首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All periglacial and glacial landforms investigated in the Northern Foothills have a very thin active layer (0.1–0.3 m thickness) overlying a thin permafrost layer, characterised by electrical resistivities ranging between 13 and 50 kΩm and by different thicknesses. Below this surficial layer, different types of ground ice (with a resistivity range from 8000 to 0.1 kΩm) were detected. These different types of ground ice permitted ice-cored rock glaciers to be distinguished from ice-cemented rock glaciers, subsea permafrost to be identified in some raised beaches, and other interpretations to be suggested about a debris-covered glacier. These results have been obtained by vertical electrical soundings (VES) carried out in ice-free areas of the Northern Foothills, near Terra Nova Bay Station during the tenth national Italian expedition in Antarctica (1994–1995). In these areas on the basis of previous geomorphological research, some landforms such as rock glaciers, raised beaches with patterned ground and debris-covered glaciers were chosen to carry out the VES. The electrical prospection can be considered a good means for understanding the origins of landforms in ice-free areas of Antarctica and for making a contribution to the palaeoenvironmental reconstruction of this continent.  相似文献   

2.
This paper reviews permafrost in High Arctic Svalbard, including past and current research, climatic background, how permafrost is affected by climatic change, typical permafrost landforms and how changes in Svalbard permafrost may impact natural and human systems. Information on active layer dynamics, permafrost and ground ice characteristics and selected periglacial features is summarized from the recent literature and from unpublished data by the authors. Permafrost thickness ranges from less than 100 m near the coasts to more than 500 m in the highlands. Ground ice is present as rock glaciers, as ice-cored moraines, buried glacial ice, and in pingos and ice wedges in major valleys. Engineering problems of thaw-settlement and frost-heave are described, and the implications for road design and construction in Svalbard permafrost areas are discussed.  相似文献   

3.

The Kozia Dolinka valley lies at an altitude above 1900 m a.s.l. on the northern slope of the main ridge of the High Tatra Mountains. Mountain permafrost occurrences were studied with the use of BTS, infrared imaging, water and ground temperature measurements and DC resistivity soundings. The data suggest the existence of isolated patches of permafrost. The lowest observed bottom temperature of winter snow values was in the order of-10C. DC soundings revealed the existence of a high resistivity layer of limited extent. Permafrost seasonal monitoring was conducted with resistivity soundings. Measurements were carried out in spring-autumn 1999, when a distinct change in permafrost thickness was observed.  相似文献   

4.

The Posets massif is located in the Central Pyrenees and reaches a height of 3363 m a.s.l. at the Posets peak, the second highest massif in the Pyrenees. Geomorphological maps of scales 1:25000 and 1:10000, BTS (bottom temperature of winter snow), ground measurements and snow poles were used to observe the more representative periglacial active landform association, ground thermal regime, the winter snow cover evolution and basal temperatures of snow. The main active periglacial landforms and processes related to the ground thermal regime and snow cover were studied. Mountain permafrost up to 2700 m a.s.l. on northexposed slopes and up to 2900 m a.s.l. on south-exposed slopes were detected. Three permafrost belts were differentiated: sporadic permafrost between 2700 and 2800 m a.s.l. and between 2850 and 3000 m a.s.l., discontinuous permafrost between 2800 and 2950 and between 2950 and 3050, and continuous permafrost up to 2900 m a.s.l. and up to 3050 m a.s.l. on northern and southern slopes, respectively.  相似文献   

