首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
核工程是对地震安全性要求极高的工程,在其工程场地地震危险性评价工作中,弥散地震地震动估计往往对厂址设计基准地震动具有关键性影响。然而,弥散地震不是由特定构造引起的,因此,评定其地震影响时会遇到较大困难。常规方法是采用适当的衰减关系来计算工程场地震级5.0和5.5的弥散地震在距离厂址5 km处的地震动参数。本文针对核电厂地震危险性评价需求,探讨弥散地震评价的新方法,即通过随机有限断层法来模拟中强地震近场地震动参数。通过参数敏感性分析技术筛选了对拟合结果有决定性影响的关键模型参数;研究并改善了有限断层模型拟合中强地震模型应力降参数的方法,并基于多个国家和地区中强地震近场加速度记录估算了应力降参数值;此外,通过建立中强地震类属模型来模拟特定震级-距离的地震动,从而对经验统计方法进行补充和验证。(1)详细研究了模拟地震动时程的随机有限断层法以及近年来对该方法的改进,改进后的随机有限断层法适合模拟中强地震。(2)对随机有限断层法模拟中强地震近场强震动的参数影响情况进行了分析。将随机有限断层法应用于中强地震时,由于震源信息的准确性较差从而使模型参数具有较大的不确定性。为此,本文首先比较了不同场地方位角中强地震近场地震动的时程和平均拟加速度反应谱(PSA),并定量分析了模型主要参数对中强地震近场地震动模拟结果的参数敏感性。结果表明:不同场地方位角的中强地震近场PSA在短周期部分差别较大;应力降是模型最重要的参数,它对反应谱短周期部分影响最大;几何扩散系数对PSA的整体影响也较为明显。将随机有限断层方法应用到工程安全性评价工作时,应当重点关注对反应谱短周期部分影响较大的应力降和该区域的几何扩散系数,同时要调查该区域优势场地方位角的分布,从而更合理地控制中强地震近场强震动的模拟。(3)开展了中强地震模型应力降参数值的估算。基于美国小头骨山(Little Skull Mountain)MW5.6地震两个近场台站记录的地震动模拟,详细研究并改善了采用随机有限断层法拟合中强地震地震动拟加速度反应谱(PSA)来确定应力降参数值的方法。结果表明:采用不同频段反应谱残差和计算得到的应力降值差别较大,确定中强地震应力降较为合适的反应谱频段是中高频,采用该频段确定的应力降参数值模拟的反应谱和峰值加速度与实际记录较为符合。基于该方法并根据美国西部、日本、意大利以及汶川等国家和地区的浅源中强地震近场加速度时程记录,估算了相应的模型子断层应力降参数值。结果表明:各个国家和地区计算得到的中强地震随机有限断层模型应力降参数具有地区差异性;模拟的峰值加速度大致上正确反映了实际记录PGA的衰减规律,并且模拟结果在近场随距离的衰减较快,这可能与计算所使用的中强地震高频成分丰富有关。(4)针对中强地震震源及路径参数难以准确确定的情况,提出了通过建立随机有限断层类属模型参数来考虑随机不确定性,从而进行中强地震近场地震动模拟的方法,即在考虑区域特定参数、选择具有代表性的震源参数的同时,考虑关键参数随机不确定性,开展大量模拟计算。完成了对核电厂工程弥散地震地震动参数评价的工程应用分析。对模拟PGA的统计结果表明:考虑核电厂弥散地震时,MS5.0地震震中距5 km处0.15g的峰值加速度是合适的;MS5.5地震震中距5 km处0.2g的峰值加速度是合适的;MS6.0地震震中距5 km处0.3g的峰值加速度是合适的。该结果为现有弥散地震地震动评价提供了验证信息。模拟PSA统计结果与衰减关系PSA的比较表明,模拟的平均PSA大致上是保守的,可以作为随机有限断层法模拟结果的推荐反应谱。  相似文献   

2.
高阳  潘华  汪素云 《地震学报》2014,36(4):698-710
介绍了模拟地震动时程的随机有限断层法及近年来对该方法的改进,改进后的随机有限断层法适合模拟中强地震;比较了不同场地方位角的中强地震近场地震动时程与平均伪加速度反应谱(PSA);定量分析了中强地震近场地震动模拟结果的参数敏感性. 结果表明:不同场地方位角的中强地震近场PSA在短周期部分差别较大;应力降是模型中最重要的参数,其对反应谱短周期部分影响最大;几何扩散系数对PSA的整体影响也较为明显. 将随机有限断层法应用到工程安全性评价工作中时,应当重点关注对反应谱短周期部分影响较大的应力降和该区域的几何扩散系数,同时要调查该区域优势场地方位角的分布,更加合理地控制中强地震近场强震动的模拟.   相似文献   

