首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为促进对台风风暴潮灾害的预报预警,减少灾害带来的损失,文章综合分析2019年第9号台风“利奇马”对河北沿海引发的严重台风风暴潮灾害过程。研究结果表明:台风“利奇马”是2019年以来登陆我国的最强台风和1949年以来登陆浙江的第三强台风,给河北沿海造成长时间和高强度的风暴增水过程;水体远距离输运、东北大风、天文高潮和增水相结合,使河北沿海出现3次超过蓝色警戒潮位的高潮位,其中1次超过红色警戒潮位,这在20年来是首次;其中,强烈而持久的东北风是造成增水的主要原因。  相似文献   

2.
0715号台风“利奇马”风暴潮分析   总被引:1,自引:0,他引:1  
0715号台风"利奇马"于2007年10月2日23时登陆海南岛,引发了海南岛沿岸不同程度的风暴潮增水,多处岸段出现超过当地警戒潮位的高潮位,给海南省带来较大的经济损失.本文利用海洋站实测潮位资料对0715号台风的风暴潮过程进行分析,并对台风过程中的预报结果进行了总结,旨在进一步掌握风暴潮预报的规律.  相似文献   

3.
利用1991~2013年西沙海洋站实测的潮位、气压、风资料,统计分析发生在西沙永兴岛的台风风暴潮特征.统计结果为以后的台风风暴潮增水预报工作提供一定借鉴.统计分析发现:发生在永兴岛的台风风暴潮过程年最大增水值基本在34cm处上下波动,最高预警级别仅为蓝色;最大增水有明显的年际变化特征,预计接下来10a左右发生在永兴岛的台风风暴增水值大体逐年递减;最大增水若与极大天文潮相叠加,在永兴岛可能出现灾害性高潮位;年最大增水有明显的季节特征,在夏季最强,其次为秋季,冬季和春季最弱;台风中心经过时由负压引起的增水较为明显,单峰型、双峰型和振荡型的增水曲线形态均有出现;影响西沙永兴岛的热带气旋的年最大风速年际与季节性变化是导致永兴岛台风风暴潮特征的主要成因之一.  相似文献   

4.
利用环渤海9个沿岸站近10a潮位资料分析渤海海域的风暴减水特征,结果表明:渤海年均出现50cm和100cm风暴减水分别超过30d和6d,每年的9月至翌年4月份风暴减水最为频繁;建立了一套精细化天文潮-风暴潮耦合模型用于渤海深水航路的潮位预报,各站天文潮模拟验证的平均均方根误差为18.5cm,由此计算得到航路代表点的潮汐特征值并作潮汐预报;后报模拟了近10a重大风暴减水过程,模拟与实测吻合较好,说明该耦合模型可为该航路的潮位预报提供有益参考。  相似文献   

5.
浙江沿海台风风暴潮类型与成因初探   总被引:2,自引:3,他引:2  
丁骏  车助美 《海洋预报》2003,20(2):5-14
本文主要对浙江沿海几个站点3次台风过程中所产生的前兆波增水类型进行研究,浅析了几种环境要素与增水的关系,从而为今后的增水预报提供参考。本文的增水曲线是用逐时实测潮位减去天文潮位所得的剩余绘制而成的。  相似文献   

6.
选择20个对舟山海域有较大影响的历史台风案例,开展定海站实测潮位数据的分析与归纳,总结得出20个台风中风暴潮过程增水最大值为5612号台风的207.1 cm,风暴潮高潮位最大值为9711号台风的283.7 cm。同时,在三维斜压水动力模型SELFE的基础上加入台风气压场和风场模块,建立了一个采用非结构三角形网格的天文潮-风暴潮耦合模型,模拟表明定海站的斜压效应较为明显,非线性耦合作用相对较弱,但两潮耦合风暴潮增水结果仍优于风暴潮单因子增水结果,与实际增水更为接近。在此基础上,以一定间隔在5612号台风原路径南北两侧各设计了2条平行路径,分别模拟两潮耦合风暴潮增水,结果表明5612号台风参数沿其原路径偏南1个最大风速半径距离的S1路径运动时可模拟得到定海站可能最大风暴潮增水为243.9 cm。最后,在S1路径下模拟可能最大风暴潮增水分别遭遇天文高、中、低潮位时的风暴潮高潮位,结果表明天文潮高潮时可得到可能最大风暴潮高潮位约为400 cm,天文中潮时次之,而天文低潮时风暴潮高潮位最低。  相似文献   