5.
The Sachette rock glacier is an active rock glacier located between 2660 and 2480 m a.s.l. in the Vanoise Massif, Northern French Alps (45° 29′ N, 6° 52′ E). In order to characterize its status as permafrost feature, shallow ground temperatures were monitored and the surface velocity measured by photogrammetry. The rock glacier exhibits near‐surface thermal regimes suggesting permafrost occurrence and also displays significant surface horizontal displacements (0.6–1.3 ± 0.6 m yr–1). In order to investigate its internal structure, a ground‐penetrating radar (GPR) survey was performed. Four constant‐offset GPR profiles were performed and analyzed to reconstruct the stratigraphy and model the radar wave velocity in two dimensions. Integration of the morphology, the velocity models and the stratigraphy revealed, in the upper half of the rock glacier, the good correspondence between widespread high radar wave velocities (>0.15–0.16 m ns–1) and strongly concave reflector structures. High radar wave velocity (0.165–0.170 m ns–1) is confirmed with the analysis of two punctual common mid‐point measurements in areas of exposed shallow pure ice. These evidences point towards the existence of a large buried body of ice in the upper part of the rock glacier. The rock glacier was interpreted to result from the former advance and decay of a glacier onto pre‐existing deposits, and from subsequent creep of the whole assemblage. Our study of the Sachette rock glacier thus highlights the rock glacier as a transitional landform involving the incorporation and preservation of glacier ice in permafrost environments with subsequent evolution arising from periglacial processes.  相似文献   

6.
7.
Arctic tundra surfaces are dominated by a variety of patterned ground forms. Whereas a large number of studies have described morphology, structure and processes of patterned ground, few have monitored detailed patterned ground dynamics and subsurface environments continuously. We applied electrical resistivity tomography (ERT) to understand near‐surface conditions of two types of patterned ground, ice‐wedge polygons and mudboils in Svalbard, where periglacial processes associated with permafrost are intensively monitored. Automated monitoring shows surface movement characterized by annual cycles of frost heave and thaw settlement, the amounts and rates of which are influenced by the intensity of ice segregation. A time series of ERT shows (1) a distinct resistivity boundary delimiting the active‐layer depth, (2) seasonal variation in resistivity controlled by thermo‐hydrological dynamics and (3) spatial variation in resistivity reflecting desiccation in summer and intensive ice segregation in winter. These results demonstrate ERT as a useful complementary technique for monitoring active‐layer depths and near‐surface hydrological conditions at periglacial patterned ground sites, where automated soil thermal and moisture measurements are limited.  相似文献   

8.

It has repeatedly been reported that snow cover is a dominating factor in determining the presence or absence of permafrost in the discontinuous and sporadic permafrost regions. The temperature at the snow-soil interface by the end of winter, known as the bottom temperature of winter snow (BTS) method, has been used to detect the existence of permafrost in European alpine regions when the maximum snow depth is about 1.0 m or greater. A critical snow thickness of about 50 cm or greater can prevent the development of permafrost in eastern Hudson Bay, Canada. The objective of this study is to investigate the impact of snow cover on the presence or absence of permafrost in cold regions through numerical simulations. A one-dimensional heat transfer model with phase change and a snow cover regime is used to simulate energy exchange between deep soils and the atmosphere. The model has been validated against the in situ data in the Arctic. The simulation results indicate that both snow depth and the onset date of snow cover establishment are important parameters in relation to the presence or absence of permafrost. Early establishment of snow cover can make permafrost disappear, even with a relatively thin snow cover. Permafrost may survive when snow cover starts after the middle of December even with a snow thickness >1.0 m. This effect of snow cover on the ground thermal regime can be explained with reference to the pattern of seasonal temperature variation. Early establishment of snow cover enhances the insulating impact over the entire cold season, thus warming and eventually thawing the permafrost. The insulating effect is substantially reduced when snow cover starts relatively late and snowmelt in the spring creates a huge heat sink, resulting in a favorable combination for permafrost existence.  相似文献   

