首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detection of pulsed radio emission from the recently discovered X-ray pulsar J0205+6449 in the young supernova remnant 3C 58 is reported together with the results of first studies of this emission. The observations were carried out at 111 and 88 MHz on radio telescopes of the Pushchino Observatory. The pulsar period, 65.68 ms, and period derivative, \(\dot P = 1.9 \times 10^{ - 13} \), have been confirmed. The integrated pulse profile at 111 MHz has been obtained and the flux density and spectral index α=2.8 measured. The pulsar dispersion measure DM=141 pc cm?3 has been confirmed. This dispersion measure yields a distance to the pulsar of d=6.4 kpc, a factor of two or more greater than the previously favored distance to the supernova remnant 3C 58 (2.6 kpc). The problem of the age and distance of the pulsar-SNR system is discussed. If the age of the pulsar J0205+6449 is equal to that of the SNR (820 years), this pulsar is the youngest known radio pulsar. The synchrotron mechanism for the radio and X-ray emission is proposed to explain the lower radio and X-ray luminosity of this new pulsar compared to the Crab pulsar, which is similar to it in many ways. Optical emission with luminosity Lopt=1031 erg/s and gamma-ray emission with Lγ=7×1035 erg/s are predicted, and the steep radio spectrum (α≈3) can be explained.  相似文献   

2.
We present the results of long-term, three-frequency monitoring of giant pulses from the Crab pulsar on the 64-m radio telescope in Kalyazin. The total monitoring time was 160 hours. The signal power was recorded simultaneously at 600, 1650, and 4850 MHz via direct sampling of the received signals in the total receiver bandwidth without any compensation for interstellar dispersion. In total, 1117 and 352 giant pulses were detected at 600 and 4850 MHz, respectively. The frequency band centered at 1650 MHz was contaminated by interference, and was used only to identify events found in other frequency bands. The cumulative energy distribution of the giant pulses follows a power law at 600 and 4850 MHz up to the highest energies. A deep modulation in the radio spectra of individual giant pulses was observed on both large (Δv/v ≈ 0.5) and small (Δv/v ≈ (2?4) × 10?3) frequency scales. The simultaneous appearance of giant pulses at the interpulse longitudes at high (4850 MHz) and low (1650 and/or 600 MHz) frequencies testifies to their common origin, in spite of the observed differences in other parameters.  相似文献   

3.
Radio flux measurements of the Crab nebula have been performed over many years relative to Orion A at 927 MHz and relative to Cygnus A and Virgo A at 151.5 MHz. The inferred average secular rates of decrease in the radio flux of the Crab nebula are d 927 MHz = ?0.18 ± 0.10% yr?1 over 1977–2000 and d 151.5 MHz = ?0.3 ± 0.1% yr?1 over 1980–2003. The weighted mean flux-decrease rate averaged over several years of relative measurements at 86, 151.5, 927, and 8000 MHz is d mw = ?0.17 ± 0.02% yr?1. The secular flux decrease is frequency independent, with an upper limit of |dα/dt| < 3 × 10?4 yr?1 for the absolute value of the rate of change of the spectral index, and remains constant in time when averaged over long time intervals. The results of our measurements at 151.5 and 927 MHz combined with published absolute measurements at 81.5 and 8250 MHz are used to determine the radio spectrum of the Crab nebula for epoch 2010.0.  相似文献   

4.
The formation of neutron stars in the closest binary systems (P orb<12 h) gives the young neutron star/pulsar a high rotational velocity and energy. The presence of a magnetic field of 3×1011–3×1013 G, as is observed for radio pulsars, enables the neutron star to transfer ~1051 erg of its rotational energy to the envelope over a time scale of less than an hour, leading to a magnetorotational supernova explosion. Estimates indicate that about 30% of all type-Ib,c supernovae may be the products of magnetorotational explosions. Young pulsars produced by such supernovae should exhibit comparatively slow rotation (P rot>0.01 s), since a large fraction of their rotational angular momentum is lost during the explosion. The magnetorotational mechanism for the ejection of the envelope is also reflected by the shape of the envelope. It is possible that the Crab radio pulsar is an example of a product of a magnetorotational supernova. A possible scenario for the formation of the close binary radio pulsar discovered recently by Lyne et al. is considered.  相似文献   