7.
2007年3月辽东湾西部减水特征分析   总被引:1,自引:0,他引:1  
利用秦皇岛、兴城以及葫芦岛3个测站的气象及潮位的连续观测资料,对2007年3月东北及华北部分地区56 a来同期最强的暴风雪强天气过程引起的辽东湾西部特大减水事件进行了分析研究.结果表明,本次天气过程引发的秦皇岛、兴城及葫芦岛三站的最大减水分别达到了-217 cm,-228 cm及-230 cm,接近或超过了百年一遇减水强度,这为辽东湾西部海域的工程分析及风暴潮研究提供了实测参数.范围大、持续时间长、风力较强的离岸风的作用是造成本次辽东湾西岸强减水的主要原因.  相似文献   

8.
周黔生 《海洋预报》1992,9(3):56-59
现行风暴潮增水计算方法,通常是从实测潮位过程减去天文潮位过程,分离出来的差值过程称为实测风暴潮增水过程。其中的天文潮位一般用分潮法预先计算好,并制成表格以供查用。 风暴潮是一种长波运动,传播距离远,因此当台风远离海岸时,就已经对海岸潮汐发生影响,使潮位站的潮位发生异常变化,一般是高、低潮位出现时间提早,潮位增高,实测资料也证实了这一点。例如“8923”号台风时,浙江省海门站9月14日晚高潮出现时为20时23分,比从潮汐表查得的时间20时44分提早21分钟,当然潮时推迟的情况也是有的。实测潮位比同一位相的天文潮位提早(或延后)的时间Δt的长短与台风强弱、台风移动路径等因素有关。  相似文献   

9.
浙江海岛风暴潮研究   总被引:1,自引:2,他引:1  
浙江沿海岛屿众多,分布广泛,500m2以上的海岛就有3061个。本文对全省海岛风暴潮及其灾害进行了较系统的分析和研究。结果表明,全省海岛区是受台风影响频繁及风暴潮灾害较严重的区域。风暴潮及其灾害一般浙南岛区要大于浙中、浙北岛区,近岸海岛区要大于离岸较远的岛区。影响全省海岛的台风主要是沿海登陆型或近海转向型台风路径,而浙南岛区福建北部或中部登陆的台风影响亦较大。全省海岛台风增水主要受控于台风风场,当海岛各站置于NE~N风场时,出现增水,增水量值随风速的增大而增加,而在强劲的偏西风场下,岛区各站将出现不同程度的减水  相似文献   

10.
宁德地区是我国受风暴潮影响较为严重的区域之一,同时也是宁德核电站等众多沿海大型工程所在地.鉴于该区域特殊的地理位置和海洋灾害的严重性,以宁德核电站为中心,对该区域所面临风暴潮风险的特征参数进行全面、综合的定量评估,包括潮汐特征、平均海平面变化、台风和风暴潮基本特征,特别是可能最大风暴潮的计算.研究结果表明,该区域10%超越频率的天文潮高、低潮位分别为355、-341 cm;平均海平面变化速率为0.162 cm/a;千年一遇的台风中心气压约为895h Pa,该气压时的最大台风风速半径为40 km.在进行大量敏感性实验的基础上,对台风移速、移向和风暴增水/减水的关系,以及增水和减水的差异就行了详细的研究,得出:台风增水主要是由移向在305°左右(295°~315°)、路过核电站下方(核电站以南)的台风引起,且增水随台风移速增大而增大;可能最大台风风暴增水由路径经过核电厂址南40 km的台风(移向295°、移速28 km/h)引起,最大台风增水值为526.8 cm;对于可能最大台风减水而言,最有利于台风风暴减水的移向在355°~360°和0°~15°之间,其中可能最大台风减水为-301.9 cm,由移向5°、移速30 km/h、路径经过核电厂址南30 km(0.75台风最大风速半径)的台风引起.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号