3.
2010年4月14日玉树Ms7.1地震加速度场预测   总被引:10,自引:2,他引:8       下载免费PDF全文
王海云 《地球物理学报》2010,53(10):2345-2354
基于有限断层震源、且使用动力学拐角频率的地震动随机模拟方法预测玉树地震近断层的加速度场.首先,基于有限断层震源建模方法建立该次地震的震源模型;然后,基于上述地震动模拟方法预测玉树地震近断层191个节点的加速度时程.在此基础上,取每个结点的加速度峰值绘制该次地震的近断层加速度场.结果表明:(1)近断层加速度场主要受震源破裂过程和断层面上滑动分布的影响.断层面上凹凸体投影到地表的区域附近,加速度峰值最大,也是震害最严重的区域;(2)对于走滑地震,断层沿线附近的场地并非均会发生破裂方向性效应;发生破裂方向性效应的场地与凹凸体在断层面上的位置有关.  相似文献   

4.
周红  李亚南  常莹 《地球物理学报》2021,64(12):4526-4537
北京时间 2021 年05月21日 21 时48分云南大理州漾濞县(北纬 25.67°,东经 99.87°)发生了 6.4 级地震.本文利用震源破裂过程控制的 NNSIM随机有限断层方法,模拟对比了近场 6 个强震台的加速度、速度、反应谱记录,据此确定了开展近场地震动模拟所需要的参数的大小,进而建立了近断层 200 km范围内的地面运动.分析了漾濞地震近场地面运动的空间分布特征,结果显示此次地震地面运动的峰值速度PGV、峰值加速度PGA以及反应谱分布均表现为圆形分布,无明显的上下盘特征和走向特征,震中极震区峰值加速度超过了 400 cm·s-2 ,对应国家标准烈度Ⅸ度.  相似文献   

5.
1984年滦县5.0级地震近场记录的理论模拟   总被引:2,自引:0,他引:2  
1984年1月7日,在唐山以东的滦县附近发生了一次Ms=5.0的地震,这是自1976年唐山大地震后在唐山地区发生的又一次较大的中强地震。本文采用广义反射、透射系数矩阵和离散波数方法,对这次地震的近场记录进行了理论模拟。模拟过程主要包括:1.对资料的分析和处理;2.利用广义射线方法,对近场记录的P波和S波到时差进行拟合对比,由此重新修订了震中位置并给出这次地震的震源机制解;3.根据爆炸测深资料及其它有关资料,确定了模拟近场地震记录所需的地壳结构模型;4.采用试错法,选取了一个具有非均匀位错分布的断层模型来拟合近场地震记录,经反复实验,最后得到了滦县地震近场记录的拟合结果。 拟合结果表明,这次地震的破裂过程可用一个非均匀的断层破裂来表示,断层长2.4km,地震矩为1.2×10~(18)N·cm。通过理论地震图与观测资料的分析对比,得到了有关地震波引起的场地共振现象以及局部地区可能存在明显各向异性介质的重要信息。另外,近场地震记录的拟合结果还表明,地表薄层参数的确定在拟合过程中起着重要作用。  相似文献   

6.
随机有限断层法合成地震动的研究与应用   总被引:6,自引:1,他引:6  
目前很多研究者采用随机有限断层模型预测地震动并被证明是可行的.本文运用随机有限断层地震动叠加合成方法,模拟了1988年肃南5.7级地震,与实际记录进行对比分析,发现:用有限断层方法模拟得到的峰值加速度以及峰值加速度出现所对应的特征时刻与真实记录较为吻合;比较模拟的地震动反应谱和实际记录的加速度反应谱,总体上在工程感兴趣的频段内,有限断层方法拟合的结果基本能满足实际工作的需要.为进一步开拓该方法在工程应用中的前景,以兰州市柴家峡水电站为例,将此理论方法应用于缺乏强震记录地区的近场地震动估计中,模拟分析了马衔山北缘活动断裂发震时在坝址区产生的地震动特征,其近场合成结果与1125年兰州7.0级地震的烈度分布符合较好,可供工程抗震设计参考使用.  相似文献   

