首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We present X-ray images from the P78-1 satellite for a long-lasting burst at 20 cm wavelength mapped with the Very Large Array on 19 May, 1979 by Velusamy and Kundu (1981). The decimeter wave observations were originally interpreted in terms of two models, one invoking thermal electrons radiating at low harmonics of the gyrofrequency, and the other invoking mildly relativistic electrons emitting gyrosynchrotron radiation. If indeed the 20 cm source is thermal, it should also be visible in soft X-rays, while if it is nonthermal, the soft X-ray emission should be weak or spatially or temporally distinct from the 20 cm burst. We find that only one of the three 20 cm sources was approximately co-spatial with the soft X-ray source, and that it was only partially thermal. The 20 cm burst is therefore primarily decimeter type IV emission from mildly relativistic electrons of the post-flare phase. The long lifetime (? 2h) and smooth temporal variation of the burst belie its nonthermal nature and suggest continuous acceleration as well as long term storage of energetic electrons.  相似文献   

2.
1–8 Å, 2–12 Å and 8–20 Å non-flare X-ray flux data and 9.1 cm spectroheliograms for 1237 days during the period July 1966 to June 1970 have been studied to derive physical models of λ < 20 Å X-ray emitting regions on the Sun under quiescent (non-flare) conditions. The preferred regions of emission below 20 Å which coincide with the coronal active regions characterised by enhanced 9.1 cm microwave emission are found to have temperature lying between 1.8 and 3 × 106 K, emission measure 1049–1050 and electron density 109-1010 per cc. The average area of an active region is 1020 cm2. A slow gradient of temperature and electron density is seen to exist around a region of peak activity, both temperature and electron density decreasing outwards. Based on the derived physical model of the emitting regions a new method is presented for calculating X-ray flux and spectral energy distribution in this wave length region using daily 9.1 cm solar spectroheliograms. The calculated values are in good agreement with the observed values.  相似文献   

3.
Periodicity in the 13–14 day range for full-disk UV fluxes comes mainly from episodes of solar activity with two peaks per rotation, produced by the solar rotational modulation from two groups of active regions roughly 180° apart in solar longitude. Thirteen-day periodicity is quite strong relative to the 27-day periodicity for the solar UV flux at most wavelengths in the 1750–2900 Å range, because the rapid decrease in UV plage emission on average with increasing solar central angle shapes the UV variations for two peaks per rotation into nearly a 13-day sinusoid, with deep minima when the main groups of active regions are near the limb. Chromospheric EUV lines and ground-based chromospheric indices have moderate 13-day periodicity, where the slightly greater emission of regions near the limbs causes a lower strength relative to the 27-day variations than in the above UV case. The lack of 13-day periodicity in the solar 10.7 cm flux is caused by its broad central angle dependence that averages out the 13-day variations and produces nearly sinusoidal 27-day variations. Optically thin full-disk soft X-rays can have 13-day periodicity out of phase with that of the UV flux because the X-ray emission peaks when both groups of active regions are within view, one group at each limb, when the optically thick UV flux is at a rotational minimum. The lack of 13-day periodicity in the strong coronal lines of Fexv at 284 Å and Fexvi at 335 Å during episodes of 13-day periodicity in UV and soft X-ray fluxes shows that the active region emission in these strong lines is not optically thin; resonant scattering is suggested to cause an effective optical depth near unity in these hot coronal lines for active regions near the limb.  相似文献   

4.
Usually the gyrosynchrotron emission of microwave bursts from electron populations with a power-law (PL) energy distribution has been considered under the assumption that the spectral index of the distribution is constant over a wide range of energies. Meanwhile, there is strong evidence, in particular from hard X-ray and -ray, but also from cm/mm wavelength radio observations, that in many solar flare events the spectrum of the emitting electrons is characterized by a significant hardening at energies above 100–500 keV. We present some examples of calculated microwave burst spectra at cm/mm wavelengths taking into account the above evidence. It is shown that a break in the energy spectrum of the PL electrons can indeed result in a spectral hardening sometimes observed in microwave bursts at frequencies above 10–30 GHz.  相似文献   

5.
The origin of X-ray solar bursts is investigated on the basis of the theoretical model developed by Syrovatskii. According to this model (i) one of the most important manifestations of flares is the acceleration of charged particles (mainly of electrons) to subrelativistic and relativistic energies, and (ii) the two flare phases: stationary (soft) and nonstationary (hard) should be distinguished. The first phase is accompanied by the generation of the soft (2–8 Å) thermal X-rays and the second one by the generation of hard thermal and nonthermal X-rays in the 10 keV range. The thermal X-rays arise in both phases due to the heating of the ambient gas by accelerated particles. The possible mechanisms of non-thermal X-rays are investigated. Simple models of the emitting region are considered, taking into account the simultaneous observations in different regions of the electromagnetic spectrum.  相似文献   

