapply to the northern (incompatible-element rich, R0 c. O.7053)and southern (incompatible-element poor R0 c. 0.7046) basaltprovinces of Karoo, suggesting that both Parana and Karoo basaltmagmas, differing by about 70 m.y. in age, probably originatedin a similar batch of subcontinental lithospheric mantle inpredrift times (cf. Cox, 1986). The extension of the Dupal Sr-anomaly (i.e. Rio Grande Rise+ Wai vis Ridge + Gough and Tristan da Cunha islands: Sr = 46=53;Hart, 1984) inside the Brazilian continent (Sr = 46–59)suggests that the lithospheric mantle of the Parana (and Karoo)provinces was possibly also the local source of oceanic volcanismup to advanced stages of the opening of the South Atlantic. *Reprint requests to E. M. Piccirillo.  相似文献   

13.
The Tertiary to Recent basalts of Victoria and Tasmania havemineralogical and major element characteristics of magmas encompassingthe range from quartz tholeiites to olivine melilitites. Abundancesof trace elements such as incompatible elements, including therare earth elements (REE), and the compatible elements Ni, Coand Sc, vary systematically through this compositional spectrum.On the basis of included mantle xenoliths, appropriate 100 Mg/Mg+ Fe+2 (68–72) and high Ni contents many of these basaltsrepresent primary magmas (i.e., unmodified partial melts ofmantle peridotite). For fractionated basalts we have derivedmodel primary magma compositions by estimating the compositionalchanges caused by fractional crystallization of olivine andpyroxene at low or moderate pressure. A pyrolite model mantlecomposition has been used to establish and evaluate partialmelting models for these primary magmas. By definition and experimentaltesting the specific pyrolite composition yields parental olivinetholeiite magma similar to that of KilaeauIki, Hawaii (1959–60)and residual harzburgite by 33 per cent melting. It is shownthat a source pyrolite composition differing only in having0.3–0.4 per cent TiO2 rather than 0.7 per cent TiO2, isable to yield the spectrum of primary basalts for the Victorian-Tasmanianprovince by 4 per cent to 25 per cent partial melting. The mineralogiesof residual peridotites are consistent with known liquidus phaserelationships of the primary magmas at high pressures and thechemical compositions of residual peridotite are similar tonatural depleted or refractory lherzolites and harzburgites.For low degrees of melting the nature of the liquid and of theresidual peridotite are sensitively dependent on the contentof H2O, CO2 and the CO2/H2O in the source pyrolite. The melting models have been tested for their ability to accountfor the minor and trace element, particularly the distinctivelyfractionated REE, contents of the primary magmas. A single sourcepyrolite composition can yield the observed minor and traceelement abundances (within at most a factor of 2 and commonlymuch closer) for olivine melilitite (4–6 per cent melt),olivine nephelinite, basanite (5–7 per cent melt), alkaliolivine basalt (11–15 per cent melt), olivine basalt andolivine tholeiite (20–25 per cent melt) provided thatthe source pyrolite was already enriched in strongly incompatibleelements (Ba, Sr, Th, U, LREE) at 6–9 x chondritic abundancesand less enriched (2.5–3 x chondrites) in moderately incompatible(Ti, Zr, Hf, Y, HREE) prior to the partial melting event. Thesources regions for S.E. Australian basalts are similar to thosefor oceanic island basalts (Hawaii, Comores, Iceland, Azores)or for continental and rift-valley basaltic provinces and verydifferent in trace element abundances from the model sourceregions for most mid-ocean ridge basalts. We infer that thismantle heterogeneity has resulted from migration within theupper mantle (LVZ or below the LVZ) of a melt or fluid (H2O,CO2-enriched) with incompatible element concentrations similarto those of olivine melilitite, kimberlite or carbonatite. Asa result of this migration, some mantle regions are enrichedin incompatible elements and other areas are depleted. Although it is possible, within the general framework of a lherzolitesource composition, to derive the basanites, olivine nephelinitesand olivine melilitites from a source rock with chondritic relativeREE abundances at 2–5 x chondritic levels, these modelsrequire extremely small degrees of melting (0.4 per cent forolivine melilitite to 1 per cent for basanite). Furthermore,it is not possible to derive the olivine tholeiite magmas fromsource regions with chondritic relative REE abundances withoutconflicting with major element and experimental petrology argumentsrequiring high degrees (15 per cent) of melting and the absenceof residual garnet. If these arguments are disregarded, andpartial melting models are constrained to source regions withchondritic relative REE abundances, then magmas from olivinemelilitites to olivine tholeiites can be modelled if degreesof melting are sufficiently small, e.g., 7 per cent meltingfor olivine tholeiite. However, the source regions must be heterogenousfrom 1 to 5 x chondritic in absolute REE abundances and heterogerieousin other trace elements as well. This model is rejected in favorof the model requiring variation in degree of melting from 4per cent to 25 per cent and mantle source regions ranging fromLREE-enriched to LREE-depleted relative to chondritic REE abundances.  相似文献   