5.
Observations of eclipses of the radio pulsar B1259-63 by the disk of its Be-star companion SS 2883 provide an excellent opportunity to study the winds of stars of this type. The eclipses lead to variations in the radio flux (due to variations in the free-free absorption), dispersion measure, rotation measure, and linear polarization of the pulsar. We have carried out numerical modeling of the parameters of the Be-star wind and compared the results with observations. The analysis assumes that the Be-star wind has two components: a disk wind in the equatorial plane of the Be star with a power-law fall-off in the electron density n e with distance from the center of the star \(\rho (n_e \sim \rho ^{ - \beta _o } )\), and a spherical wind above the poles. The parameters for a disk model of the wind are estimated. The disk is thin (opening angle 7.5°) and dense (electron density at the stellar surface n0e ~ 1012 cm?3, β0 = 2.55). The spherical wind is weak (n0e ? 109 cm?3, β0 = 2). This is the first comparison of calculated and observed fluxes of the pulsating radio emission.  相似文献   

6.
The detection of pulsed radio emission from the X-ray pulsar AXP 4U 0142+61 with a period of P = 8.68832935(6) s and a period derivative of $ \dot P $ \dot P = 18.713(4) × 10−13 s/s is reported. The observations were carried out on two high-sensitivity radio telescopes of the Pushchino Radio Astronomy Observatory: the Large Phased Array at 111MHz and the DKR-1000 at 40MHz.Mean pulse profiles are presented; the measured flux density is S 111 = 30 ± 20 mJy. The estimated distance derived from the dispersion measure, 27 pc/cm3, is 1.4 kpc, and the integrated radio luminosity is L R = 1.5 × 1027 erg/cm. Comparison with X-ray data shows an appreciable difference in the pulse duration (the radio pulse is about a factor of 20 more narrow) and strong variations in the flux density.  相似文献   

7.
The results of simultaneous multifrequency observations of giant radio pulses from the Crab pulsar, PSR B0531+21, at 23, 111, and 600 MHz are presented and analyzed. Giant pulses were detected at a frequency as low as 23 MHz for the first time. Of the 45 giant pulses detected at 23 MHz, 12 were identified with counterparts observed simultaneously at 600 MHz. Of the 128 giant pulses detected at 111 MHz, 21 were identified with counterparts observed simultaneously at 600 MHz. The spectral indices for the power-law frequency dependence of the giant-pulse energies are from ?3.1 to ?1.6. The mean spectral index is ?2.7 ± 0.1 and is the same for both frequency combinations (600–111 MHz and 600–23 MHz). The large scatter in the spectral indices of the individual pulses and the large number of unidentified giant pulses suggest that the spectra of the individual giant pulses do not actually follow a simple power law. The observed shapes of the giant pulses at all three frequencies are determined by scattering on interstellar plasma inhomogeneities. The scatter-broadening of the pulses and its frequency dependence were determined as τ sc = 20(ν/100)?3.5±0.1 ms, where frequency ν is in MHz.  相似文献   

8.
The integrated radio luminosities of 311 long-period (P > 0.1 s) and 27 short-period (P < 0.1 s) pulsars have been calculated using a new compilation of radio spectra. The luminosities are in the range 1027 ? 1030 erg/s for 88% of the long-period pulsars and 1028 ? 1031 erg/s for 88% of the short-period pulsars. We find a high correlation between the luminosity L and the estimate L 1 = S 400 d 2 from the catalog of Taylor et al. The factor η for the transformation of the rotational energy of the neutron star into radio emission increases-decreases with increasing period for long-period and short-period pulsars. The mean value of η is ?3.73 for the long-period and ?4.85 for short-period pulsars. No dependence was found between L and the pulsar’s kinematic age t k = |z|/〈v z〉, where |z| and 〈v z〉 = 300 km/s are the pulsars’ height above the plane of the Galaxy and mean velocity. A dependence of L on the rate of rotational energy losses ? was found for both groups of pulsars. It is shown that L? 1/3 for the entire sample. The pulsar luminosity function is constructed, and the total number and birth rate of pulsars in the Galaxy are calculated.  相似文献   

9.
The kinetic equation for the distribution function of relativistic electrons is solved taking into account quasi-linear interactions with waves and radiative processes. Mean values of the pitch angles ψ are calculated. If the particles of the primary beam with Lorentz factors γb~106 are resonant, then the condition γbψb?1 is satisfied, the particle distribution is described by the function f (γ) ∝ γ?4, and the synchrotron radiation spectrum is characterized by the spectral index α=3/2. On the other hand, if a cyclotron resonance is associated with particles of the high-energy tail of the secondary plasma (γt~105), then γtψt?1, and the distribution function has two parts—f (γ) ∝ γ and f (γ) ∝ γ?2—which correspond to the spectral indices α1=+1 and α2=?0.5. This behavior is similar to that observed for the pulsar B0656+14. The predicted frequency of the maximum νm=7.5×1016 Hz coincides with the peak frequency for this pulsar. The model estimate for the total synchrotron luminosity of a typical radio pulsar with hard radiation L s =3×1033 erg/s is in agreement with observed values.  相似文献   

