首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为探讨内蒙古温都尔庙蛇绿岩的岩石学特征、矿物学特征及其成矿意义,通过镜下岩矿鉴定、XRD分析以及扫描电镜等方法对其进行了研究。结果显示,研究区原岩可分为4类:变质橄榄岩、镁铁质-超镁铁质堆晶杂岩单元、火山熔岩单元和上覆岩系的硅质岩;岩石遭受了强烈低温热液蚀变或自变质热液蚀变;橄榄石、辉石、角闪石、斜长石等为主要的造岩矿物,次生矿物为低温热液蚀变矿物;叶蛇纹石、利蛇纹石、纤蛇纹石3种蛇纹石在变质橄榄岩中普遍存在,是橄榄石和辉石的蚀变产物。  相似文献   

2.
蛇纹石化橄榄岩是温都尔庙蛇绿岩套中最为重要的岩石类型,主要矿物组合为蛇纹石+碳酸盐矿物+磁铁矿+滑石。富SiO_2流体的加入,促使岩石进一步发生蛇纹石化作用而缺失水镁石。穆斯堡尔谱测量揭示了铁元素化学种的分布特征,蛇纹石化程度与氧化-还原特征的相关性。蛇纹石化橄榄岩含铁总量和Fe~(3+)的分布与磁铁矿和蛇纹石密切相关,Fe~(3+)以分布于蛇纹石中占优势。这对正确估算蛇纹石化过程中H_2的生成量有十分重要的意义,对估算俯冲带Fe~(3+)输入和评估原生地幔岩的蛇纹石化作用有重要参考价值。  相似文献   

3.
蛇纹石化是海底最重要的水岩相互作用之一,指基性岩和超基性岩中的橄榄石和辉石等镁铁质矿物在相对低温条件下发生水热蚀变产生蛇纹石等矿物的热液变质作用。蛇纹石族矿物主要有三种,分别是利蛇纹石、纤蛇纹石和叶蛇纹石。低温状态蛇纹石族矿物主要以利蛇纹石和纤蛇纹石的形式存在,高温状态下主要以叶蛇纹石的形式存在。影响大洋蛇纹石化过程的因素不容忽视,温度、氧化还原程度、pH值、水岩比(W/R)等都在其中扮演着重要的角色。总的来说,地幔物质易出露在地壳减薄区域和断裂构造处,这有利于与流体充分接触反应,从而决定了大洋蛇纹石化作用发生的可能位置。对蛇纹石化程度的描述,当前人们大多通过岩石微观结构、地球化学指标来定性指示,磁学指标有望实现对蛇纹石化程度的定量解释。蛇纹石化作用对海底磁异常、地球生命演化进程、成矿作用等都有一定的贡献。此外,俯冲带脱水及弧岩浆的形成都与之有联系。总之,基性与超基性岩石蛇纹石化与俯冲带蛇纹岩脱水过程是地球水循环过程的重要机制,但未来揭示蛇纹岩的磁学性质和俯冲变质过程,仍需进一步探索。  相似文献   

