首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
1Bit极性重合相关器的研究   总被引:2,自引:0,他引:2  
介绍一种应用于水声系统的接收电路:1Bit极性重合相关器。由于水下信号传输系统存在着:通道之间的频率间隔小、易受噪声干扰、用电池供电而要求长时间工作等问题,相应地,接受电路就必须具有窄带滤波能力,抗噪声性能良好,并且功耗极低。而普通的模拟滤波器或数字滤波器无法全面地满足这些要求。1Bit极性重合相关器极好地解决了这个问题,它不仅满足上述要求,而且有着结构简单、体积小、性能稳定等优点。作为水下信号传输系统的重要环节,1Bit极性重合相关器运行非常准确而且可靠,值得在水声系统中推广。  相似文献   

2.
《Marine Geodesy》2013,36(3-4):399-421
The Jason-1 radar altimeter satellite, launched on December 7, 2001 is the follow on to the highly successful TOPEX/Poseidon (T/P) mission and will continue the time series of centimeter level ocean topography measurements. Orbit error is a major component in the overall error budget of all altimeter satellite missions. Jason-1 is no exception and has set a 1-cm radial orbit accuracy goal, which represents a factor of two improvement over what is currently being achieved for T/P. The challenge to precision orbit determination (POD) is both achieving the 1-cm radial orbit accuracy and evaluating the performance of the 1-cm orbit. There is reason to hope such an improvement is possible. The early years of T/P showed that GPS tracking data collected by an on-board receiver holds great promise for precise orbit determination. In the years following the T/P launch there have been several enhancements to GPS, improving its POD capability. In addition, Jason-1 carries aboard an enhanced GPS receiver and significantly improved SLR and DORIS tracking systems along with the altimeter itself. In this article we demonstrate the 1-cm radial orbit accuracy goal has been achieved using GPS data alone in a reduced dynamic solution. It is also shown that adding SLR data to the GPS-based solutions improves the orbits even further. In order to assess the performance of these orbits it is necessary to process all of the available tracking data (GPS, SLR, DORIS, and altimeter crossover differences) as either dependent or independent of the orbit solutions. It was also necessary to compute orbit solutions using various combinations of the four available tracking data in order to independently assess the orbit performance. Towards this end, we have greatly improved orbits determined solely from SLR+DORIS data by applying the reduced dynamic solution strategy. In addition, we have computed reduced dynamic orbits based on SLR, DORIS, and crossover data that are a significant improvement over the SLR- and DORIS-based dynamic solutions. These solutions provide the best performing orbits for independent validation of the GPS-based reduced dynamic orbits. The application of the 1-cm orbit will significantly improve the resolution of the altimeter measurement, making possible further strides in radar altimeter remote sensing.  相似文献   

3.
The Jason-1 radar altimeter satellite, launched on December 7, 2001 is the follow on to the highly successful TOPEX/Poseidon (T/P) mission and will continue the time series of centimeter level ocean topography measurements. Orbit error is a major component in the overall error budget of all altimeter satellite missions. Jason-1 is no exception and has set a 1-cm radial orbit accuracy goal, which represents a factor of two improvement over what is currently being achieved for T/P. The challenge to precision orbit determination (POD) is both achieving the 1-cm radial orbit accuracy and evaluating the performance of the 1-cm orbit. There is reason to hope such an improvement is possible. The early years of T/P showed that GPS tracking data collected by an on-board receiver holds great promise for precise orbit determination. In the years following the T/P launch there have been several enhancements to GPS, improving its POD capability. In addition, Jason-1 carries aboard an enhanced GPS receiver and significantly improved SLR and DORIS tracking systems along with the altimeter itself. In this article we demonstrate the 1-cm radial orbit accuracy goal has been achieved using GPS data alone in a reduced dynamic solution. It is also shown that adding SLR data to the GPS-based solutions improves the orbits even further. In order to assess the performance of these orbits it is necessary to process all of the available tracking data (GPS, SLR, DORIS, and altimeter crossover differences) as either dependent or independent of the orbit solutions. It was also necessary to compute orbit solutions using various combinations of the four available tracking data in order to independently assess the orbit performance. Towards this end, we have greatly improved orbits determined solely from SLR+DORIS data by applying the reduced dynamic solution strategy. In addition, we have computed reduced dynamic orbits based on SLR, DORIS, and crossover data that are a significant improvement over the SLR- and DORIS-based dynamic solutions. These solutions provide the best performing orbits for independent validation of the GPS-based reduced dynamic orbits. The application of the 1-cm orbit will significantly improve the resolution of the altimeter measurement, making possible further strides in radar altimeter remote sensing.  相似文献   