10.
We present the results of radio sounding observations probing the inner solar wind near the minimum of the solar-activity cycle, using polarized pulses from PSR B0525+21 and PSR B0531+21 received when the lines of sight toward these pulsars were close to the Sun. The observations were obtained in June 2005 and June 2007 on the Large Phased Array of the Lebedev Physical Institute at 111 MHz. An upper limit for the scattering of giant pulses from PSR B0531+21 due to their passage through the turbulent solar-wind plasma is determined. The arrival-time delays for pulses from PSR B0531+21 are used to derive the radial dependence of the mean density of the circumsolar plasma. The resulting density distribution indicates that the acceleration of fast, high-latitude solar-wind outflows continues to heliocentric distances of 5–10R , where R is the solar radius. The mean plasma density at heliocentric distances of about 5R is 1.4 × 104 cm?3, substantially lower than at the solar-activity maximum. This is associated with the presence of polar coronal holes. The Faraday rotation measure at heliocentric distances of 6–7R is estimated. Deviations of the spatial distribution of the magnetic field from spherical symmetry are comparatively modest in the studied range of heliocentric distances.  相似文献   

11.
A workflow is described to estimate specific storage (S s) and hydraulic conductivity (K) from a profile of vibrating wire piezometers embedded into a regional aquitard in Australia. The loading efficiency, compressibility and S s were estimated from pore pressure response to atmospheric pressure changes, and K was estimated from the earliest part of the measurement record following grouting. Results indicate that S s and K were, respectively, 8.8?×?10?6 to 1.2?×?10?5 m?1 and 2?×?10?12 m s?1 for a claystone/siltstone, and 4.3?×?10?6 to 9.6?×?10?6 m?1 and 1?×?10?12 to 5?×?10?12 m s?1 for a thick mudstone. K estimates from the pore pressure response are within one order of magnitude when compared to direct measurement in a laboratory and inverse modelled flux rates determined from natural tracer profiles. Further analysis of the evolution and longevity of the properties of borehole grout (e.g. thermal and chemical effects) may help refine the estimation of formation hydraulic properties using this workflow. However, the convergence of K values illustrates the benefit of multiple lines of evidence to support aquitard characterization. An additional benefit of in situ pore pressure measurement is the generation of long-term data to constrain groundwater flow models, which provides a link between laboratory scale data and the formation scale.  相似文献   

12.
Results of long-term (2002–2010) monitoring of giant radio pulses of the pulsar PSR B0531+21 in the Crab Nebula at ν = 44, 63, and 111 MHz are reported. The observations were conducted on the LPA and DKR-1000 radio telescopes of the Lebedev Physical Institute. The giant pulses were analyzed using specialized software for calculating the magnitude of the scattering τ sc , signal-to-noise ratio, and other required parameters by modeling the propagation of a pulse in the scattering interstellar medium. Three pronounced sharp increases in the scattering were recorded in 2002–2010. Analysis of the dependence between the variations of the scattering and dispersion measure (data of Jodrell Bank Observatory) shows a strong correlation at all frequencies, ≈0.9. During periods of anomalous increase in scattering and the dispersion measure, the index γ in the frequency dependence of the scattering in the Crab Nebula, τ sc (ν) ∝ ν γ , was smaller than the generally accepted values γ = 4.0 for a Gaussian and γ = 4.4 for a Kolmogorov distribution. This difference in combination with the piece-wise power-law spectrum may be due to the presence of a dense plasma structure with developed Langmuir turbulence in the nebula, along the pulsar’s line of sight. The magnetic field in the Crab Nebula estimated from measurements of the rotation measure toward the pulsar is 100 μG.  相似文献   