6.
Center-to-limb brightness distribution measurements of the quiet Sun at a wavelength of 3.3 mm show that there is a slight limb brightening at this wavelength. Within the measurement accuracy of the system used, the limb brightening function is only radially dependent. At 3.3 mm, the measurements are consistent with a solar brightness curve that is flat to about r = 0.8 with a rapid increase to a peak value of about 1.3 at the limb. The results show that most of the central disk 3.3-mm emission comes from a thin layer of relatively constant temperature about 1500–3500 km above the photosphere. This work was supported by the U.S. Air Force under Contract No. F04701-69-C-0066.  相似文献   

7.
Broadband sensors aboard the Naval Research Laboratory's SOLRAD 11 satellites measured solar emission in the 0.5 to 3 Å, 1 to 8 Å, 8 to 20 Å, 100 to 500 Å, 500 to 800 Å, and 700 to 1030 Å bands. Data from sixteen large flares show that the EUV emission is dominated by gradual emission which parallels the soft X-ray emission in duration and magnitude. The data are consistent with the separation of EUV and X-ray flare emission into two distinct components. A persistent component is made up of gradual EUV and gradual soft X-ray emissions. A brief component consists of hard X-rays, impulsive soft X-rays, and impulsive EUV emission.  相似文献   

8.
X-rays should be generated throughout the heliosphere as a consequence of charge transfer collisions between heavy (Z>2) solar wind ions and interstellar neutrals. The high charge state solar wind ions resulting from these collisions are left in highly excited states and emit extreme ultraviolet or soft X-ray photons. This solar wind charge exchange mechanism applied to cometary neutrals has been used to explain the soft X-ray emission observed from comets. A simple model demonstrates that heliospheric X-ray emission can account for about 25%-50% of the observed soft X-ray background intensities. The spatial and temporal variations of heliospheric X-ray emission should reflect variations in the solar wind flux and composition as well as variations in the distribution of interstellar neutrals within the heliosphere. The heliospheric X-ray "background" can perhaps be identified with the "long-term enhancements" in the soft X-ray background measured by ROSAT.  相似文献   

9.
The librations of the Moon allow it to be mapped using a continuous wave radar by an aperture synthesis method particularly suited to long wavelengths. Maps, as seen in the depolarised return at wavelengths of 75 and 185 cm, are presented. Both are broadly similar and show that most of the depolarised return comes from the highland regions with no significant return from the maria. Certain isolated features, such as the craters Tycho, Theophilus, and Copernicus, appear particularly prominent.Paper presented to the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 1971.  相似文献   

10.
We present a new method of estimating the energy of microwave-emitting electrons from the observed rate of increase of the microwave flux relative to the hard X-ray flux measured at various energies during the rising phase of solar flares. A total of 22 flares observed simultaneously in hard X-rays (20–400 keV) and in microwaves (17 GHz) were analyzed in this way and the results are as follows:
  1. The observed energy of X-rays which vary in proportion to the 17 GHz emission concentrates mostly below 100 keV with a median energy of 70 keV. Since the mean energy of electrons emitting 70 keV X-rays is ?130 keV or ?180 keV, depending on the assumed hard X-ray emission model (thin-target and thick-target, respectively), this photon energy strongly suggests that the 17 GHz emission comes mostly from electrons with an energy of less than a few hundred keV.
  2. Correspondingly, the magnetic field strength in the microwave source is calculated to be 500–1000 G for the thick-target case and 1000–2000 G for the thin-target case. Finally, judging from the values of the source parameters required for the observed microwave fluxes, we conclude that the thick-target model in which precipitating electrons give rise to both X-rays and microwaves is consistent with the observations for at least 16 out of 22 flares examined.
  相似文献   

11.
The results of measuring UV radiation onboard the CORONAS-F spacecraft during solar flares in 2001–2003 are considered. Some conclusions from the analysis of variations of solar-flare emission in several spectral intervals, namely, in soft X-rays, in the 10-to 130-nm range, and in the band near 120 nm, are discussed. The data were obtained by the VUSS-L and SUFR instruments. Time and energy characteristics of flares recorded onboard the CORONAS-F spacecraft are compared to the GOES measurements in the interval 0.1–0.8 nm and to the SOHO measurements of UV radiation in the 26-to 34-nm band. In particular, it is demonstrated that UV radiation is generated several (1–10) minutes before X-ray emission for most flares considered in the study. It is shown that the energy of flare emission in the extreme ultraviolet is usually not greater than ~10% of its preflare level and that energy fluxes in different wavelength ranges are related by a power law. Such an analysis makes it possible to better understand the mechanism of flare development.  相似文献   