4.
橄榄岩蛇纹石化过程中氢气和烷烃的形成   总被引:1,自引:1,他引:0  
蛇纹石化过程中形成氢气、烷烃和有机酸,为海底热液区生命活动提供物质和能量来源,可能对地球和其他行星早期生命起源和演化有重要影响。目前关于蛇纹石化过程中氢气和烷烃形成的研究大多以橄榄石为初始物,且温度和压力较低(≤300℃,500bar)。本研究通过一系列的水热实验,研究300~500℃、1~3kbar时橄榄石、斜方辉石、单斜辉石、橄榄岩、玄武岩以及玄武岩与橄榄岩混合物发生蛇纹石化反应后氢气和烷烃的生成。300℃、3kbar时,橄榄石蛇纹石化后产生的氢气远大于辉石蚀变后产生氢气的量。随着温度的增加,400~500℃、3kbar时,橄榄石蚀变程度极低,产生氢气的量低于斜方辉石。单斜辉石实验后没有发生蚀变,不产生氢气和烷烃。400~500℃、3kbar时,橄榄岩蛇纹石化后产生的氢气和烷烃远高于橄榄石、斜方辉石和单斜辉石。玄武岩蛇纹石化后生成氢气和甲烷的量低于橄榄岩,但与玄武岩和橄榄岩混合物相当。这是因为玄武岩的单斜辉石蚀变后形成富铁的透辉石(~8.1%FeO),透辉石的Fe以Fe2+为主,这降低了Fe3+和氢气的量。以上表明,橄榄岩的蛇纹石化不同于橄榄石和斜方辉石。不仅是海底热液蚀变产生氢气和甲烷,洋壳俯冲过程中地幔楔橄榄岩蛇纹石化也会生成氢气和甲烷,但由于洋壳玄武岩的加入,氢气和甲烷的量会远小于橄榄岩蚀变时的量。  相似文献   

5.
超基性岩体(橄榄岩)已经完全蛇纹石化.主要的蛇纹石结构的网状结构,砂钟结构等.渐进蛇纹石化作用的发育对纤蛇纹石石棉的形成是有利的。矿区蛇纹石化的特征之一是叶蛇纹石广泛发育,而且是在石棉主要矿化期中或之前的中温条件下形成的.蛇纹石化过程中,主要元素均显示活动性.部分Si是从相对富Si岩石带入蛇纹岩的.Mg和Al从围岩蛇纹石向蛇纹石脉迁移。Ca和Fe从原生矿物迁出,分别形成碳酸盐矿物和磁铁矿。  相似文献   

6.
蛇纹石猫眼是一种具有猫眼效应的罕见玉石品种。本文主要探讨了蛇纹石猫眼的地质特征,采用光学显微镜对产于四川石棉县的蛇纹石猫眼样品进行了显微结构分析。结果表明:四川蛇纹石猫眼的组成矿物蛇纹石的形态主要有微纤维状和鳞片状。岩石的显微结构主要有微纤维变晶结构、微鳞片变晶结构、交代假象结构和网格状结构,并以前者为主,约占30%。微纤维变晶结构是蛇纹石猫眼形成的主要原因。交代假象结构主要表现为蛇纹石对早期矿物橄榄石和辉石的交代而表现出橄榄石和辉石的假象。交代假象结构和网格状结构的存在证明了蛇纹石猫眼的岩石成因为超基性岩石的蛇纹石化作用。  相似文献   

7.
地幔楔是俯冲带系统的重要组成单元,在地球内部物质循环、壳幔相互作用过程中起着承上启下的关键作用。俯冲板片脱水可以引起上覆地幔楔中橄榄岩类的蛇纹石化,而蛇纹石的波速显著低于地幔橄榄岩,所以不同蛇纹石化程度的地幔楔表现出不同的低速特征。本研究首先利用天然叶蛇纹石热压合成纯的蛇纹岩样品,利用橄榄石和斜方辉石热压合成方辉橄榄岩样品,然后在高压下分别测量合成的方辉橄榄岩和蛇纹岩样品的纵波速度(VP)和横波速度(VS),结合Voigt-Reuss-Hill岩石物理模型计算得到不同蛇纹石含量的方辉橄榄岩的波速,最后结合地震波资料,估算出不同俯冲带地幔楔的蛇纹石化程度。研究表明,在地幔楔蛇纹石化程度和含水量的估算中,必须考虑斜方辉石蛇纹石化的影响。相比前人研究,方辉橄榄岩的蛇纹石化可能更接近于实际情况。  相似文献   

8.
<正>研究的样品橄榄岩发生了非常强烈的蛇纹石化作用,主要蚀变产物为蛇纹石,在后期也发生了碳酸盐化形成碳酸盐矿物。蛇纹石化橄榄岩的主要矿物组合为利蛇纹石和磁铁矿。采用岩石样品分段加热脱气装置,将粉末样品装入石英玻璃管,先加热150℃脱去风化和表面残余有机质的影响,再从200℃~400℃~600℃~800℃~1000℃分段加热,每个温度点恒温40min,分步冷阱脱水和气体高温裂解,并  相似文献   

