首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The level of wave geomagnetic activity in the morning and daytime sectors of auroral latitudes during strong magnetic storms with Dst min varying from ?100 to ?150 nT in 1995–2002 have been studied using a new ULF index of wave activity proposed in [Kozyreva et al., 2007]. It has been detected that daytime Pc5 pulsations (2–6 mHz) are most intense during the main phase of a magnetic storm rather than during the recovery phase as was considered previously. It has been indicated that morning geomagnetic pulsations during the substorm recovery phase mainly contribute to daytime wave activity. The appearance of individual intervals with the southward IMF B z component during the magnetic storm recovery phase results in increases in the ULF index values.  相似文献   

2.
The ionospheric responses to a large number (116) of moderate (?50≥Dst>?100 nT) geomagnetic storms distributed over the period (1980–1990) are investigated using total electron content (TEC) data recorded at Calcutta (88.38°E, 22.58°N geographic, dip: 32°N). TEC perturbations exhibit a prominent dependence on the local times of main phase occurrence (MPO). The storms with MPO during daytime hours are more effective in producing larger deviations and smaller time delays for maximum positive deviations compared to those with nighttime MPO. Though the perturbations in the equinoctial and winter solstitial months more or less follow the reported climatology, remarkable deviations are detected for the summer solstitial storms. Depending on the local times of MPO, the sunrise enhancement in TEC is greatly perturbed. The TEC variability patterns are interpreted in terms of the storm time modifications of equatorial electric field, wind system and neutral composition.  相似文献   

3.
Equations of regression are derived for the intense magnetic storms of 1957?2016. They reflect the nonlinear relation between Dstmin and the effective index of geomagnetic activity Ap(τ) with a timeweighted factor τ. Based on this and on known estimations of the upper limit of the magnetic storm intensity (Dstmin =–2500 nT), the maximal possible value Ap(τ)max ~ 1000 nT is obtained. This makes it possible to obtain initial estimates of the upper limit of variations in some parameters of the thermosphere and ionosphere that are due to geomagnetic activity. It is found, in particular, that the upper limit of an increase in the thermospheric density is seven to eight times larger than for the storm in March 1989, which was the most intense for the entire space era. The maximum possible amplitude of the negative phase of the ionospheric storm in the number density of the F2-layer maximum at midlatitudes is nearly six times higher than for the March 1989 storm. The upper limit of the F2-layer rise in this phase of the ionospheric storm is also considerable. Based on qualitative analysis, it is found that the F2-layer maximum in daytime hours at midlatitudes for these limiting conditions is not pronounced and even may be unresolved in the experiment, i.e., above the F1-layer maximum, the electron number density may smoothly decrease with height up to the upper boundary of the plasmasphere.  相似文献   

4.
Geomagnetic storms are large disturbances in the Earth's magnetosphere caused by enhanced solar wind–magnetosphere energy transfer. One of the main manifestations of a geomagnetic storm is the ring current enhancement. It is responsible for the decrease in the geomagnetic field observed at ground stations. In this work, we study the ring current dynamics during two different levels of magnetic storms. Thirty-three events are selected during the period 1981–2004. Eighteen out of 33 events are very intense (or super-intense) magnetic storms (Dst ⩽−250 nT) and the remaining are intense magnetic storms (−250<Dst ⩽−100 nT). Interplanetary data from spacecraft in the solar wind near Earth's orbit (ACE, IMP-8, ISEE-3) and geomagnetic indices (Dst and Sym-H) are analyzed. Our aim is to evaluate the interplanetary characteristics (interplanetary dawn–dusk electric field, interplanetary magnetic field component BS), the ε parameter, and the total energy input into the magnetosphere () for these two classes of magnetic storms. Two corrections on the ε energy coupling function are made: the first one is an already known correction in the magnetopause radius to take into account the variation in the solar wind pressure. The second correction on the Akasofu parameter, first proposed in this work, accounts for the reconnection efficiency as a function of the solar wind ram pressure. Geomagnetic data/indices are also employed to study the ring current dynamics and to search for the differences in the storm evolution during these events. Our corrected ε parameter is shown to be more adequate to explain storm energy balance because the energy input and the energy dissipated in the ring current are in better agreement with modern estimates as compared with previous works. For super-intense storms, the correction of the Akasofu ε is on average a scaling factor of 3.7, whilst for intense events, this scaling factor is on average 3.4. The injected energy during the main phase using corrected ε can be considered a criterion to separate intense from very intense storms. Other possibilities of cutoff values based on the energy input are also investigated. A threshold value for the input energy is much more clear when a new classification on Dst=−165 nT is considered. It was found that the energy input during storms with Dst<−165 nT is double of the energy for storms with Dst>−165 nT.  相似文献   