4.
The Texaco Harvest Oil Platform Experiment took place August 22–28, 1990, off Point Conception, California. This platform has been designated as the NASA/JPL verification site for the TOPEX radar altimeter, which is to be launched in mid‐1992. The purpose of the experiment was to obtain measurements from GPS and other instrumentation that will be used at the site for the verification activities, and to determine the potential effects of the platform environment on the quality of the measurements. In conjunction with this experiment, a buoy equipped with a GPS receiver was floated in the vicinity of the platform for the purpose of measuring sea‐level change and waves relative to a reference receiver located on the platform. A pressure transducer installed at the site also provided sea‐level change and wave measurements relative to the platform. We present the data collection, processing, and analysis results comparing the GPS‐buoy and pressure transducer data. The GPS‐determined sea‐surface height measurements show 1.3‐cm agreement when compared with transducer‐determined heights taken over the same period of time. Low‐rate (15‐s) data were used to measure the change in sea‐level height due to tides, while high‐rate (1‐s) measurements provided temporal resolution sufficient for determining wave spectra.  相似文献   

5.
The 60-Hz electromagnetic fields in the Atlantic Ocean off Montauk Point, NY, and from Block Island Sound to the harbor in New London, CT, have been measured to determine the levels of interference to an extremely low frequency (ELF) receiver. Such data are needed to specify how close to the coastline an ELF receiver can come before 60-Hz external interference will degrade system performance. The data indicate that degradation to the ELF receiver from 60-Hz external interference will not occur offshore, but may occur within the confines of New London Harbor.  相似文献   

6.
倪煜淮 《海洋测绘》2009,29(5):19-21
GPS接收信号中的噪声干扰一直以来都是研究人员想方设法消除的不利因素,但在某些非线性系统中,噪声的存在却能够提高信号的检测性能,利用Langevin方程构建的非线性随机共振系统对GPS接收信号进行消噪处理,经过对仿真信号的验证,消噪效果明显,将在GPS接收信号消噪领域得到很好的应用。  相似文献   

7.
Open coast storm surge water levels consist of wind setup due to wind shear at the water surface; a wave setup component caused by wind induced waves transferring momentum to the water column; an atmospheric pressure head component due to the atmospheric pressure deficit over the spatial extent of the storm system; a Coriolis forced setup or setdown component due to the effects of the rotation of the earth acting on the wind driven alongshore current at the coast; a possible seiche component due to resonance effects initiated by moving wind system, and, if astronomical tides are present, an astronomical tide component (although the tide is typically considered to be a forced astronomical event and not really a direct part of the external wind-driven meteorological component of storm surge). Typically the most important component of a storm surge is the wind setup component, especially on the U.S. East Coast and the Gulf of Mexico shorelines. In many approaches to storm surge modeling, a constant depth approximation is invoked over a limited step size in the computational domain. The use of a constant depth approximation has received little attention in the literature although can be very important to the resulting magnitude of the computed storm surge. The importance of discrete step size to the wind setup storm surge component is considered herein with a simple case computation of the wind setup component on a linear slope offshore profile. The present study findings show that the constant depth approximation to wind setup storm surge estimation is biased on the low side (except in extremely shallow water depths) and can provide large errors if discrete step size is not sufficiently resolved. Guidance has been provided on the error that one might encounter for various step sizes on different slopes.  相似文献   

8.
The hydrostatic pressure limit that a receiver can withstand without failure is of major importance in underwater sonar systems. In this paper, the hydrostatic pressure tolerance and sensitivity of cymbal receivers were investigated. The failure mode in cymbal transducers under hydrostatic pressure is described. Effects of cavity geometry and material selection on hydrostatic piezoelectric coefficients and pressure limits were evaluated using both experimental data and finite-element analysis (FEA). It was found that cavity depth has a very strong effect on the stability of underwater sensitivity and pressure tolerance of these devices. Cymbals made with soft piezoelectric transducers (PZTs) possess higher figures of merit and better pressure tolerance than those made with hard PZTs. Alternatively, the cymbal sensitivity and pressure tolerance can be improved by changing the cap material.  相似文献   