7.
陶夏新  王国新 《地震学报》2003,25(2):191-198
为了模拟近场强地震动,采用了基于有限断层模型的一种随机合成方法.震源破裂面被剖分成一定数量的子源,总的地震矩分成数量更多的子震的矩.一给定子源中一次子震引起的场地地震动的傅氏谱,通过考虑点源的谱、随着距离的衰减、能量耗散及近地表效应等导出.据此幅值谱和一个随机相位谱,并与一个时程包络函数结合,合成一个子震时程.将各子源中各个子震引起的所有时程叠加,得出场地的地震动时程.叠加中,各子震时程之间的时滞,据子震发震时差和子源至场地的距离差别引起的时差确定.对一个设定地震,选用4个断层面倾角,计算了近场21个地点的地震动.结果表明,本文方法可以很好地表达破裂的方向性效应和上盘效应.为了验证方法的可靠性,对1994年美国北岭地震中3个近断层台站MCN,LV3和PCD模拟的地震动与实际记录的加速度反应谱和时程作了比较.   相似文献   

8.
地震是断层的自发破裂动力学过程。数值模拟断层的自发破裂动力学过程对于认识地震的力学本质、减轻地震灾害等有着重要的科学意义及应用价值。本文首先对经典的滑移弱化摩擦关系进行了改进,然后对断层的破裂过程进行动态数值模拟。模拟结果表明,利用改进后的摩擦关系能够产生脉冲型(pulse-like)破裂模式。断层自发破裂过程受初始应力场及摩擦关系影响,若初始应力场中的剪应力水平较低或滑移弱化摩擦本构关系中的动摩擦系数较大,则容易产生脉冲型破裂;反之,则容易产生裂纹型(crack-like)破裂。另外,为了研究双材料(bimaterial)断层破裂对强地面运动的影响,我们采用正则化的速率-状态相关摩擦本构关系计算了破裂沿着双材料断层传播的二维有限元模型。模拟结果表明,双材料机制对地震破裂过程以及断层周边区域的强地面运动有显著影响。由断层破裂辐射出的地震波导致的强地面运动在整个空间上的分布是不对称的,其不对称性会随着断层两侧材料差异程度的增加而增加。断层破裂能否跨越断层阶区(stepover)继续传播,从而引发更大震级的地震,地震时断层是否发生超剪切破裂导致地震灾害加剧,都是震源动力学研究的重要内容。本文利用有限单元方法模拟断层阶区对地震破裂传播的控制作用以及对产生超剪切地震破裂的促进作用。研究结果表明:断层面上的摩擦系数减小、断层周边区域内初始剪应力增大以及较小的阶区间距等,都将增加断层破裂跳跃阶区传播的可能性;此外,这些物理因素都会对破裂的传播速度产生影响。在一定条件下,破裂传播速度会由在初始断层上的亚剪切波速度转为在次级断层上的超剪切波速度。结合以上在概念模型中对断层自发破裂过程的模拟研究结果,我们根据汶川地震和玉树地震发震断层的实际几何情况分别构建有限单元数值模型,研究了汶川地震单侧破裂过程的动力学机制以及玉树地震产生超剪切破裂过程的动力学机制。2008年汶川大地震的破裂过程极其复杂,向东北方向的破裂距离长达300 km,而向西南方向的破裂长度很小,呈现出单侧破裂的主要特征。文中模拟并分析了汶川地震的破裂过程,结果表明:龙门山断裂带两侧的物性差异是造成汶川大地震单侧传播的决定性因素。由于2010年玉树地震(Ms=7.1)产生了超剪切地震破裂,所以地震灾害特别严重。文中在模拟并分析玉树地震的破裂过程后认为:玉树地震发震断层走向与初始主应力方向之间的关系断层破裂是亚剪切转化为超剪切破裂的可能原因。  相似文献   