9.
The origin and mobilization of the extensive debris cover associated with the glaciers of the Nanga Parbat Himalaya is complex. In this paper we propose a mechanism by which glaciers can form rock glaciers through inefficiency of sediment transfer from glacier ice to meltwater. Inefficient transfer is caused by various processes that promote plentiful sediment supply and decrease sediment transfer potential. Most debris‐covered glaciers on Nanga Parbat with higher velocities of movement and/ or efficient debris transfer mechanisms do not form rock glaciers, perhaps because debris is mobilized quickly and removed from such glacier systems. Those whose ice movement activity is lower and those where inefficient sediment transfer mechanisms allow plentiful debris to accumulate, can form classic rock glaciers. We document here with maps, satellite images, and field observations the probable evolution of part of a slow and inefficient ice glacier into a rock glacier at the margins of Sachen Glacier in c. 50 years, as well as several other examples that formed in a longer period of time. Sachen Glacier receives all of its nourishment from ice and snow avalanches from surrounding areas of high relief, but has low ice velocities and no efficient system of debris removal. Consequently it has a pronounced digitate terminus with four lobes that have moved outward from the lateral moraines as rock glaciers with prounced transverse ridges and furrows and steep fronts at the angle of repose. Raikot Glacier has a velocity five times higher than Sachen Glacier and a thick cover of rock debris at its terminus that is efficienctly removed. During the advance stage of the glacier since 1994, ice cliffs were exposed at the terminus, and an outbreak flood swept away much debris from its margins and terminus. Like the Sachen Glacier that it resembles, Shaigiri Glacier receives all its nourishment from ice and snow avalanches and has an extensive debris cover with steep margins close to the angle of repose. It has a high velocity similar to Raikot Glacier and catastrophic breakout floods have removed debris from its terminus twice in the recent past. In addition, the Shaigiri terminus blocked the Rupal River during the Little Ice Age and is presently being undercut and steepened by the river. With higher velocities and more efficient sediment transfer systems, neither the Raikot nor the Shaigiri form classic rock‐glacier morphologies.  相似文献   

10.
As one of the five components of Earth's climatic system, the cryosphere has been undergoing rapid shrinking due to global warming. Studies on the formation, evolution, distribution and dynamics of cryospheric components and their interactions with the human system are of increasing importance to society. In recent decades, the mass loss of glaciers, including the Greenland and Antarctic ice sheets, has accelerated. The extent of sea ice and snow cover has been shrinking, and permafrost has been degrading. The main sustainable development goals in cryospheric regions have been impacted. The shrinking of the cryosphere results in sea-level rise, which is currently affecting, or is soon expected to affect, 17 coastal megacities and some small island countries. In East Asia, South Asia and North America, climate anomalies are closely related to the extent of Arctic sea ice and snow cover in the Northern Hemisphere. Increasing freshwater melting from the ice sheets and sea ice may be one reason for the slowdown in Atlantic meridional overturning circulation in the Arctic and Southern Oceans. The foundations of ports and infrastructure in the circum-Arctic permafrost regions suffer from the consequences of permafrost degradation. In high plateaus and mountainous regions, the cryosphere's shrinking has led to fluctuations in river runoff, caused water shortages and increased flooding risks in certain areas. These changes in cryospheric components have shown significant heterogeneity at different temporal and spatial scales. Our results suggest that the quantitative evaluation of future changes in the cryosphere still needs to be improved by enhancing existing observations and model simulations. Theoretical and methodological innovations are required to strengthen social economies' resilience to the impact of cryospheric change.  相似文献   

11.
Snow cover influences the thermal regime and stability of frozen rock walls. In this study, we investigate and model the impact of the spatially variable snow cover on the thermal regime of steep permafrost rock walls. This is necessary for a more detailed understanding of the thermal and mechanical processes causing changes in rock temperature and in the ice and water contents of frozen rock, which possibly lead to rock wall instability. To assess the temporal and spatial evolution and influence of the snow, detailed measurements have been carried out at two selected points in steep north‐ and southfacing rock walls since 2012. In parallel, the one‐dimensional energy balance model SNOWPACK is used to simulate the effects of snow cover on the thermal regime of the rock walls. For this, a multi‐method approach with high temporal resolution is applied, combining meteorological, borehole rock temperature and terrain parameter measurements. To validate the results obtained for the ground thermal regime and the seasonally varying snowpack, the model output is compared with near‐surface rock temperature measurements and remote snow cover observations. No decrease of snow depth at slope angles up to 70° was observed in rough terrain due to micro‐topographic structures. Strong contrasts in rock temperatures between north‐ and south‐facing slopes are due to differences in solar radiation, slope angle and the timing and depth of the snow cover. SNOWPACK proved to be useful for modelling snow cover–rock interactions in smooth, homogenous rock slopes.  相似文献   