5.
The results of studying the intensity of fluxes of 30–80 keV ions from the data of measurements of the NOAA (POES) sun-synchronous satellites during geomagnetic storms of different intensity are presented. For 15 geomagnetic storms with |Dst|max from ~37 to ~422 nT, the storm-time maximum ion fluxes in the near-equatorial region (trapped particles) and at high latitudes (precipitating particles) have been considered. It is shown that the maximum fluxes of trapped particles, which are considered a ring-current proxy, increase with the storm power. In this case, if a smooth growth of fluxes is recorded for storms with |Dst|max < 250 nT in the near-equatorial region, a significantly steeper growth of fluxes of trapped particles is observed when storm power increases during storms with |Dst|max > 250 nT. This may be evidence of both an increasing of the contribution of the ring current relative to magnetotail currents to the development of high-intensity storms and to a nonlinear link between the ring current and ion fluxes at low altitudes in the near-equatorial region. Despite large variations in fluxes of precipitating particles in the polar region above the boundary of isotropization, a decreasing tendency, as a whole, in fluxes of these particles is observed with increasing the storm intensity. This is the evidence of the effect of saturation of magnetotail currents and of an increase in the relative role of the ring current during strong magnetic storms.  相似文献   

6.
The period of interplanetary, geomagnetic and solar disturbances of September 7–15, 2005, is characterized by two sharp increases of solar wind velocity to 1000 km/s and great Dst variation of the geomagnetic field (~140 nT). The time variations of theoretical and experimental geomagnetic thresholds observed during this strong geomagnetic storm, their connection with solar wind parameters and the Dst index, and the features of latitudinal behavior of geomagnetic thresholds at particular times of the storm were studied. The theoretical geomagnetic thresholds were calculated with cosmic ray particle tracing in the magnetic field of the disturbed magnetosphere described by Ts01 model. The experimental geomagnetic thresholds were specified by spectrographic global survey according to the data of cosmic ray registration by the global station network.  相似文献   

7.
The effect of auroral electrojets on the variations in the low-latitude geomagnetic disturbances and Dst during a strong magnetic storm of November 20–21, 2003, with Dst ≈ ?472 nT has been studied based on the global magnetic observations. It has been indicated that the magnetospheric storm expansive phase with Δt ≈ 1–2 h results in positive low-latitude disturbances (ΔH) of the same duration and with an amplitude of ~ 1–2 h results in positive low-latitude disturbances (ΔH) of the same duration and with an amplitude of ~ 30–100 nT in the premidnight-dawn sector. A growth of negative low-latitude ΔH values and Dst is mainly caused by regular convection electrojets with Δt ≥ 10 h, the centers of which shift to latitudes of ~ 50°–55° during the storm development. It has been established that the maximal low-latitude values of the field ΔH component at 1800–2400 MLT are observed when the auroral luminosity equatorward boundary shifts maximally southward during an increase in the negative values of the IMF B z component. It has been assumed that, during this storm, a magnetic field depression at low latitudes was mainly caused by an enhancement of the partially-ring current which closes through field-aligned currents into the ionosphere at the equatorward boundary of the auroral luminosity zone.  相似文献   

8.
The occurrence of strong ionospheric scintillations with S4≥0.2 was studied using global positioning system (GPS) measurements at Guilin (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of equatorial anomaly in China. The results are presented for data collected from January 2007 to December 2008. The results show that amplitude scintillations occurred only during the first five months of the considered years. Nighttime amplitude scintillations, observed mainly in the south of Guilin, always occurred with phase scintillations, total electron content (TEC) depletions, and Rate Of change of TEC (ROT) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations usually occurred in most of the azimuth directions. GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively.  相似文献   