9.
快速准确的海啸源模型是近场海啸精确预警的关键.尽管目前还没有办法直接对其进行正演定量计算,但是可以通过多源地震、海啸观测数据进行反演或联合反演推算.不同的海啸源可能导致不同的预警结论,了解不同类型海啸源适用性、评估海啸源特征差异对近场海啸的影响,无论对于海啸预警还是海啸模拟研究尤为重要.本文评估分析了6种不同同震断层模型对2011年3月11日日本东北地震海啸近场数值预报的影响,重点对比分析了有限断层模型与均一滑动场模型对近场海啸产生、传播、淹没特征的影响及各自的误差.研究表明:近场海啸波能量分布主要取决于海啸源分布特征,特别是走向角的差异对海啸能量分布影响较大;有限断层模型对海啸灾害最为严重的39°N以南沿岸地区的最大海啸爬坡高度明显优于均一滑动场模型结果;综合对比DART浮标、GPS浮标及近岸潮位站共32个站次的海啸波幅序列结果发现有限断层模型整体平均绝对/相对误差比均一滑动场模型平均误差要低,其中Fujii海啸源的平均绝对/相对误差最小,分别是0.56m和26.71%.UCSB海啸源的平均绝对/相对误差次之.3个均一滑动场模型中USGSCMT海啸源模拟精度最高.相对于深海、浅海观测站,有限断层模型比均一滑动场模型对近岸观测站计算精度更高.海啸源误差具有显著的方向性,可能与反演所采用的波形数据的代表性有关;谱分析结果表明Fujii海啸源对在12至60min主频波谱的模拟要优于UCSB海啸源.海啸源中很难真实反映海底地震破裂过程,然而通过联合反演海啸波形数据推算海啸源的方法可以快速确定海啸源,并且最大限度的降低地震破裂过程与海啸产生的不确定性带来的误差.  相似文献   

10.
超剪切破裂的地震由于比同震级的亚剪切地震造成更为严重的地震灾害,因而受到广泛重视.可是,自然界中超剪切破裂的地震数量极其稀少;到目前为止,全球只是发现了十几个超剪切破裂的震例.那么是哪些因素造成了超剪切破裂地震是如此之少?这个科学问题,至今未见前人有系统的分析和研究;为此,本文利用有限单元的计算方法,对触发产生超剪切破裂的几种常见力学因素进行定量分析.有限元模拟结果显示,地表作为触发产生超剪切破裂效率最高的因素,但当地表附近具有沉积层、未固结的断层泥等松软介质时,地表附近断层介质是由速度强化的摩擦本构关系所控制,此时亚剪切破裂无法转换为超剪切破裂,近地表的这层薄薄的摩擦速度强化层会有效抑制超剪切破裂的发生.此外,模拟结果还表明,断层上的障碍体、反凹凸体、断层阶区虽然可以促使亚剪切破裂转换为超剪切破裂,但在转化过程中,由于破裂出现时间上的停顿,这样整个断层上的破裂速度就被平均为亚剪切破裂,即远场地震台站接收的地震信息很可能无法辨别局部超剪切破裂的发生.若要产生一个目前可以识别的超剪切破裂地震事件,其条件十分苛刻,通常需要断层的长度足够长,断层几何要足够平直,初始应力水平要足够高,地表的摩擦速度强化层厚度要足够薄,近场要有足够多的地震台站,等.由此可见,上述这些因素导致了自然界中可以辨别的超剪切破裂地震非常稀少.本研究有助于我们深入理解超剪切破裂发生的力学机制,有助于我们更好地评估地震灾害.  相似文献   

11.
2021年5月21日云南省大理州漾濞县发生MS6.4 地震,震中附近遭受了强烈地震破坏.为预测此次地震的地震动影响场,利用震源运动学破裂随机模型,基于随机有限断层三维地震动模拟方法,给出了此次地震中 28个触发强震动台站的三分量加速度时程模拟记录,并结合强震动观测记录,估计了此次地震的地震应力降及震源破裂过程,进一步模拟给出了此次地震中 2823 个虚拟观测点的三分量加速度时程.结果表明,模拟记录的峰值地面加速度(PGA)、峰值地面速度(PGV)与观测值接近,并体现了地震动峰值的衰减规律、近场饱和效应和破裂方向性效应;模拟与观测记录的 5%阻尼比拟加速度反应谱(PSA)的幅值接近、谱形相似,在0.05~10 s周期段,模拟记录可以很好地预测地震动.基于三分量模拟记录给出了漾濞MS 6.4 地震的仪器测定地震烈度图,与云南省地震局发布的烈度图接近,极震区烈度最高可达Ⅷ度,震源破裂方向性导致震中 SE方向的烈度普遍高于 NW方向,受局部场地条件影响沿洱海西侧出现高烈度异常区.  相似文献   