12.
Pohjolainen  S. 《Solar physics》2003,213(2):319-339
A series of solar flares was observed near the same location in NOAA active region 8996 on 18–20 May 2000. A detailed analysis of one of these flares is presented where the emitting structures in soft and hard X-rays, EUV, H, and radio at centimeter wavelengths are compared. Hard X-rays and radio emission were observed at two separate loop footpoints, while soft X-rays and EUV emission were observed mainly above the nearby positive polarity region. The flare was confined although the observed type III bursts at the time of the flare maximum indicate that some field lines were open to the corona. No flux emergence was evident but moving magnetic features were observed around the sunspot region and within the positive polarity (plage) region. We suggest that the flaring was due to loop–loop interactions over the positive polarity region, where accelerated electrons gained access to the two separate loop systems. The repeated radio flaring at the footpoint of one loop was visible because of the strong magnetic fields near the large sunspot region while at the footpoint of the other loop the electrons could precipitate and emit in hard X-rays. The simultaneous emission and fluctuations in radio and X-rays – in two different loop ends – further support the idea of a single acceleration site at the loop intersection.  相似文献   

13.
《Planetary and Space Science》2007,55(9):1126-1134
We present the results of a spectral study of the soft X-ray emission (0.2–2.5 keV) from low-latitude (‘disk’) regions of Jupiter. The data were obtained during two observing campaigns with XMM-Newton in April and November 2003. While the level of the emission remained approximately the same between April and the first half of the November observation, the second part of the latter shows an enhancement by about 40% in the 0.2–2.5 keV flux. A very similar, and apparently correlated increase, in time and scale, was observed in the solar X-ray and EUV flux.The months of October and November 2003 saw a period of particularly intense solar activity, which appears reflected in the behavior of the soft X-rays from Jupiter's disk. The X-ray spectra, from the XMM-Newton EPIC CCD cameras, are all well fitted by a coronal model with temperatures in the range 0.4–0.5 keV, with additional line emission from Mg XI (1.35 keV) and Si XIII (1.86 keV): these are characteristic lines of solar X-ray spectra at maximum activity and during flares.The XMM-Newton observations lend further support to the theory that Jupiter's disk X-ray emission is controlled by the Sun, and may be produced in large part by scattering, elastic and fluorescent, of solar X-rays in the upper atmosphere of the planet.  相似文献   

14.
F. Nagai 《Solar physics》1980,68(2):351-379
A dynamical model is proposed for the formation of soft X-ray emitting hot loops in solar flares. It is examined by numerical simulations how a solar model atmosphere in a magnetic loop changes its state and forms a hot loop when the flare energy is released in the form of heat liberation either at the top part or around the transition region in the loop.When the heat liberation takes place at the top part of the loop which arches in the corona, the plasma temperature around the loop apex rises rapidly and, as the result, the downward thermal conductive flux is increased along the magnetic tube of force. Soon after the thermal conduction front rushes into the upper chromosphere, a local peak of pressure is produced near the conduction front and the chromospheric material begins to expand into the corona to form a high-temperature (107 K-3 × 107 K at the loop apex) and high-density (1010 cm–3-1011 cm–3 at the loop apex) loop. The velocity of the expanding material can reach a few hundred kilometres per second in the coronal part. The thermal conduction front also plays a role of piston pushing the chromospheric material downward and gives birth to a shock wave which propagates through the minimum temperature region into the photosphere. If, on the other hand, the heat source is placed around the transition region in the loop, the expansion of the material into the corona occurs from the beginning of the flare and the formation process of the hot loop differs somewhat from the case with the heat source at the top part of the loop.Thermal components of radiations emitted from flare regions, ranging from soft X-rays to radio wavelengths, are interpreted in a unified way by using physical quantities obtained as functions of time and position in our flare loop model as will be discussed in detail in a following paper.  相似文献   

15.
A new series of solar flare energetic X-ray events has been detected by an ionization chamber on the OGO-I and OGO-III satellites in free space. These X-rays lie in the range 10–50 keV, and a study has been made of their relationship to 3 and 10 cm radio bursts and with the emission of electrons and protons observed in space. The onset times, times of maximum intensity and total duration are very similar for the radio and X-ray emission. Also, the average decay is similar and usually follows an exponential type behavior. However, this good correlation applies most often to the flash phase of flares, whereas subsequent surges of activity from the same eruption may produce microwave emission or further X-ray bursts not closely correlated. An approximate proportionality is found between the total energy content of the X-rays and of the 3 and 10 cm integrated radio fluxes. These measurements suggest that the X-ray and microwave emission have a common energizing process which determines the time profile of both. The recording of electrons greater than 40 keV by the Interplanetary Monitoring Probe (IMP satellite) has been found to correlate very well with flares producing X-ray and microwave emission provided the propagation path to the sun is favorable. There is evidence that the acceleration of solar protons may not be closely associated with the processes responsible for the production of microwaves, X-rays, and interplanetary electrons.The OGO ionization chamber responds to energies (10–50 keV) intermediate between the soft X-rays giving SID disturbances (1–10 keV) and energetic quanta previously measured with balloons (50–500 keV). Proposed source mechanisms should be capable of covering this range of energies including the most energetic quanta occasionally observed.  相似文献   