9.
柴北缘超高压变质带沙柳河蛇绿岩型地幔橄榄岩及其意义   总被引:8,自引:7,他引:8  
本文报道了柴北缘大陆型超高压变质带沙柳河地区发现的蛇绿岩型地幔橄榄岩,其原始矿物组合为橄榄石 斜方辉石 铬铁矿。方辉橄榄岩中识别出两个世代的橄榄石,第一世代橄榄石(OI~1)残晶发育扭折带,化学成分与现代大洋地幔橄榄岩的橄榄石一致,第二世代橄榄石(OI~2)Fo 值高达94~97,其内部含有细小的流体包裹体,是第一世代橄榄石蛇纹石化后再次变质的产物。斜方辉石残晶的成分具有高 Al 和 Ca 的特征,与大洋地幔橄榄岩中斜方辉石的成分一致。温压条件的估算反映该橄榄岩体属于典型的尖晶石相方辉橄榄岩。其围岩是由堆晶辉长岩变质的条带状蓝晶石榴辉岩,二者构成了大洋蛇绿岩套的下部层位,并且与区内具有 N-MORB 和 OIB 性质的榴辉岩共生。这些特征表明该方辉橄榄岩应代表洋壳下伏地幔橄榄岩,从而揭示大陆造山带从早期的大洋俯冲消亡到大陆俯冲碰撞的完整过程。  相似文献   

10.
基性和超基性岩蛇纹石化的机理及成矿潜力   总被引:4,自引:3,他引:1  
黄瑞芳  孙卫东  丁兴  王玉荣 《岩石学报》2013,29(12):4336-4348
蛇纹石化是指基性岩(例如玄武岩)和超基性岩(橄榄岩、科马提岩等)在中、低温条件下产生的含蛇纹石的水热蚀变。蛇纹石化可以出现在不同的地质构造环境中,例如大洋底、扩张洋脊和俯冲带。蛇纹石化的特别之处在于:蛇纹石化过程中产生氢气,这可能解释地球早期生命起源的问题;蛇纹石化生成磁铁矿;蛇纹石富水(可达13%);蛇纹石富Cl、Li、Sr、As等元素。蛇纹石在高温下(>700℃)脱水形成橄榄石,Li、Sr、As等元素富集在流体中,流体交代地幔楔可改变地幔的微量元素组成。此外,铁矿、金矿和银矿等可赋存于蛇纹岩中,矿床的形成可能和基性或超基性岩的蛇纹石化相关。本文从以下4个方面探讨蛇纹石化的机理:(1)蛇纹石化的产物,主要介绍和蛇纹石化相关的热液流体的组成,蛇纹石化过程中产生氢气的量,利蛇纹石、纤蛇纹石和叶蛇纹石的形成条件,水镁石的形成条件,以及磁铁矿的形成;(2)蛇纹石化的反应速率;(3)蛇纹石化过程中元素的迁移;(4)蛇纹石化的成矿潜力。  相似文献   

11.
The Beni Bousera massif forms part of the Sebtide units in the internal Rif Mountain (Morocco). It is mainly composed of mantle peridotites surrounded by crustal metamorphic rocks (kinzigites, micaschists, and schists). The serpentinization affects all of peridotite massif to various degrees. Serpentinization is concentrated at the top of the peridotites, along the mylonitized zone, and in the NE part of the massif. It is manifested by the formation of mesh and hourglass textures along the tectonic foliation in the highly serpentinized peridotites; and brecciated texture in the least serpentinized peridotites. Pyroxene minerals are still intact hosting few serpentine veins. These petrographic features are consistent with the geochemical data, marked by the increasing of LOI and decreasing of MgO and FeO toward the top of the massif and Aaraben fault. The Raman characterization of serpentine with the brecciated mesh and hourglass textures correspond to lizardite type whereas the serpentine with the vein texture is formed by lizardite + chrysotile.  相似文献   