12.
针对非线性方法对有限断层破裂时空过程反演中存在的不唯一性问题,应用随机加权方法对反演结果进行误差估计.通过数值模型计算,定量揭示了滑动量、滑动角、破裂时间及上升时间在断层面上的分辨率值分布.应用随机加权方法对台湾海峡地震及缅中边境地震的误差估计结果表明,对应两次地震破裂中心位置上的参数分辨率值最高,结果最可靠,而在边缘子断层处滑动量与上升时间的分辨率值较低.   相似文献   

13.
地震动随机合成中与震源谱相关的动力学拐角频率   总被引:2,自引:1,他引:1  
介绍了基于有限断层震源的地震动随机合成中静力学拐角频率和动力学拐角频率,讨论了两者的缺点;进而提出了一种改进的震源谱模型,它能够表达破裂面上地震波频率辐射不均匀性、大震时拐角频率随破裂面积增加而有所下降的趋势.据此,可以形成与该震源谱模型相关联的动力学拐角频率,应用于地震动的随机合成,避免结果对子源尺寸的依赖.通过对美国北岭Mw6.7地震近场6个基岩台站合成的地震动与实际记录的比较,验证了本文方法的有效性.   相似文献   

14.
随机有限断层模型是模拟地震动加速度时程的一个重要工具.但将其应用于中强地震时,由于震源信息的准确性较差从而使模型参数具有较大的不确定性.尤其针对其中最为关键的应力降参数,目前相关研究较为缺乏且尚未形成系统的确定方法.本文基于美国Little Skull Mountain Mw5.6级地震2个近场台站记录的地震动模拟,详细研究了采用随机有限断层法拟合中强地震地震动伪加速度反应谱(PSA)来确定应力降参数值的方法,并在计算应力降时引入了其它震源参数的不确定性,随后对此方法的可行性进行了验证.研究表明:采用不同频段反应谱残差和计算得到的应力降值差别较大,确定中强地震应力降较为合适的反应谱频段是中高频,采用该频段确定的应力降参数值模拟的反应谱和峰值加速度与实际记录较为符合;脉冲子断层百分比、断层长宽、倾角和深度等震源参数按截断的正态分布或均匀分布随机抽样,拟合得到的应力降参数值与通过实际震源模型参数得到的值相近.以上研究结果对确定一个区域中强地震应力降或中强地震近场强震动模拟研究提供了更进一步的研究方法和研究方向.  相似文献   

15.
1976年6月9日云南省龙陵地区发生了一次6.2级余震。本文对这次地震的强震记录进行了数值模拟,并通过合成地震图与观测资料的对比,研究了这次地震的断层长度、破裂方式以及位错分布的特点。分析结果得到这次地震是由北向南的右旋走滑型破裂,断层长度约为20km,破裂速度接近0.9倍剪切波速,断层上的平均错距为60cm,平均应力降约为23bar。近场记录中的丰富高频成分表明断层上的位错分布和上升时间分布是极不均匀的,相应的局部错距和局部应力降分别为189cm和200-300bar,远高于其平均值。通过模拟过程可以看出近场记录对于震源断层的长度和破裂方式等都有较强的约束作用,因此分析强震记录是研究震源过程的一种有效手段。  相似文献   

16.
断层阶区对震源破裂传播过程的控制作用研究   总被引:4,自引:4,他引:0       下载免费PDF全文
袁杰  朱守彪 《地球物理学报》2014,57(5):1510-1521
地震破裂能否穿越断层阶区(stepover)引发更大震级的地震是震源动力学研究的重要内容.本文利用不连续变形体接触力学的动态有限单元方法,模拟断层阶区对地震破裂传播的控制作用.通过改变断层周边初始应力场、断层面上的摩擦本构关系以及断层阶区的间距大小来分析各个因素对破裂传播的影响,并定量分析产生这些影响的力学机制.模拟结果表明:断层面上的摩擦系数减小或断层周边区域内的初始剪应力增大,都将增加断层破裂跳跃阶区传播的可能性;此外,若断层阶区间距越小,断层破裂也越容易跳跃阶区传播.计算结果还显示:断层上的摩擦系数大、初始剪应力小、断层阶区间隔大,那么此阶区所在之处将可能是断层破裂的终止位置;相反,当断层面上的摩擦系数较小、初始剪应力较大、断层阶区间隔较小,破裂就容易穿越阶区而出现较大的地震.同时,从模拟结果可以看出,在发震断层破裂停止后,应力将继续向四周传播;当应力积累达到破裂极限时,触发断层阶区中的另一断层产生破裂,因此在破裂跳跃断层阶区的过程中存在一个时间延迟.最后,破裂能否跳跃断层阶区,可以利用库仑应力在空间的分布进行合理的解释.  相似文献   