9.
The time variations in the CR geomagnetic cutoff rigidity and their relation to the interplanetary parameters and the Dst index during a strong magnetic storm of November 18–24, 2003, have been analyzed. The Tsyganenko (Ts03) model of a strongly disturbed magnetosphere [Tsyganenko, 2002a, 2002b; Tsyganenko et al., 2003] have been used to calculate effective geomagnetic thresholds with the help of the method for tracing CR particle trajectories in the magnetospheric magnetic field. The geomagnetic thresholds have been calculated using the method of global spectrographic survey (GSS), based on the data from the global network of CR stations, and the results have been compared with the effective geomagnetic cutoff rigidities. The daily anisotropy of effective geomagnetic thresholds during the Dst variation minimum have been estimated. The relation of the theoretical and experimental geomagnetic thresholds, obtained using the GSS method, to the interplanetary parameters and Dst variation is analyzed. The Dst variations, IMF B z , and solar wind density are most clearly defined in the geomagnetic thresholds during this storm. The correlation between B y and experimental geomagnetic thresholds is higher than such a correlation between this parameter and theoretical thresholds by a factor 2–3, which suggests that a real dawn-dusk asymmetry during this storm was stronger than such an asymmetry represented by the Ts03 model.  相似文献   

10.
The fact that magnetic clouds are one of the main sources causing geomagnetic storms is a well-established fact. One of the issues is to establish those features of magnetic clouds determinant in the intensity of the Dst corresponding to geomagnetic storms. We examine measurements of geoeffective magnetic clouds during the period 1995–2006 providing geomagnetic storms with Dst indexes lower than ?100 nT. These involve 46 geomagnetic storm events. After establishing the different characteristics of the magnetic clouds (plasma velocity, maximum magnetic intensity, etc.) we show some results about the correlations found among them and the storms intensity, finding that maximum magnetic field magnitude is a determinant factor to establish the importance of magnetic clouds in generating geomagnetic storms, having a correlation as good as the electric convective field.  相似文献   

11.
Ionospheric disturbances at heights of the F 2 layer maximum during the strong magnetic storm (the minimum value of the Dst index was ?149 nT) and the magnetic superstorm (the minimum value of the Dst index was ?387 nT) have been compared based on the data from two pairs of magnetically conjugate midlatitude ground stations for ionospheric vertical sounding. The storms began on March 19, 2001, and March 31, 2001, respectively. It has been obtained that almost only negative ionospheric disturbances were observed in the Northern and Southern hemispheres in both cases. The maximum effect in changes in the layer critical frequency (foF2) in both hemispheres has a time delay relative to the moment of the maximum disturbance in the Dst index on the order of 3–4 h for the strong storm and about 1 h for the superstorm. The disturbed variations in the foF2 critical frequency in different hemispheres correlate well with each other in the plane of one magnetic meridian, but the correlation substantially weakens at different magnetic longitudes. An assumption is made that the revealed features of the behavior of the disturbed midlatitude ionospheric F 2 layer are caused by the complex character of the thermospheric response to the energy release in the auroral zone during the considered magnetic storms.  相似文献   

12.
The effects of geomagnetic storm on GPS ionospheric scintillations are studied here using GPS scintillation data recorded at Sanya (18.3°N, 109.5°E; geomagnetic: 7.6°N, 180.8°E), the southmost station in the Chinese longitude region. GPS scintillation/TEC and DMSP data are utilized to show the development of irregularities during the period year 2005 (solar minimum). Statistical analysis of K planetary index (Kp) and amplitude scintillation index (S4) indicates that most storms of the year did not trigger the scintillation occurrence at Sanya. However, cases of scintillation occurring during moderate and strong storm (Dst<−100) periods show clearly that the development of irregularities producing scintillations can be triggered by geomagnetic storms during the low scintillation occurrence season. The effects (trigger or not trigger/inhibit) depend on the maximum dDst/dt determined local time sector, and can be explained by the response of the equatorial vertical drift velocities to magnetospheric and ionospheric disturbance electric fields. For station Sanya, the maximum dDst/dt determined local time is near the noon (or post-midnight) sector for most storms of the year 2005, which inhibited (or did not trigger) the post-sunset (or post-midnight) scintillation occurrence and then led to the phenomena that the statistical results presented.  相似文献   