9.
对当前典型的水下无线通信网进行分析,针对水声、光、射频3种通信模式在水下无线通信中的优缺点,提出基于软件无线电技术的多模式自适应水下无线通信网络的概念及其框架结构,并对其中的自适应调制解调方式展开研究.结合MAC层协议,提出一种跨层的自适应调制解调解决方案,即通过收发双方的握手信息携带当前信道状态,由发射方根据握手信息,判断双方通信距离,预计信道未来状态,结合需要传输的数据量,自适应选择合适的通信模式和调制方式,并利用握手信号通知接收方,从而实现在通信网络范围内数据或指令的快速可靠传输.  相似文献   

10.
G. Najafian   《Ocean Engineering》2007,34(7):987-999
According to linear random wave theory, water particle kinematics at different nodes of an offshore structure form a set of correlated jointly Gaussian random variables. Thus, using principal component analysis, all the foregoing kinematics can be expressed as linear combinations of a few independent Gaussian random variables. This technique can be used to generate statistically independent hydrodynamic load and response values, as opposed to time simulation technique that leads to correlated response values. The sampling variability of the statistics generated from a set of independent data points is considerably smaller than that of a set (of the same size) of correlated values. Therefore, a much smaller number of simulated data points are necessary for accurate prediction of the statistical properties of response. Furthermore, simulating N data points by principal component technique (PCT) has proved to be at least two times faster than simulating the same number of data points by the time simulation technique (TST). As a result, PCT is considerably more efficient (about 25 times) than TST. The forgoing conclusions have been verified by applying both techniques to two test structures under different environmental conditions.  相似文献   

11.
We describe recent mechanical andeelectronic modifications to the Cambridge Ocean Bottom Hydrophone system, enabling it to record in addition three geophone channels from a deployed, disposable geophone package. Examples of data from seismic refraction experiments show good correspondence between records of ground motion detected by the hydrophone and the vertical geophone. Seismic signals are undistorted by noise from instrument related sources. Clear examples of P to S conversions just below the receiver are observed. Improved recording conditions are achieved by deploying the geophones in a small pressure vessel as far away as possible from the main instrument package.  相似文献   

12.
13.
在进行浅海过渡带地震资料采集时,需要将电缆和检波器沉放到海底,由于洋流、潮汐等因素的影响会使检波点的实际位置与预设位置不同,从而严重影响了后续的地震资料处理工作,因此需要对检波点进行二次定位。在海底检波点二次定位中,炮点位置已知而检波点位置未知,需要从多个炮点位置正向外推波场,使波场逐步延拓到检波点,以此来获得检波点的位置。具体实现是在海底划分网格应用克希霍夫积分法外推渡场,获得网格点的能量值,能量最高的网格点便是检波点的位置。在划分网格时需要先粗分网格,求得网格点能量值,然后在能量高的网格点区域重新细分网格,通过细分网格点的能量值来确定出检波点位置。在检波点二次定位中利用的主要是直达波的波场信息,在预处理时,需要突出直达波压制干扰波。基于波动方程的检波点二次定位在模拟和实际地震资料处理中都得到了良好的效果,验证了这种方法的可行性。  相似文献   

14.
由于海洋内部环境复杂多变,加之渔业捕捞作业范围和深度的逐步扩大,对水下监测平台的安全构成了极大威胁。而且,在水下平台的海上回收作业过程中,恶劣海况、海雾、海面光反射等不利因素无不给回收过程造成很大麻烦,一旦平台浮出海面后漂出视距范围,将面临丢失风险。文中借助北斗定位导航系统,结合压力检测电路,设计并实现了一种可用于水下平台意外出水报警、出水后实时定位的卫星定位信标机系统,经多次应用,证明性能稳定可靠。  相似文献   

15.
The authors describe an integrated hardware and software approach used to provide real-time acquisition and display of vector measuring current meter (VMCM) data at high sample rates (0.5 Hz) with supporting data from other instruments of somewhat slower rates. The hardware component consisted of a new circuit board for the VMCM that captured the VMCM data output, stored it, and transmitted it at high speed in response to a request from the data acquisition computer. The data acquisition software ran on a Masscomp 5600 computer under the UNIX operating system. A central control program provided timing information to several software processes that handled serial data acquisition, display, and storage for one or more instruments. Deployed as a part of the Surface Waves Processes Program (SWAPP) experiment, the integrated data acquisition system successfully collected, processed, stored, and displayed data from 19 VMCMs and four other instruments over a 22-day period in February and March of 1990  相似文献   