12.
《Polar Science》2014,8(2):96-113
Understanding geocryological characteristics of frozen sediment, such as cryostratigraphy, ice content, and stable isotope ratio of ground ice, is essential to predicting consequences of projected permafrost thaw in response to global warming. These characteristics determine thermokarst extent and controls hydrological regime—and hence vegetation growth—especially in areas of high latitude; it also yields knowledge about the history of changes in the hydrological regime. To obtain these fundamental data, we sampled and analyzed unfrozen and frozen surficial sediments from 18 boreholes down to 1–2.3 m depth at five sites near Chokurdakh, Russia. Profiles of volumetric ice content in upper permafrost excluding wedge ice volume showed large variation, ranging from 40 to 96%, with an average of 75%. This large amount of ground ice was in the form of ice lenses or veins forming well-developed cryostructures, mainly due to freezing of frost-susceptible sediment under water-saturated condition. Our analysis of geocryological characteristics in frozen ground including ice content, cryostratigraphy, soil mechanical characteristics, organic matter content and components, and water stable isotope ratio provided information to reconstruct terrestrial paleo-environments and to estimate the influence of recent maximum thaw depth, microtopography, and flooding upon permafrost development in permafrost regions of NE Russia.  相似文献   

13.
The service seNorge ( http://senorge.no ) provides gridded temperature and precipitation for mainland Norway. The products are provided as interpolated station measurements on a 1 × 1 km grid. Precipitation gauges are predominantly located at lower elevations such as coastal areas and valleys. Therefore, there are large uncertainties in extrapolating precipitation data to higher altitudes, both due to sparsity of observations as well as the large spatial variability of precipitation in mountainous regions. Using gridded temperature and precipitation data from seNorge, surface mass balance was modeled for five Norwegian glaciers of different size and climate conditions. The model accounts for melting of snow and ice by applying a degree‐day approach and considers refreezing assuming a snow depth depended storage. Calculated values are compared to point measurements of glacier winter mass balance. On average for each glacier, modeled and measured surface mass‐balance evolutions agree well, but results at individual stake locations show large variability. Two types of problems were identified: first, grid data were not able to capture spatial mass balance variability at smaller glaciers. Second, a significant increase in the bias between model and observations with altitude for one glacier suggested that orographic enhancement of precipitation was not appropriately captured by the gridded interpolation.  相似文献   

14.
A ground truth study was performed on first year fast ice in Kongsfjorden, Svalbard, during spring 1997 and 1998. The survey included sea ice thickness monitoring as well as observation of surface albedo, attenuation of optical radiation in the ice, physical properties and texture of snow and sea ice. The average total sea ice thickness in May was about 0.9 m, including a 0.2 m thick snow layer on top. Within a few weeks in both years, the snow melted almost completely, whereas the ice thickness decreased by not more than 0.05 m. During spring, the lower part of the snow refroze into a solid layer. The sea ice became more porous. Temperatures in the sea ice increased and the measurable salinity of the sea ice decreased with time. Due to snow cover thinning and snow grain growth, maximum surface albedo decreased from 0.96 to 0.74. Texture analysis on cores showed columnar ice with large crystals (max. crystal lenght > 0.1 m) below a 0.11 m thick mixed surface layer of granular ice with smaller crystals. In both years, we observed sea ice algae at the bottom part of the ice. This layer has a significant effect on the radiation transmissivity.  相似文献   