13.
We investigate the flux evolution of geostationary orbit energetic electrons during a strong storm on 24 August 2005(event A,the storm index Dst<200 nT,the average substorm index AE=436 nT)and a weak storm on 28 October 2006(event B,Dst>50 nT,average AE=320 nT).Data collected by LANL and GOES-12 satellites show that energetic electron fluxes increase by a factor of 10 during the recovery phase compared to the prestorm level for both events A and B.As the substorm continued,the Cluster C4 satellite observed strong whistler-mode chorus waves(with spectral density approaching 10 5nT2/Hz).The wave amplitude correlates with the substorm AE index,but is less correlated with the storm Dst index.Using a Gaussian distribution fitting method,we solve the Fokker-Planck diffusion equation governing the wave-particle interaction.Numerical results demonstrate that chorus waves efficiently accelerate~1 MeV energetic electrons,particularly at high pitch angles.The calculated acceleration time scale and amplitude are comparable to observations.Our results provide new observational support for chorus-driven acceleration of radiation belt energetic electrons.  相似文献   

14.
Due to several complexities associated with the equatorial ionosphere, and the significant role which the total electron content (TEC) variability plays in GPS signal transmission, there is the need to monitor irregularities in TEC during storm events. The GPS SCINDA receiver data at Ile-Ife, Nigeria, was analysed with a view to characterizing the ionospheric response to geomagnetic storms on 9 March and 1 October 2012. Presently, positive storm effects, peaks in TEC which were associated with prompt penetration of electric fields and changes in neutral gas composition were observed for the storms. The maximum percentage deviation in TEC of about 120 and 45% were observed for 9 March and 1 October 2012, respectively. An obvious negative percentage TEC deviation subsequent to sudden storm commencement (SSC) was observed and besides a geomagnetic storm does not necessarily suggest a high scintillation intensity (S4) index. The present results show that magnetic storm events at low latitude regions may have an adverse effect on navigation and communication systems.  相似文献   

15.
We study the annual frequency of occurrence of intense geomagnetic storms (Dst < –100 nT) throughout the solar activity cycle for the last three cycles and find that it shows different structures. In cycles 20 and 22 it peaks during the ascending phase, near sunspot maximum. During cycle 21, however, there is one peak in the ascending phase and a second, higher, peak in the descending phase separated by a minimum of storm occurrence during 1980, the sunspot maximum. We compare the solar cycle distribution of storms with the corresponding evolution of coronal mass ejections and flares. We find that, as the frequency of occurrence of coronal mass ejections seems to follow very closely the evolution of the sunspot number, it does not reproduce the storm profiles. The temporal distribution of flares varies from that of sunspots and is more in agreement with the distribution of intense geomagnetic storms, but flares show a maximum at every sunspot maximum and cannot then explain the small number of intense storms in 1980. In a previous study we demonstrated that, in most cases, the occurrence of intense geomagnetic storms is associated with a flaring event in an active region located near a coronal hole. In this work we study the spatial relationship between active regions and coronal holes for solar cycles 21 and 22 and find that it also shows different temporal evolution in each cycle in accordance with the occurrence of strong geomagnetic storms; although there were many active regions during 1980, most of the time they were far from coronal holes. We analyse in detail the situation for the intense geomagnetic storms in 1980 and show that, in every case, they were associated with a flare in one of the few active regions adjacent to a coronal hole.  相似文献   

16.
In this work, we confirm the possibility of approximating the main phase of a magnetic storm (Dst ≤ ?50 nT) caused by magnetic clouds (MCs) with a linear dependence on solar-wind parameters, which are integral electric field sumEy, dynamic pressure Pd, and level of field fluctuations σB. The results show that the main phase of magnetic storm induced by MC is described best by a model with individual values of the main phase approximation coefficients: the correlation coefficient between the measured and model Dst values is 0.99, and the rms deviation is 2.6 nT. The model version with coefficients averaged over all storms describes the main phase much more poorly: the correlation coefficient is 0.65, and the rms deviation is 21.7 nT. A more precise version of the model of the storm main phase induced by MC was developed after introducing corrections that takes into account the history of development of onset of the magnetic-storm main phase: the correlation coefficient is 0.83, and the rms deviation is 15.6 nT. The Dst prediction results during the main phase using the technique suggested are shown for individual magnetic storms as examples.  相似文献   