12.
《Comptes Rendus Geoscience》2003,335(10-11):825-852
Serpentinites are an important component of the oceanic crust generated in slow to ultraslow spreading settings. In this context, the MOHO likely corresponds to a hydration boundary, which could match the 500 °C isotherm beneath the ridge axis. Textures from serpentinites sampled in ridge environments demonstrate that most of the serpentinization occurs under static conditions. The typical mineralogical association consists of lizardite ± chrysotile + magnetite ± tremolite ± talc. Despite the widespread occurrence of lizardite, considered as the low temperature serpentine variety, oxygen isotope fractionation suggests that serpentinization starts at high temperature, in the range of 300–500 °C. The fluid responsible for serpentinization is seawater, possibly evolved by interaction with the crust. Compared with fresh peridotites, serpentinites are strongly hydrated (10–15% H2O) and oxidized. Serpentinization, however, does not seem to be accompanied by massive leaching of major elements, implying that it requires a volume increase. It results in an increase in chlorine, boron, fluorine, and sulfur, but its effect on other trace elements remains poorly detailed. The presence of serpentinites in the oceanic crust affects its physical properties, in particular by lowering its density and seismic velocities, and modifying its magnetic and rheological properties. Serpentinization may activate hydrothermal cells and generate methane and hydrogen anomalies which can sustain microbial communities. Two types of hydrothermal field have been identified: the Rainbow type, with high temperature (360 °C) black smokers requiring magmatic heat; the low temperature (40–75 °C) Lost City type, by contrast, can be activated by serpenintization reactions. To cite this article: C. Mével, C. R. Geoscience 335 (2003).  相似文献   

13.
The Lanzo peridotite massif is a fragment of oceanic lithosphere generated in an ocean–continent transition context and eclogitized during alpine collision. Despite the subduction history, the massif has preserved its sedimentary oceanic cover, suggesting that it may have preserved its oceanic structure. It is an exceptional case for studying the evolution of a fragment of the lithosphere from its oceanization to its subduction and then exhumation. We present a field and petrological study retracing the different serpentinization episodes and their impact on the massif structure. The Lanzo massif is composed of slightly serpentinized peridotites (<20% serpentinization) surrounded by an envelope of foliated serpentinites (100% serpentinization) bordered by oceanic metabasalts and metasedimentary rocks. The limit between peridotites and serpentinites defines the front of serpentinization. This limit is sharp: it is marked by the presence of massive serpentinites (80% serpentinization) and, locally, by dykes of metagabbros and mylonitic gabbros. The deformation of these gabbros is contemporaneous with the emplacement of the magma. The presence of early lizardite in the peridotites testifies that serpentinization began during the oceanization, which is confirmed by the presence of meta‐ophicarbonates bordering the foliated serpentinite envelope. Two additional generations of serpentine occur in the ultramafic rocks. The first is a prograde antigorite that partially replaced the lizardite and the relict primary minerals of the peridotite during subduction, indicating that serpentinization is an active process at the ridge and in the subduction zone. Locally, this episode is followed by the deserpentinization of antigorite at peak P–T (estimated in eclogitized metagabbros at 2–2.5 GPa and 550–620 °C): it is marked by the crystallization of secondary olivine associated with chlorite and/or antigorite and of clinopyroxene, amphibole and chlorite assemblages. A second antigorite formed during exhumation partially to completely obliterating previous textures in the massive and foliated serpentinites. Serpentinites are an important component of the oceanic lithosphere generated in slow to ultraslow spreading settings, and in these settings, there is a serpentinization gradient with depth in the upper mantle. The seismic Moho limit could correspond to a serpentinization front affecting the mantle. This partially serpentinized zone constitutes a less competent level where, during subduction and exhumation, deformation and fluid circulation are localized. In this zone, the reaction kinetics are increased and the later steps of serpentinization obliterate the evidence of this progressive zone of serpentinization. In the Lanzo massif, this zone fully recrystallized into serpentinite during alpine subduction and collision. Thus, the serpentinite envelope represents the oceanic crust as defined by geophysicists, and the sharp front of serpentinization corresponds to an eclogitized seismic palaeo‐Moho.  相似文献   