15.
We present a glaciological and climatic reconstruction of a former glacier in Coire Breac, an isolated cirque within the Eastern Grampian plateau of Scotland, 5 km from the Highland edge. Published glacier reconstructions of presumed Younger Dryas‐age glaciers in this area show that equilibrium line altitudes decreased steeply towards the east coast, implying a arctic maritime glacial environment. Extrapolation of the ELA trend surface implies that glaciers should have existed in suitable locations on the plateau, a landscape little modified by glaciation. In Coire Breac, a 0.35 km2 cirque glacier existed with an equilibrium line altitude of 487 ± 15 m above present sea level. The equilibrium line altitude matches closely the extrapolated regional equilibrium line altitude trend surface for Younger Dryas Stadial glaciers. The mean glacier thickness of 24 m gives an ice volume of 7.8 × 106 m3, and a maximum basal shear stress of c. 100 kPa?1. Ablation gradient was c. –0.0055 m m?1, with a mean July temperature at the equilibrium line altitude of c. 5.1°C. The reconstruction implies an arctic maritime climate of low precipitation with local accumulation enhanced by blown snow, which may explain the absence of other contemporary glaciers nearby. Reconstructed ice flow lines show zones of flow concentration around the lower ice margin which help to explain the distribution of depositional facies associated with a former debris cover which may have delayed eventual glacier retreat. No moraines in the area have been dated, so palaeoclimatic interpretations remain provisional, and a pre‐Lateglacial Interstadial age cannot be ruled out.  相似文献   

16.
Rapp, Anders: Periglacial nivation cirques and local glaciations in the rock canyons of Söderåsen, Scania, Sweden. A discussion and new interpretation. Geografisk Tidsskrift 82: 95–99, Copenhagen, October 15, 1982.

Present opinions about the genesis of the rock canyons OdensjOn, Skäralid and Klöva Hallar of Söderåsen, Sweden are reviewed, and a new theory is presented. It is proposed, that during periglacial tundra periods large amounts of drifting snow collected in valleys of north-south directions. Small glaciers were created, which caused local overdeepening and removal of loose material. These processes were active in tundra periods before and after the main Quaternary glaciations.

SUMMARY

Odensjön, Skäralid and Klöva Hallar are three valleys of canyon type, deeply cut (60–100 m) into the horst block of Söderåsen, of fractured Precambrian gneiss rock. It has been shown by other authors that the cold periods after the Weichselian deglaciation were characterized by permafrost and ice wedges on sandy plains in south Sweden. Strong winds caused widespread wind-polishing of stones and bedrock, predominantly from easterly and westerly directions. Based on this evidence, the author presents the theory that large deposits of wind-blown snow were trapped in the canyon valleys of Söderåsen, except for the valleys of east-west directions. The snow was metamorphosed to firn and local, small glaciers, which filled the valleys. The rims of the canyon valleys have in many cases well developed nivation hollows, either steep nivation funnels or gently sloping, semicircular nivation cirques. Odensjøn is a closed, semicircular rock basin, which has been much discussed by scientists earlier, and which seems to fit the theory of creation by nivation from mainly west, but also east, and a local cirque glacier flow northwards causing the overdeepening and removal of loose material. The three valleys mentioned were problably widened and deepened into a series of nivation basins in tundra periods before and after each major continental glaciation. The nivation hollows and the deep canyon valleys were not destroyed by glacial erosion during the Weichselian and earlier Quaternary major ice advances, because the valleys were filled with densely packed snow and ice from snow drifting before the main glacier front moved over them from NE directions. The theory will be further checked by a team of scientists from the Department of Physical Geography in Lund. A comparison is made with cirque forms in present-day mountain tundra conditions in the area of Kärkevagge in northern Lappland, investigated by the author during the 1950's and later.  相似文献   

17.

A regional model was used to draw the permafrost distribution in the 200 km 2 of the Bagnes-Hérémence area (Western Swiss Alps). The model is based on the fact that permafrost distribution depends mainly on altitude and orientation and that the minimal altitude of active/inactive rock glaciers can be used as an indicator of the lower limit of discontinuous permafrost. The lower limit of relict rock glaciers is also used as an indicator of past distribution of permafrost. An inventory of rock glaciers was therefore made in the study area. The lower limit of permafrost during the Younger Dryas was determined by comparing the position of relict rock glaciers and glacier extension during the Older Dryas. The model was then applied to four periods (Younger Dryas, Little Ice Age, current period and future) in order to show the temporal evolution of permafrost distribution and glacier extension.  相似文献   