16.
The determination of the location of the region of origin of hard X-rays is important in evaluating the importance of 10–100 keV electrons in solar flares and in understanding flare particle acceleration. At present only limb-occulted events are available to give some information on the height of X-ray emission. In fifteen months of OSO-7 operation, nine major soft X-ray events had no reported correlated Hα flare. We examine the hard X-ray spectra of eight of these events with good candidate X-ray flare producing active regions making limb transit at the time of the soft X-ray bursts. All eight bursts had significant X-ray emission in the 30–44 keV range, but only one had flux at the 3σ level above 44 keV. The data are consistent with most X-ray emission occurring in the lower chromosphere, but some electron trapping at high altitudes is necessary to explain the small nonthermal fluxes observed.  相似文献   

17.
A number of meter wavelength solar radio bursts of spectral Type-III have been observed by means of a solar radio spectroscope (40–240 MHz) simultaneously with sudden enhancements of low frequency (164 KHz) field strength (SES's) of Radio Tashkent which are known to take place due to the enhancements of D-layer ionization caused by flare-time solar X-rays.The association between the solar X-ray flares as detected by the SES's and the Type-III meter-wave solar bursts is discussed. It is found that the association of SES's and meter wave solar bursts, which implies the ejection of flare-time electrons towards the photosphere as well as corona, is about 72%.  相似文献   

18.
《Planetary and Space Science》2007,55(9):1135-1189
During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies.At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-rays have been detected from Saturn's disk, but no convincing evidence of an X-ray aurora has been observed. The first soft (0.1–2 keV) X-ray observation of Earth's aurora by Chandra shows that it is highly variable. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, those from the disk of Mars, Venus, and Moon, and from the rings of Saturn, are mainly produced by scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, the heliosphere, the geocorona, and the Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. X-rays from the Galilean satellites and the IPT are mostly driven by impact of Jovian magnetospheric particles.This paper reviews studies of the soft X-ray emission from the solar system bodies, excluding the Sun. Processes of production of solar system X-rays are discussed and an overview is provided of the main source mechanisms of X-ray production at each object. A brief account on recent development in the area of laboratory studies of X-ray production is also provided.  相似文献   

19.
Flares and coronal mass ejections (CMEs) contribute to the acceleration and propagation of solar energetic particles (SEP) detected in the interplanetary space, but the exact roles of these phenomena are yet to be understood. We examine two types of energetic particle tracers related with 15 CME-less flares that emit bright soft X-ray bursts (GOES X class): radio emission of flare-accelerated electrons and in situ measurements of energetic electrons and protons near 1 AU. The CME-less flares are found to be vigorous accelerators of microwave-emitting electrons, which remain confined in low coronal structures. This is shown by unusually steep low-frequency microwave spectra and by lack of radio emission from the middle and high corona, including dm?–?m wave type IV continua and metre-to-hectometre type III bursts. The confinement of the particles accelerated in CME-less flares agrees with the magnetic field configuration of these events inferred by others. Two events produced isolated metric type II bursts revealing coronal shock waves. None of the seven flares in the western hemisphere was followed by enhanced particle fluxes in the GOES detectors, but one, which was accompanied by a type II burst, caused a weak SEP event detected at SoHO and ACE. Three of the CME-less flares were followed within some hours by SEP-associated flares from the same active region. These SEP-producing events were clearly distinct from the CME-less ones by their association with fast and broad CMEs, dm?–?m wave radio emission, and intense DH type III bursts. We conclude that radio emission at decimetre and longer waves is a reliable indication that flare-accelerated particles have access to the high corona and interplanetary space. The absence of such emission can be used as a signal that no SEP event is to be expected despite the occurrence of a strong soft X-ray burst.  相似文献   

20.
The slowly varying component of solar microwave emission is associated with plage and sunspot regions seen optically. Under the assumption that the microwave emission originates radially above the associated optical feature the height of the microwave emission region above the photosphere can be calculated.For 99 regions seen at 9.1 cm during the International Quiet Sun Years 1964–1965 the average height was 8000 km. This result compares with 18000 km measured for the same wavelength emission during 1960. A change of height in this direction could be the result of the changing strength of the magnetic field associated with regions seen during the two periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号