14.
The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated δ34Ssulfide (3.7 to 12.7‰). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400°C alone cannot account for both the high sulfur contents and high δ34Ssulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (∼400°C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ∼300°C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5‰) at temperatures above 250°C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 × 1012 g seawater S yr−1. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates.  相似文献   

15.
The oceanic serpentinization of peridotites and the influenceof such an alteration on element cycling during their subductiondewatering are here investigated in a mantle slice (Erro–Tobbioperidotite), first exposed to oceanic serpentinization and laterinvolved in alpine subduction, partial dewatering and formationof a high-pressure olivine + titanian-clinohumite + diopside+ antigorite assemblage in the peridotites and in veins. Previouswork indicates that high-pressure veins include primary brines,representing a residue after crystallization of the vein assemblageand containing recycled oceanic Cl and alkalis. To reconstructthe main changes during oceanic peridotite serpentinizationand subsequent subduction, we analysed samples in profiles fromserpentinized oceanic peridotites to high-pressure serpentinites,and from high-pressure ultramafites to veins. Here we presentresults indicating that the main features of the oceanic serpentinizationare immobility of rare earth elements (REE), considerable waterincrease, local CaO decrease and uptake of trace amounts ofSr, probably as a function of the intensity of alteration. Srentered fine-grained Ca phases associated with serpentine andchlorite. Trace-element analyses of mantle clinopyroxenes andhigh-pressure diopsides (in country ultramafites and veins),highlight the close similarity in the REE compositions of thevarious clinopyroxenes, thereby indicating rock control on thevein fluids and lack of exotic components carried by externallyderived fluids. Presence of appreciable Sr contents in vein-formingdiopside indicates cycling of oceanic Sr in the high-pressurefluid. This, together with the recognition of pre-subductionCl and alkalis in the vein fluid, indicates closed-system behaviourduring eclogitization and internal cycling of exogenic components.Diopside and Ti-clinohumite are the high-pressure minerals actingas repositories for REE and Sr, and for high field strengthelements (HFSE), respectively. The aqueous fluid equilibratedwith such an assemblage is enriched in Cl and alkaline elementsbut strongly depleted in REE and HFSE (less than chondrite abundances).Sr is low [(0·2–1·6) x chondrites], althoughselectively enriched relative to light REE. KEY WORDS: eclogite facies; fluid; trace elements; serpentinite; subduction  相似文献   

16.
We examined small-scale shear zones in drillcore samples of abyssal peridotites from the Mid-Atlantic Ridge. These shear zones are associated with veins consisting of chlorite + actinolite/tremolite assemblages, with accessory phases zircon and apatite, and they are interpreted as altered plagiogranite melt impregnations, which originate from hydrous partial melting of gabbroic intrusion in an oceanic detachment fault. Ti-in-zircon thermometry yields temperatures around 820°C for the crystallization of the evolved melt. Reaction path modeling indicates that the alteration assemblage includes serpentine of the adjacent altered peridotites. Based on the model results, we propose that formation of chlorite occurred at higher temperatures than serpentinization, thus leading to strain localization around former plagiogranites during alteration. The detachment fault represents a major pathway for fluids through the oceanic crust, as evidenced by extremely low δ18O of altered plagiogranite veins (+3.0–4.2‰) and adjacent serpentinites (+ 2.6–3.7‰). The uniform oxygen isotope data indicate that fluid flow in the detachment fault system affected veins and adjacent host serpentinites likewise. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The Zermatt‐Saas serpentinite complex is an integral member of the Penninic ophiolites of the Central Alps and represents the mantle part of the oceanic lithosphere of the Tethys. Metamorphic textures of the serpentinite preserve the complex mineralogical evolution from primary abyssal peridotite through ocean‐floor hydration, subduction‐related high‐pressure overprint, meso‐Alpine greenschist facies metamorphism, and late‐stage hydrothermal alteration. The early ocean floor hydration of the spinel harzburgites is still visible in relic pseudomorphic bastite and locally preserved mesh textures. The primary serpentine minerals were completely replaced by antigorite. The stable assemblage in subduction‐related mylonitic serpentinites is antigorite–olivine–magnetite ± diopside. The mid‐Tertiary greenschist facies overprint is characterized by minor antigorite recrystallization. Textural and mineral composition data of this study prove that the hydrated mineral assemblages remained stable during high‐pressure metamorphism of up to 2.5 GPa and 650 °C. The Zermatt‐Saas serpentinites thus provide a well documented example for the lack of dehydration of a mantle fragment during subduction to 75 km depth.  相似文献   