17.
The variations in the total electron content (TEC), obtained from the data of 11 ground-based GPS stations in the region (5°S–80°N; 110–160°E) in the period August 2–15, 2006, have been analyzed in order to search for possible ionospheric manifestations of the SAOMAI powerful typhoon (August 5–11, 2006) near the south-eastern coast of China. The global TEC maps (GIM) have also been used. In the region of the typhoon action during the magnetic storm of August 7, 2006, an intensification of the TEC variations in the evening local time within the 32–128 min periods range was detected. However, this effect was most probably caused by the dynamics of the irregular structure of the equatorial anomaly and by the disturbed geomagnetic situation (Kp ~ 3–6, Dst varied from ?74 to ?153 nT). The analysis of the diurnal variations in the absolute values of TEC and TEC variations with periods of 2–25 min did not reveal a substantial increase in the intensity and changes in the spectrum of the TEC variations in the period of typhoon action as compared to the adjacent days. Thus, we failed to detect ionospheric disturbances unambiguously related to the SAOMAI typhoon.  相似文献   

18.
The level of wave geomagnetic activity in the morning, afternoon, and nighttime sectors during strong magnetic storms with Dst varying from ?100 to ?150 nT has been statistically studied based on a new ULF wave index. It has been found out that the intensity of geomagnetic pulsations at frequencies of 2–7 mHz during the magnetic storm initial phase is maximal in the morning and nighttime sectors at polar and auroral latitudes, respectively. During the magnetic storm main phase, wave activity is maximal in the morning sector of the auroral zone, and the pulsation intensity in the nighttime sector is twice as low as in the morning sector. It has been indicated that geomagnetic pulsations excited after substorms mainly contribute to a morning wave disturbance during the magnetic storm main phase. During the storm recovery phase, wave activity develops in the morning and nighttime sectors of the auroral zone; in this case nighttime activity is also observed in the subauroral zone.  相似文献   

19.
The dynamics of the auroral precipitation boundaries in the daytime (0900–1200 MLT) and nighttime (2100–2400 MLT) sectors during two strong magnetic storms of February 8–9, 1986, and March 13–14, 1989, with a Dst value at a maximum of approximately ?300 and ?600 nT, respectively, are studied using the DMSP satellite data. It is shown that, during the main phase of a storm, a shift to lower latitudes of the poleward and equator ward boundaries of the daytime precipitation is observed. In the nighttime sector, the equatorward boundary of the precipitation also shifts to lower latitudes, whereas the position of the poleward boundary depends weakly on the magnetic activity level even in the periods of very strong magnetic disturbances. The increase in the polar cap area occurs mainly due to the equatorward shift of the daytime precipitation. A high correlation degree between the equatorward shift of the poleward boundary of the daytime precipitation and the position of the equatorward boundary of the precipitation at the nighttime side of the Earth is demonstrated. The analysis of the events shows that (1) the magnetic activity level in the nighttime sector of the auroral zone influences considerably the position of the daytime precipitation boundaries during magnetic storms and that (2) the ring current inputs considerably into the value of the Dst variations.  相似文献   

20.
The dynamics of the magnetospheric magnetic field during the magnetic storms of different intensity has been studied. The magnetic field variations on the Earth’s surface were calculated using the paraboloid model of the magnetosphere, taking into account the induction currents flowing in the diamagnetically conductive Earth. Dst and its components have been calculated for ten magnetic storms. It has been indicated that relative contributions of magnetospheric sources to Dst change depending on the storm power. For weak and moderate storms, the contribution of the magnetotail current sheet can reach values comparable with the ring current contribution and, sometimes, can even exceed this contribution. For strong storms, the ring current field dominates over the tail current field, the absolute value of which does not exceed 150 nT (also achieved during less intense storms). For storms with minimum Dst exceeding-200 nT, the tail current field is saturated, whereas the ring current can continue developing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号