18.
This paper presents and compares ground thermal regimes at 4200 and 4800 m a.s.l. on Mount Kenya's southern aspect. Temperatures were recorded using Tinytalk? data loggers, installed at the ground surface and at depths of 1 cm, 5 cm, 10 cm and 50 cm. Temperatures were logged at 2‐hour intervals over a period of 12 months (August 1998 to July 1999). The study is designed to demonstrate near‐surface freeze conditions, which would have implications for contemporary periglacial landform production. Although ground freeze at 4200 m a.s.l. occurs during most nights (c. 70% at 1 cm depth), freeze penetration is restricted to the top 2 to 3 cm, such that no freeze was recorded at 5 cm depth. At 4800 m a.s.l., the diurnal frost frequency at the surface is 365 days (100%), whilst that at 10 cm depth is 165 days (45%). The paper demonstrates that a greater longevity of contemporary thin snow cover at 4800 m a.s.l. permits progressive sub‐surface cooling with depth. However, the near‐surface ground temperature profiles suggest that conditions are not conducive to permafrost development at the sites.  相似文献   

19.
A tongue‐like, boulder‐dominated deposit in Tverrbytnede, upper Visdalen, Jotunheimen, southern Norway, is interpreted as the product of a rock avalanche (landslide) due to its angular to subangular boulders, surface morphology with longitudinal ridges, down‐feature coarsening, and cross‐cutting relationship to ‘Little Ice Age’ moraines. The rock avalanche fell onto glacier ice, probably channelled along a furrow between two glaciers, and stopped on the glacier foreland, resulting in its elongated shape and long runout distance. Its distal margin may have become remobilized as a rock glacier, but a rock glacier origin for the entire landform is discounted due to lack of source debris, presence of matrix, lack of transverse ridges, and sparcity of melt‐out collapse pits. Lichenometric dating of the deposit indicates an approximate emplacement age of ad 1900. Analysis highlights the interaction of rock‐slope failures and glaciers during deglacierization in a neoparaglacial setting, with reduced slope stability due to debuttressing and permafrost degradation, and enhanced landslide mobility due to flow over a glacier and topographic channelling. Implications for the differentiation of relict landslides, moraines and rock glaciers are discussed and interrelationships between these landforms are considered in terms of an ice‐debris process continuum.  相似文献   

20.
Rock glaciers occur as lobate or tongue-shaped landforms composed of mixtures of poorly sorted, angular to blocky rock debris and ice. These landforms serve as primary sinks for ice and water storage in mountainous areas and represent transitional forms in the debris transport system, accounting for ~ 60% of all mass transport in some alpine regions. Observations of active (flowing) alpine rock glaciers indicate a common association between the debris that originates from cirque headwalls and the depositional lobes that comprise them. The delivery of this debris to the rock glacier is regulated primarily by the rate of headwall erosion and the point of origin of debris along the headwall. These factors control the relative movement of individual depositional lobes as well as the overall rate of propagation of a rock glacier. In recent geophysical studies, a number of alpine rock glaciers on Prins Karls Forland and Nordenskiöldland, Svalbard, Norway, and the San Juan Mountains of southwest Colorado, USA, have been imaged using ground penetrating radar (GPR) to determine if a relationship exists between the internal structure and surface morphology. Results indicate that the overall morphologic expression of alpine rock glaciers is related to lobate deposition during catastrophic episodes of rockfall that originated from associated cirque headwalls. Longitudinal GPR profiles from alpine rock glaciers examined in this study suggests that the difference in gross morphology between the lobate and tongue-shaped rock glaciers can be attributed primarily (but not exclusively) to cirque geometry, frequency and locations of debris discharge within the cirque, and the trend and magnitude of valley gradient in relation to cirque orientation. Collectively, these factors determine the manner in which high magnitude debris discharges, which seem to be the primary mechanism of formation, accumulate to form these rock glaciers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号