13.
The paper considers possible observational implications of the presence of dark matter in the Galaxy in the form of dense gas clouds—clumpuscules with masses M c ~10?3 M and radii R c~3×1013 cm. The existence of such clouds is implied by modern interpretations of extreme scattering events—variations in quasar radio fluxes due to refraction in dense plasma condensations in the Galactic halo. The rate of collisions between these clouds is shown to be rather high: from 1 to 10M per year is ejected into the interstellar medium as a result of such collisions. The optical continuum and 21-cm emission from hot post-collision gas could be observable. Gas clouds composed of dark matter could be formed around O stars in an H II region with radius R~30 pc and emission measure EM?20 cm?6 pc. They could also be observable in the Hα line. The evaporation of clumpuscules by external ionizing radiation could be a substantial source of matter for the interstellar medium. Assuming that the total mass of matter entering the interstellar medium over the Hubble time does not exceed the mass of luminous matter in the Galaxy, upper limits are found for the cloud radii (R c<3.5×1012 cm) and the contribution of clouds to the surface density of the Galaxy (<50M pc?2). Dissipation of the kinetic energy of matter lost by clumpuscules could provide an efficient mechanism for heating gas in the Galactic halo.  相似文献   

14.
The frequency dependence of scattering of the radio emission from the Crab pulsar at the low frequencies 111, 63, and 44 MHz has been measured and analyzed during sporadic enhancements of scattering and dispersion measure in October–December 2006 and December 2008. The frequency dependence of the scattering differs from the generally accepted dependence, τ sc (ν) ∝ ν γ , where γ = −4.0 for Gaussian and γ = −4.4 for power-law Kolmogorov distributions of inhomogeneities of the scattering medium. In intervals of enhancement, the exponent of the frequency dependence γ decreased to −3.2(0.2) at the above frequencies. A model is proposed in which this is due to the presence of a dense plasma structure in the nebula in the line of sight toward the pulsar, in which scattering of the radio emission on turbulence differs from scattering in the interstellar medium. It is shown that the frequency dependence of scattering of the radio emission can be weaker in a dense plasma than in the rarefied interstellar medium.  相似文献   

15.
The heat capacity of natural chamosite (XFe=0.889) and clinochlore (XFe=0.116) were measured by differential scanning calorimetry (DSC). The samples were characterised by X-ray diffraction, microprobe analysis and Mössbauer spectroscopy. DSC measurements between 143 and 623?K were made following the procedure of Bosenick et?al. (1996). The fitted data for natural chamosite (CA) in J?mol?1?K?1 give: C p,CA = 1224.3–10.685?×?103?×?T ??0.5???6.4389?× 106T ??2?+?8.0279?×?108?×?T ??3 and for the natural clinochlore (CE): C p,CE = 1200.5–10.908?×?103T ??0.5?? 5.6941?×?106?×?T ??2?+?7.1166?×?108?×?T ??3. The corrected C p-polynomial for pure end-member chamosite (Fe5Al)[Si3AlO10](OH)8 is C p,CAcor = 1248.3–11.116?× 103?×?T ??0.5???5.1623?×?106?×?T ??2?+?7.1867?×?108×T ??3 and the corrected C p-polynomial for pure end-member clinochlore (Mg5Al)[Si3AlO10](OH)8 is C p,CEcor = 1191.3–10.665?×?103?×?T ??0.5???6.5136?×?106?×?T ??2?+ 7.7206?×?108?×?T ??3. The corrected C p-polynomial for clinochlore is in excellent agreement with that in the internally consistent data sets of Berman (1988) and Holland and Powell (1998). The derived C p-polynomial for chamosite (C p,CAcor) leads to a 4.4% higher heat capacity, at 300?K, compared to that estimated by Holland and Powell (1998) based on a summation method. The corrected C p-polynomial (C p,CAcor) is, however, in excellent agreement with the computed C p-polynomial given by Saccocia and Seyfried (1993), thus supporting the reliability of Berman and Brown's (1985) estimation method of heat capacities.  相似文献   

16.
Measurements of the broadening of pulsar pulses by scattering in the interstellar medium are presented for a complete sample of 100 pulsars with Galactic longitudes from 6° to 311° and distances to three kiloparsec. The dependences of the scattering on the dispersion measure (τ sc(DM) ∝ DMα), frequency (τ sc(v) ∝ v ?γ ), Galactic longitude, and distance to the pulsar are analyzed. The dependence of the scattering on the dispersion measure in the near-solar neighbourhood can be represented by the power law τ sc(DM) ∝ DM2.2±0.1). Measurements at the low frequencies 111, 60, and 40 MHz and literature data are used to derive the frequency dependence of the scattering (τ sc(v) ∝ V ?γ ) over a wide frequency interval (covering a range of less than 10: 1) with no fewer than five frequencies. The index for the frequency dependence, γ = 4.1 ± 0.3, corresponds to a normal distribution for inhomogeneities in the turbulence in the scattering medium. Based on an analysis of the dependence of the scattering on the distance to the pulsar and on Galactic longitude, on average, the turbulence level C n 2 is the same in all directions and at all distances out to about three kpc, testifying to the statistical homogeneity of the turbulence of the scattering medium in the near-solar region of the Galaxy.  相似文献   