16.
文章简要介绍了浅海声传播损失的研究背景和基本理论方法。通过1/3倍频程滤波对浅海爆炸宽带信号的不同频段在浅海的传播损失情况进行了分析,描述了浅海环境对声传播损失的影响;同时在不知道先验信息的条件下,利用垂直阵声压数据成功地进行了简正波分离,并与理想条件下Kraken简正波模型计算出的结果进行了比较分析。  相似文献   

17.
Short acoustical signals like those caused by explosions will in a waveguide split into mode arrivals. If the distance is long enough, they can at the receiver be resolved in time with appropriate narrowband filters. They can simultaneously be resolved in vertical angle (incidence-) with an endfire array and a beamformer. Combined in a beam-time diagram the arrivals will line up along a straight line. The slope of this line is invariant with frequency, mode indexes, source and receiver depths. It can conveniently be linked to the so-called waveguide invariant /spl beta/. An alternative approach to /spl beta/ is to compute it from the bathymetric profile. This is valid for range variable waveguides under adiabatic conditions, constant water sound speed over a harder bottom, and small grazing angles. Together these two approaches to /spl beta/ can be combined in a formula, where direct range determination is the end product. The applicability of the method is demonstrated on data from an experiment at sea. An 820-m array with 10 hydrophones was deployed at the bottom in 320-m water depth. For two endfire runs in opposite directions, small explosive charges out to 115 km were used as sound sources. Typical range estimation errors were 5-10%.  相似文献   

18.
In this paper, we describe a high-frequency (HF) radar capable of multifrequency operation over the HF band for dual-use application to ship classification and mapping ocean current shear and vector winds. The radar is based on a digital transceiver peripheral component interconnect (PCI) card family that supports antenna arrays of four to 32 elements with a single computer, with larger arrays possible using multiple computers and receiver cards. The radar makes use of broadband loop antennas for receive elements, and a number of different possibilities for transmit antennas, depending on the operating bandwidth desired. An option exists in the choice of monostatic or multistatic operation, the latter providing the ability to use several transmit sites, with all radar echo signal reception and processing conducted at a single master receiver site. As applications for such a multifrequency radar capability, we show measurement and modeling examples of multiple frequency HF radar cross section (RCS) of ships as an approach to ship target classification. Results of using 32 radar frequencies to measure the fine structure in ocean current vertical shear are also shown, providing evidence of one edge of a 1-3-m deep uniform flow masked at the surface by wind-driven current shear in a different direction. Other applications of current-shear measurements, such as vector wind mapping and volumetric current estimation in coastal waters, are also discussed  相似文献   

19.
Covert communications between underwater and aerial platforms would increase the flexibility of surface and air vehicles engaged in undersea warfare by providing a new netcentric warfare communications capability and could have a variety of commercial and oceanographic applications. Research into an acousto-optic sensor shows promise as a means for detecting acoustic data projected toward the water surface from a submerged platform. The laser-based sensor probes the water surface to detect perturbations caused by an impinging acoustic pressure field. Experimental studies were conducted to demonstrate acousto-optic sensor feasibility for obtaining accurate phase preserved recordings of communication signals across the air-water interface. The recorded surface velocity signals were transferred to an acoustic communications receiver that used conventional acoustic telemetry algorithms such as adaptive equalization to decode the signal. The detected, equalized, and decoded bit error rate performance is presented for hydrostatic and more realistic, hydrodynamic water surface conditions.  相似文献   

20.
In October 1997, the EnVerse 97 shallow-water acoustic experiments were jointly conducted by SACLANT Centre, TNO-FEL, and DERA off the coast of Sicily, Italy. The primary goal of the experiments was to determine the sea-bed properties through inversion of acoustic data. Using a towed source, the inversion method is tested at different source/receiver separations in an area with a range-dependent bottom. The sources transmitted over a broadband of frequencies (90-600 Hz) and the signals were measured on a vertical array of hydrophones. The acoustic data were continuously collected as the range between the source and receiving array varied from 0.5 to 6 km. An extensive seismic survey was conducted along the track providing supporting information about the layered structure of the bottom as well as layer compressional sound speeds. The oceanic conditions were assessed using current meters, satellite remote sensing, wave height measurements, and casts for determining conductivity and temperature as a function of water depth. Geoacoustic inversion results taken at different source/receiver ranges show sea-bed properties consistent with the range-dependent features observed in the seismic survey data. These results indicate that shallow-water bottom properties may be estimated over large areas using a towed source fixed receiver configuration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号