17.
孟令媛  史保平 《地震学报》2011,33(5):637-649
对有限断层地震波能量辐射的估算通常采用断层面上子源能量的逐点求和方法。基于Brune圆盘模型,Anderson推导出有限断层地震波能量辐射S波的求解公式,即 ,其中 为断层面上地震矩, 为剪切模量, 和 分别为动态应力降和静态应力降,并指出在复合震源模型强地面运动预测应用中 以满足能量守恒。Rivera和Kanamori则从能量辐射表象定理出发,给出了有限断层中辐射能量的积分表达式,明确地指出了逐点求和所存在的问题。依据该积分表达式,本文推导出了复合源模型中新的辐射能完整的求解方法,指出Anderson方法实为断层面上点源辐射能量的简单叠加求和,后者则充分考虑了断层面上任一点在任一时刻能量传播过程中受到的断层面上所有位移破裂路径的交互影响。以1976年唐山7.6地震为例,应用上述方法分别计算了有限断层模型的辐射能量及近场强地面运动,如质点运动加速度,速度。结果表明如果模型参数满足 时,由本文给出的求解方法计算所得到的地震波辐射能已远远超出实际的辐射能量值,直接导致了对近场强地面运动参数如质点速度、加速度等的过高估算。因此,Zeng等和Anderson工作的局限性是非常明显的:地震矩守恒以及非物理的 无法准确地预测近场地面运动。未来工作中,对于有限断层模型的建立,在地震矩守恒这一约束条件的基础上,远场和近场能量解(或视应力)将可作为另一个重要的约束条件,为强地面运动的模拟提供一个更为恰当的求解方案。   相似文献   

18.
2001年昆仑山口西MS8.1地震经历了一个复杂的破裂过程,其破裂长、幅度大、破裂速度多变,成为大陆型地震研究的典型地震。本文融合近场高精度大地测量观测(4幅InSAR影像,34个GPS点位同震位移)和高信噪比远震波形记录,基于有限断层反演理论,联合反演得到该地震同震破裂时空过程的统一模型;同时,基于欧洲区域台网波形数据,利用反投影方法获得高频破裂的时空展布。联合反演结果表明,破裂自西向东传播的过程中走向有所变化,破裂尺度达400km,最大滑移量达8m,地震矩大小为6.1×1020Nm,对应的矩震级MW为7.78。主断层破裂经历了3个阶段,其中,超剪切破裂阶段对应最大位错区域,破裂到达西大滩段与昆仑山口断层交叉处时,破裂速度与尺度迅速下降。反投影结果同样显示破裂的3个阶段空间上对应大地测量反演的3个最大破裂区,最大破裂区的扩展速度达6km/s,但超剪切破裂终止在断层交叉口东部约30km处断层走向发生转变的位置。  相似文献   

19.
1976年唐山地震震源动力过程的数值模拟   总被引:10,自引:3,他引:7       下载免费PDF全文
蔡永恩  何涛  王仁 《地震学报》1999,21(5):469-477
用新LDDA(Lagrangian DiscontinuousDeformation Analysis)方法模拟了唐山地震断层的破裂、错动和应力释放的整个动力过程.模拟结果表明,唐山地震的震源滑动过程在发震断层上各处不一样.近场位移受断层的曲率影响,断层凹侧的位移大于断层凸侧的位移.滑动过冲现象在震中处最大,并向断层两端衰减.我们发现,唐山地震断层的破裂速度和应力降与断层上的初始剪应力大小有关.唐山发震断层的最大动态、准静态位错量和剪应力降均发生在中间部位,分别是7.1 m、6.2 m和8.1 MPa、5.4 MPa,发震断层的平均准静态位错量和剪应力降分别为4.5 m和3.3 MPa,断层破裂的传播速度从震中向东南和西北方向分别为3.08 km/s和1.18 km/s.   相似文献   

20.
三维地震断层动力破裂的显式并行有限元解法   总被引:4,自引:1,他引:3  
本文在近场波动有限元的基础上,根据断层动力破裂的摩擦模型,详细地推导出了断层面节点在破裂的不同时刻的计算公式,提出了一种模拟断层动力破裂的显式并行有限元方法,利用此方法,可以模拟断层的破裂过程、地表破裂及由此产生的地面运动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号