17.
Long-term measurements of the radio flux density of the young supernova remnant Cassiopeia A relative to the radio galaxy Cygnus A have been carried out at 290 and 927 MHz. We have obtained for the mean rates of the secular decrease of the radio emission of Cassiopeia A d 290 MHz = ?0.67 ± 0.04% year?1 for 1978–2005 and d 927 MHz = ?0.71 ± 0.035% year?1 for 1977–2004. The evolution of the radio spectrum of Cassiopeia A is traced based on long-term observations at 38, 151.5, 290, 927, and 2924 MHz.  相似文献   

18.
A possible model for the pulsar PSR J1852+0040 associated with the supernova remnant Kes 79 and detected in place of a central compact object in this remnant is discussed. The main observational properties of the pulsar can be understood as consequences of its weak surface magnetic field (B s < 3 × 1011 G) and short rotational period (P ~ 0.1 s). Its X-ray emission is thermal, and is generated in a small region near the surface of the neutron star due to cooling of the surface as the surface accretes matter from a relict disk surrounding the pulsar. The radio emission is generated in the outer layers of the pulsar magnetosphere by the synchrotron (cyclotron) mechanism. The optical luminosity of J1852+0040 is estimated to be L opt < 1028 erg/s. If the spectral features in another central compact object, 1E 1207.4+5209, are interpreted as electron cyclotron lines, this provides evidence for a weak surface magnetic field for this neutron star as well (B < 6 × 1010 G). The hypothesis that all central compact objects have weak surface fields makes it possible to explain the number of detected central compact objects, the absence of pulsar-wind nebulae associated with these objects, and the fact that no pulsar has yet been detected at the position of SN 1987a. We suggest that, after the supernova remnant has dissipated, the central compact object becomes a weak X-ray source (XDINS), whose weak emission is also due to the weakness of its magnetic field.  相似文献   

19.
The pulsar PSR B2111+46 has been observed at 112 MHz, and a new approach to analyzing pulsar pulses scattered in turbulent interstellar plasma applied. This method is based on the dependence of the normalized energy in the trailing part of a pulse on the intrapulse time. Since the trailing edge of a pulse follow exponential law to high accuracy, the inner turbulence scale of the interstellar plasma exceeds the field coherence scale. The measured scattering parameter is τ sc = 147 ± 1 ms. Analysis of the parameters of diffractive and refractive scintillations of the pulsar at 610 MHz together with the 112 MHz data shows that the spectrum of the interstellar plasma toward PSR B2111+46 is a piecewise power law: on scales of 1013–1014 cm, the exponent of the turbulence spectrum is n ≃ 4, whereas n = 3.5 on scales of 2 × 108−1013 cm. The spectrum flattens with approach to the inner turbulence scale l: n = 3–3.2. The obtained inner turbulence scale is l = (3.5 ± 1.5) × 107 cm. The distribution of the interstellar plasma toward the pulsar is close to statistically homogeneous. The local density (N e = 0.4 cm−3) and filling factor (F = 0.04) of the interstellar plasma have been estimated. The similarity of N e estimates obtained from the inner scale of the inhomogeneities and the ratio of the emission measure to the dispersion measure provides evidence that the inner turbulence scale corresponds to the ion inertial length.  相似文献   

20.
Interplanetary scintillation observations of the compact nucleus of 3C 274 have been carried out at 111 MHz on on the Large Phased Array radio telescope. We have derived an upper limit for the flux density of the compact radio source, and determined the parameters of the low-frequency cutoff of the spectrum of this source. We have analyzed the observational data assuming that the low-frequency spectral cutoff is due to synchrotron self-absorption. In this case, the magnetic field in the nucleus of 3C 274 must be very nonuniform. At the center, on scales of < 0.01 pc, the magnetic field varies in the range 0.4 G < H < 40 G, while its mean value over the entire radio source is 〈H〉 ~ 10?3 ? 10?4 G. The energy density of the relativistic electrons exceeds the energy density of the magnetic field everywhere within the nucleus, though energy equipartition is also possible near the center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号