18.
Previously undescribed, microscopic textures in partially serpentinized peridotite shed light on the process of serpentinization. Fracturing and fragmentation of the peridotite protolith produced a modest increase in volume and opened channels to reactive aqueous fluids. Prior to, or in conjunction with, the first appearance of serpentine, micrometer-scale grains of magnetite crystallized on the surfaces of fractures. This decoration of fracture surfaces faithfully preserved the original, angular outlines of fragments of forsterite and pyroxene through all stages of serpentinization. Simple geometric considerations indicate that the volume of a given fragment did not change during replacement. Partially serpentinized forsterite shows a penetrative, micrometer-scale, sieve or sponge texture. Fifty percent or more of the volume of optically continuous forsterite can consist of micrometer-scale perforations, filled with serpentine. This sponge texture has not been described elsewhere. The delicate connections between different parts of the same forsterite grain further support strict constant-volume replacement of the fragments. Serpentinization stopped before completion (mid-reaction) when the otherwise open, magnetite-decorated channels themselves filled with serpentine, effectively sealing the rock from further access by aqueous fluids.  相似文献   

19.
We acquired bulk-rock analyses of Mid-Atlantic Ridge (MAR) harzburgites in order to understand the influence of submarine igneous and metamorphic processes on the distribution of incompatible elements (especially rare Earth elements or REEs) in abyssal peridotites. The geochemical characteristics of these Logatchev Massif serpentinized and talc-altered harzburgites, and spatially associated metagabbros were then compared with a compilation of global abyssal peridotites. The Logatchev harzburgites show light rare earth element (LREE) enrichments (average La N /Yb N = 2.81), positive correlations between LREEs (e.g. La, Ce, Pr, and Nd) and high field strength elements (HFSEs; e.g. Nb and Zr), and positive correlations between HFSEs and Th. Most global abyssal peridotites show similar trends. We suggest that the systematic enrichment of incompatible elements probably reflects a post-partial fusion magmatic refertilization. The compositional scatter exhibited by some serpentinized peridotites in Nb-LREE diagrams is probably due to the elimination of diopside during partial melting and significant impregnation by a melt produced in the Opx–Ol–Sp melting field rather than to later hydrothermal alteration. The correlation between Pb and Nd observed for most global abyssal peridotites, including the Logatchev harzburgites, indicates magmatic generation. The scatter of Pb in some rocks suggests that lead is likely mobile during serpentinization or weathering. Low to moderate water/rock (W/R) ratios in the harzburgites calculated from Sr isotopic compositions (5.98–26.20 for a close system and 1.66–2.72 for an open system), and the low abundance of REEs in Logatchev hydrothermal fluids indicate that the REE contents of abyssal peridotites probably were little influenced by hydrothermal alteration. Compared to this later alteration, the presence of small proportions of gabbroic melt (from 1:30 to 1:3 in our sample) that crystallized in the residual harzburgites modified their REE patterns significantly by elevating the LREEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号