14.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2 = 43.7–45.7 wt.per cent, A12O3 = 1.6O–8.21 wt. per cent, CaO = 0.70–8.12wt. per cent, alk = 0.10–0.90 wt. per cent and Mg/(Mg+Fe2+)= 0.94–0.85) have been investigated in the hypersolidusregion from 800? to 1250?C with variable activities of H2O,CO2, and H2. The vapor-saturated peridotite solidi are 50–200?Cbelow those previously published. The temperature of the beginningof melting of peridotite decreases markedly with decreasingMg/(Mg+SFe) of the starting material at constant CaO/Al2O3.Conversely, lowering CaO/Al2O3 reduces the temperature at constantMg/(Mg+Fe) of the starting material. Temperature differencesbetween the solidi up to 200?C are observed. All solidi displaya temperature minimum reflecting the appearance of garnet. Thisminimum shifts to lower pressure with decreasing Mg/(Mg + Fe)of the starting material. The temperature of the beginning ofmelting decreases isobarically as approximately a linear functionof the mol fraction of H2O in the vapor (XH2Ov). The data alsoshow that some CO2 may dissolve in silicate melts formed bypartial melting of peridotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or co-exist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aHjo conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. Itis suggested that komatiite in Precambrian terrane could formby direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of XH2Ov = 0.5–0.25 (XCO2v= 0.5–0.75). Such activities of H2O result in meltingat depths ranging between 125 and 175 km in the mantle. Thisrange is within the minimum depth generally accepted for theformation of kimberlite.  相似文献   

15.
The biotite isograd in pelitic schists of the Waterville Formationinvolved reaction of muscovite + ankerite + rutile + pyrite+graphite + siderite or calcite to form biotite + plagioclase+ ilmenite. There was no single reaction in all pelites; eachrock experienced a unique reaction depending on the mineralogyand proportions of minerals in the chlorite-zone equivalentfrom which it evolved. Quartz, chlorite, and pyrrhotite werereactants in some rocks and products in others. All inferredbiotite-forming reactions involved decarbonation and desulfidation;some were dehydration reactions and others were hydration reactions.P-T conditions at the biotite isograd were near 3500 bars and400 °C. C-O-H-S fluids in equilibrium with the pelitic rockswere close to binary CO2-H2O mixtures with XCO2 = 0.02–0.04.During the biotite-forming reaction, pelitic rocks (a) decreasedby 2–5 percent in volume, (b) performed – (4–11)kcal/liter P-V work on their surroundings, (c) absorbed 38–85kcal/liter heat from their surroundings, and (d) were infiltratedby at least 0.9–2.2 rock volumes H2O fluid. The biotite isograd sharply marks the limit of a decarbonationfront that passed through the terrane during regional metamorphism.Decarbonation converted meta-shales with 6–10 per centcarbonate to carbonate-free pelitic schists. One essential causeof the decarbonation event was pervasive infiltration of theterrane by at least 1–2 rock volumes H2O fluid early inthe metamorphic event under P-T conditions of the biotite isograd.Average shale contains 4–13 per cent siderite, ankerite,and/or calcite, but average pelitic schist is devoid of carbonateminerals. If the Waterville Formation serves as a general modelfor the metamorphism of pelitic rocks, it is likely that worldwidemany pelitic schists developed by decarbonation of shale caused,in part, by pervasive infiltration of metamorphic terranes byseveral rock volumes of aqueous fluid during an early stageof the metamorphic event.  相似文献   

16.
The Younger Andesites and Dacites of Iztacc?huatl volcano, Mexico,constitute a medium-K calcalkaline rock suite (58–66 wt.per cent SiO2) characterized by high Mg-numbers (100Mg/(Mg+0?85Fe2+=55–66) and relatively high abundances of MgO (2?5–6?6wt. per cent), Ni(17–158 p.p.m.), and Cr (42–224p.p.m.). Chemical stratigraphy plots of eruptive sequences indicatethe existence of a plexus of long-lived dacite magma chambersperiodically replenished by influxes of basaltic magma ascendingfrom depth. Short-term geochemical evolution after batch influxwas dictated by magma mixing and eventual dilution of the basalticcomponent by ‘quasi-steady state’ hornblende dacitemagma. The chemical data support textural and mineralogicalevidence for rapid homogenization of originally diverse magmasby convective blending of residual liquids accompanied by dynamicfractional crystallization (Nixon, 1988). Internally-consistent mixing calculations used to derive thecomposition of basaltic magma influx incorporate analyticaluncertainties and the observed range of salic end-member compositions.Mafic end-members are basalts to basaltic andesites (52–54wt. per cent SiO2) with Mg-numbers (73–76), MgO (9–11wt. per cent), Ni (250 p.p.m.), and Cr (340–510 p.p.m.)concentrations, and liquidus olivine compositions (Fo90–88),appropriate for unfractionated partial melts of mantle peridotite.The majority of model compositions are Ol-Hy-normative, similarto those of primitive basaltic lavas on the flanks of Iztacc?huatland in the Valley of Mexico. However, calculated magma batchesrange from weakly Qz-normative to strongly Ne-normative. Bothcalculated and analyzed basaltic compositions are distinguishedby highly variable abundances of alkalies and incompatible traceelements, notably Rb, Ba, Sr, P, Zr, and Y. Initial 87Sr/86Sr ratios for Iztacc?huatl lavas (0?7040–0?7046;n=24) are comparable to those for primitive basaltic rocks (0?7037–0?7045;?=4) and indicate that (1) mantle source regions are isotopicallyheterogeneous; and (2) contamination of iztacc?huatl magma chambersby radiogenic crustal rocks was not a significant factor inthe evolution of calc-alkaline andesites and dacites. The replenishment of Iztacc?huatl dacite reservoirs by Ne-normativemagmas late in the history of cone growth precludes exhaustionof mantle source regions by progressive partial melting. Thewaning stages of volcanic activity at Iztacc?huatl appear toreflect the inability of dense basaltic influxes to successfullypenetrate a large high-level chamber of low density hornblendedacite magma.  相似文献   

17.
We have conducted experiments on dissolution of quartz, albite,orthoclase, and corundum into H2O-saturated haplogranite meltat 800°C and 200 MPa over a duration of 120–1488 hwith the aim of ascertaining the diffusive transport propertiesof granitic melts at crustal anatectic temperatures. Cylindersof anhydrous starting glass and a single mineral phase (quartzor feldspar) were juxtaposed along flat and polished surfacesinside gold or platinum capsules with 10 wt % added H2O. Concentrationprofiles in glass (quenched melt) perpendicular to the mineral–glassinterfaces and comparison with relevant phase diagrams suggestthat melts at the interface are saturated in the dissolvingphases after 384 h, and with longer durations the concentrationprofiles are controlled only by diffusion of components in themelt. The evolution of the concentration profiles with timeindicates that uncoupled diffusion in the melt takes place alongthe following four linearly independent directions in oxidecomposition space: SiO2, Na2O, and K2O axes (Si-, Na-, and K-eigenvectors,respectively), and a direction between the Al2O3, Na2O, andK2O axes (Al-eigenvector), such that the Al/Na molar ratio isequal to that of the bulk melt and the Al/(Na + K) molar ratiois equal to the equilibrium ASI (= mol. Al2O3/[Na2O + K2O])of the melt. Experiments in which a glass cylinder was sandwichedbetween two mineral cylinders—quartz and albite, quartzand K-feldspar, or albite and corundum—tested the validityof the inferred directions of uncoupled diffusion and exploredlong-range chemical communication in the melt via chemical potentialgradients. The application of available solutions to the diffusionequations for the experimental quartz and feldspar dissolutiondata provides diffusivities along the directions of the Si-eigenvectorand Al-eigenvector of (2·0–2·8) x 10–15m2/s and (0·6–2·4) x 10–14 m2/s, respectively.Minimum diffusivities of alkalis [(3–9) x 10–11m2/s] are orders of magnitude greater than the tetrahedral componentsof the melt. The information provided here determines the rateat which crustal anatexis can occur when sufficient heat issupplied and diffusion is the only mass transport (mixing) processin the melt. The calculated diffusivities imply that a quartzo-feldspathicsource rock with initial grain size of 2–3 mm undergoinghydrostatic, H2O-saturated melting at 800°C (infinite heatsupply) could produce 20–30 vol. % of homogeneous meltin less than 1–10 years. Slower diffusion in H2O-undersaturatedmelts will increase this time frame. KEY WORDS: chemical diffusion; haplogranite; mineral dissolution experiments; crustal anatexis  相似文献   

18.
Electron probe analysis of isotropic to weakly birefringentglassy inclusions in apatite crystals within the Usaki ijoliteof western Kenya, indicates that two contrasting compositionsexist. These inclusions are thought to represent samples oforiginal silicate melts. One is rich in K2O(6 weight per cent),poor in Na2O(0.3 weight per cent), and oversaturated with respectto silica; and the other is rich in Na2O(6–14 weight percent), poor in K2O(0.2 weight per cent), has an antipatheticrelation between Na2O and CaO (together they usually total 15weight per cent) and is undersaturated with respect to silica.One inclusion shows these two compositions co-existing, apparentlyin an immiscible relationship. Other inclusions show compositionsintermediate between the Na-rich and K-rich types, and theyare interpreted as the result of reduced immiscibility. Thepresence of halides and calcium phosphate is considered to enhancethe immiscibility process. The parental composition, estimatedon a volatile-free basis is: SiO2 54.9, Al2O3, 27.4, CaO 7.3,Na2O 3.4, K2O 6.9, which corresponds to a lime-rich aluminoussyenite.  相似文献   

19.
Within the Zitácuaro–Valle de Bravo (ZVB) regionof the central Mexican Volcanic Belt (MVB), three lava serieshave erupted during the Quaternary: (1) high-K2O basaltic andesitesand andesites; (2) medium-K2O basaltic andesites, andesitesand dacites; (3) high-TiO2 basalts and basaltic andesites. Thedominant feature of the first two groups is the lack of plagioclaseaccompanying the various ferromagnesian phenocrysts (olivine,orthopyroxene, augite, and hornblende) in all but the dacites.This absence of plagioclase in the phenocryst assemblages ofthe high-K2O and medium-K2O intermediate lavas is significantbecause it indicates high water contents during the stage ofphenocryst equilibration. In contrast, the high-TiO2 group ischaracterized by phenocrysts of plagioclase and olivine. Thespatial distribution of these three lava series is systematic.The southern section of the ZVB transect, 280–330 km fromthe Middle America Trench (MAT), is characterized by high-K2Omelts that are relatively enriched in fluid-mobile elementsand have the highest 87Sr/86Sr ratios. Medium-K2O basaltic andesiteand andesite lavas are present throughout the transect, butthose closest to the MAT are MgO-rich (3·5–9·4wt %) and have phenocryst assemblages indicative of high magmaticwater contents (3·5–6·5 wt % water) andrelatively low temperatures (950–1000°C). In markedcontrast, the northern section of the ZVB transect (380–480km from the MAT) has high-TiO2, high field strength element(HFSE)-enriched magmas that have comparatively dry (< 1·5wt % magmatic water) and hot (1100–1200°C) phenocrystequilibration conditions. The central section of the ZVB transect(330–380 km from the MAT) is a transition zone and producesmoderately light rare earth element (LREE) and large ion lithophileelement (LILE)-enriched, medium-K2O lavas with phenocryst assemblagesindicative of intermediate (1·5–3·5 wt %)water contents and temperatures. The high-K2O series compositionsare the most enriched in LILE and LREE, with a narrow rangeof radiogenic 87Sr/86Sr from 0·704245 to 0·704507,143Nd/144Nd values ranging from 0·512857 to 0·512927(Nd = 4·27–5·63), and 208Pb/204Pb valuesfrom 38·248 to 38·442, 207Pb/204Pb values from15·563 to 15·585, and 206Pb/204Pb values from18·598 to 18·688. The medium-K2O series compositionsare only moderately enriched in the LILE and LREE, with a broaderrange of 87Sr/86Sr, but similar 143Nd/144Nd and 208Pb/204Pbvalues to those of the high-K2O series. In contrast, the high-TiO2series compositions have little enrichment in LILE or LREE andinstead are enriched in the HFSE and heavy rare earth elements(HREE). The high-TiO2 lavas are isotopically distinct in theirlower and narrower range of 143Nd/144Nd. The isotopic variationsare believed to reflect the upper mantle magma source regionsas the low content of phenocrysts in most lavas precludes significantupper crustal assimilation or magma mixing, other than thatrepresented by the presence of quartz xenocrysts (< 2 vol.%) with rhyolitic glass inclusions, which are found in manyof these lavas. The systematic spatial variation in compositionof the three lava series is a reflection of the underlying subduction-modifiedmantle and its evolution. KEY WORDS: central Mexico; geochemistry; isotopes; Quaternary volcanism; hydrous lavas  相似文献   

20.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号